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Outline

e Experiments, data, and goals
e Models

o« ANOVA at marker loci

e Interval mapping

e LOD scores, LOD thresholds
e Mapping multiple QTLs

e Simulations






Trait distributions
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Data and Goals
Phenotypes: y; = trait value for mouse i
Genotypes: z;; = 1/0 if mouse i is BB/AB at marker j
(for a backcross)
Genetic map: Locations of markers
Goals:

e Identify the (or at least one) genomic regions
(QTLs) that contribute to variation in the trait.

e Form confidence intervals for QTL locations.
e Estimate QTL effects.

Note: QTL = “quantitative trait locus”



Why?

Mice: Find gene

— Drug targets, biochemical basis

Agronomy: Selection for improvement

Flies: Genetic architecture

— Evolution

Genetic map
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Individuals

Genotype data
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Statistical structure
QTL Covariates
Markers  ------------ > Phenotype

The missing data problem:
Markers «+— QTL

The model selection problem:
QTL, covariates — phenotype



Models: Recombination

We assume no crossover interference.

— Points of exchange (crossovers) are according
to a Poisson process.

= The {z;;} (marker genotypes) form a Markov

chain
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Models: Genotype «— Phenotype

Let y = phenotype
g = whole genome genotype

Imagine a small number of QTLs with genotypes ¢, ..., g,.
(27 distinct genotypes)

.....

Models: Genotype «— Phenotype

Homoscedasticity (constant variance): 03 = o

Normally distributed residual variation:  y|g ~ N(u,, o2).

Additivity:  pg, g = p+ Z?:l Ajg; (gj=1o0r0)

Epistasis:  Any deviations from additivity.



The simplest method: ANOVA

e Split mice into groups
according to genotype
at a marker.

e Do a t-test / ANOVA.
e Repeat for each marker.

ANOVA at marker loci

Advantages
e Simple.

e Easily incorporate
covariates.

e Easily extended to more
complex models.

e Doesn’t require a genetic
map.

Phenotype
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Disadvantages
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e Must exclude individuals
with missing genotype data.

e Imperfect information about

QTL location.

e Suffers in low density scans.

e Only considers one QTL at a
time.



Interval mapping (IM)

Lander & Botstein (1989)

e Take account of missing genotype data
e Interpolate between markers
e Maximum likelihood under a mixture model

LOD score
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Interval mapping (IM)

Lander & Botstein (1989)

e Assume a single QTL model.

e Each position in the genome, one at a time, is posited as the
putative QTL.

e Let z = 1/0 if the (unobserved) QTL genotype is BB/AB.
Assume y ~ N(u.,0)

¢ Given genotypes at linked markers, y ~ mixture of normal dist'ns
with mixing proportion Pr(z = 1|marker data):

QTL genotype

My M, BB AB

BB BB  (1—rg)(1—rg)/(1—71) rprr/(1—7)
BB AB (1—rp)rr/r r(l—rgp)/r
AB BB ri(l—1rg)/r (1—rp)rr/r

AB AB rrrr/(1—7) (1—rp)(1—rg)/(1—r1)




The normal mixtures
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e Two markers separated by 20 cM,
with the QTL closer to the left
marker.

e The figure at right show the dis-
tributions of the phenotype condi-
tional on the genotypes at the two
markers.

e The dashed curves correspond to
the components of the mixtures.
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Interval mapping (continued)

Let p; = Pr(z; = 1|marker data)
yilzi ~ Nz, 0°)

Pr(y;|marker data, o, p11,0) = pi f (yi; 1, 0) + (1 — pi) £ (yi; o, 0)

where f(y; u, o) = density of normal distribution

Log likelihood:  I(uo, u1,0) = > _,;log Pr(y;|marker data, p, i1, o)

Maximum likelihood estimates (MLES) of ug, u1, o:

EM algorithm.



LOD scores

The LOD score is a measure of the strength of evidence for the
presence of a QTL at a particular location.

LOD(z) = log,, likelihood ratio comparing the hypothesis of a
QTL at position z versus that of no QTL

B Pr(y|QTL at z,fiq,,fi1,0,)
= logyg { Pr(y|no QTL,4,0)

iz, 11, 0, are the MLEs, assuming a single QTL at position z.

No QTL model: The phenotypes are independent and identically
distributed (iid) N(u, o).

An example LOD curve
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LOD curves
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Interval mapping

Advantages Disadvantages
e Takes proper account of e Increased computation
missing data. time.
e Allows examination of e Requires specialized
positions between markers. software.
e Gives improved estimates e Difficult to generalize.
of QTL effects.

e Only considers one QTL at
e Provides pretty graphs. a time.



LOD thresholds

Large LOD scores indicate evidence for the presence of a QTL.
Q: How large is large?

— We consider the distribution of the LOD score under the null
hypothesis of no QTL.

Key point: We must make some adjustment for our examination of
multiple putative QTL locations.

— We seek the distribution of the maximum LOD score, genome-
wide. The 95th %ile of this distribution serves as a genome-wide
LOD threshold.

Estimating the threshold: simulations, analytical calculations, per-
mutation (randomization) tests.

Null distribution of the LOD score

e Null distribution derived by
computer simulation of backcross
with genome of typical size.

e Solid curve: distribution of LOD
score at any one point.

e Dashed curve: distribution of
maximum LOD score,
genome-wide.

LOD score



Permutation tests

markers phenotypes
mice genotype LOD(z) M =
data (a set of curves) max, LOD(z)

e Permute/shuffle the phenotypes; keep the genotype data intact.
e Calculate LOD*(z) — M* = max, LOD*(z)

e \We wish to compare the observed M to the distribution of M*.
e Pr(M* > M) is a genome-wide P-value.

e The 95th %ile of M* is a genome-wide LOD threshold.

e We can’t look at all n! possible permutations, but a random set of 1000 is feasi-
ble and provides reasonable estimates of P-values and thresholds.

e Value: conditions on observed phenotypes, marker density, and pattern of miss-
ing data; doesn’t rely on normality assumptions or asymptotics.

Permutation distribution
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Multiple QTL methods

Why consider multiple QTLs at once?

e Reduce residual variation.
» Separate linked QTLSs.
o Investigate interactions between QTLs (epistasis).

Epistasis in a backcross
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Epistasis in an intercross
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Abstractions / simplifications

o Complete marker data
e QTLs are at the marker loci

e QTLs act additively



The problem

n backcross mice; M markers
z;; = genotype (1/0) of mouse i at marker ;
y; = phenotype (trait value) of mouse i

M
yz':,quZAj Tij + € Which Aj#()?
=1

— Model selection in regression

How is this problem different?

 Relationship among the x’s

e Find a good model vs. minimize prediction error



Model selection

e Select class of models e Search model space
— Additive models — Forward selection (FS)
— Add’ve plus pairwise interactions — Backward elimination (BE)
— Regression trees — FS followed by BE
- MCMC
o Compare models o Assess performance
B logn — Maximize no. QTLs found;
= BICs(7) =logRSS(y) + |71 (6 n ) control false positive rate
— Sequential permutation tests
— Estimate of prediction error
Why BIC;?

¢ For a fixed no. markers, letting n — oo, BIC; is consistent.

e There exists a prior (on models + coefficients) for which
BIC; is the —log posterior.

¢ BIC; is essentially equivalent to use of a threshold on the
conditional LOD score

e It performs well.



Choice of s

Smaller ¢: include more loci; higher false positive rate
Larger ¢: include fewer loci; lower false positive rate

Let L = 95% genome-wide LOD threshold
(compare single-QTL models to the null model)

Choose 6 =2 L / logygn

With this choice of §, in the absence of QTLs, we'll
Include at least one extraneous locus, 5% of the
time.

Simulations

e Backcross with n=250

e NO crossover interference

e 9 chr, each 100 cM S | 3

e Markers at 10 cM spacing;
complete genotype data

e 7 QTLs >
— One pair in coupling 6!
— One pair in repulsion 7 4
— Three unlinked QTLs g

e Heritability = 50% 9 |

¢ 2000 simulation replicates




s

Ave no. chosen

Methods

o« ANOVA at marker loci

o Composite interval mapping (CIM)

o Forward selection with permutation tests
e Forward selection with BIC;

e Backward elimination with BIC;

o FS followed by BE with BIC;

e MCMC with BIC;

A selected marker is deemed correct if it is within
10 cM of a QTL (i.e., correct or adjacent)

Correct

ANOVA —
fs, perm —
fs

be —

fs/be —
mcmc —

BIC



QTLs linked in coupling
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QTLs linked in repulsion
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Other QTLs
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Ave no. chosen

Extraneous unlinked
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Summary

e QTL mapping is a model selection problem.

e Key issue: the comparison of models.

e Large-scale simulations are important.

e More refined procedures do not necessarily give

Improved results.

¢ BIC; with forward selection followed by backward
elimination works quite well (in the case of additive

QTLSs).
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