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Abstract— Polynomial invariants for robot manipulators and
their joints arise from the adjoint action of the Euclidean group
on its Lie algebra, the space of infinitesimal twists or screws.
The aim of this paper is to determine basic sets of generating
polynomials for multiple screws. Techniques from the theory of
SAGBI bases are introduced. As a result, a complete description
is provided of the polynomial invariants for screw pairs and
some results for screw triples are obtained. The invariants are
shown to be related to Denavit—-Hartenberg parameters.

I. INTRODUCTION

The infinitesimal motion of a rigid body in space is
classically described by a screw, generically a helical motion
about an axis somewhere in space, special cases being pure
rotation (not translation along the axis) and pure transla-
tion. There is a natural equivalence between screws arising
from the action of the Euclidean group and a fundamental
characteristic of a screw is its pitch, p. This is the ratio
of two degree 2 homogeneous polynomials in the Pliicker
coordinates (w, v), the Klein form w.v and the Killing form
w.w. These forms are themselves invariants of the adjoint
action of the Euclidean group. Moreover, they generate all
such invariant polynomials, so are fundamental.

A serial mechanism or manipulator (SM) consists of a
sequence of rigid bodies connected by 1 degree-of-freedom
(dof) joints that are, in principle any of revolute (R), pris-
matic (P) or helical (H). In practice, H joints are rarely
used [1]. Each joint, in a given configuration of the SM
can be identified by a screw X, where X is type R when
p = 0 (pure rotation) and type P when p = oo, ie
w = 0 (pure translation). Type H corresponds to finite
non-zero p. Therefore a crude classification of SMs simply
requires identification of the sequence of joints. However,
that in itself is not sufficient to reconstruct an SM; one
must know additional design parameters that describe the
relative placement of the joints in successive components.
This is typically done by means of Denavit—-Hartenberg (DH)
parameters [2]. Denavit and Hartenberg introduced a matrix
product notation for representing the motion arising from
SMs. Brockett subsequently showed how to rewrite this, in
a purer form, as a product of exponentials [3].

Nevertheless, although DH parameters are valuable for
describing SMs they do not have a clear theoretical basis.
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A mathematically more natural approach to classifying and
identifying SMs is in terms of fundamental invariants for the
screw sequences that appear in the product-of-exponentials
form. Towards this end, one would like to identify invariants
for pairs, triples and general multiples of screws. These are
generally referred to as vector invariants.

Invariant polynomials of a group action form a subring in
the ring of polynomials, where the variables are coordinates
for the space acted upon. One hopes to find generators
for the invariant ring—a set of polynomials in terms of
which every other invariant can be written. It is known
that for a large class of groups, the reductive groups, the
invariant ring is finitely generated. On the other hand there
are non-reductive counter-examples to finite generation. For
a given group action, the First Fundamental Theorem of
Invariant Theory asserts the polynomial invariants are finitely
generated and gives a list of generators. The list may not be
algebraically independent: relations between the generators
are called syzygies and the Second Fundamental Theorem
(when it holds) asserts that the syzygies themselves are
finitely generated. From this it is possible to obtain a
reasonably precise description of the space of orbits of the
action as an algebraic variety. Further, a theorem proved by
Hochster and Roberts asserts that the ring of invariants has
a property known as Cohen—Macaulay [5]. This entails that
every invariant polynomial can be written in the form

F=3fillr.....00)m,
i=1

where 64,...,0, is a set of primary invariant polynomials,
N1,...,M¢ a set of secondary invariants with 73 = 1 and
fi,--., fn themselves polynomials.

The Euclidean group is however non-reductive; neverthe-
less, its structure as a semi-direct product over a the reductive
group SO(3) does provide some hope that its invariants are
finitely generated. Known results mostly concern the stan-
dard action of the Euclidean group (1). Weyl describes the
vector invariant theory for the special orthogonal groups [6].
The fundamental theorems for the standard action of the
Euclidean group are proved in [7]. Panyushev uses deep
results from invariant theory and algebraic geometry to
establish generators for invariants of semi-direct products [9],
including the Euclidean group, in special cases and these
encompass the case of screw pairs. Selig [8] establishes a
number of invariants for screw systems, that is subspaces of
Lie algebra. In fact, his approach uses a basis of twists for
a screw system and hence the resulting invariants coincide
with those for multi-screws. Connections with the classical



theory of invariants and line geometry are established in [10]
and form a branch of this broad area of study.

In this paper, a more computational approach is em-
ployed, which it may be possible to extend to multi-screws.
Computational results in invariant theory originate with
Young’s straightening law [11], a procedure for reducing an
invariant to a normal form. More recently, Grobner bases
have provided a more general approach for computation in
polynomial ideals [12]. As the invariant polynomials form
a subalgebra rather than an ideal, the analogous SAGBI
(or canonical subalgebra) basis theory is relevant [13], [14].
SAGBI bases provide algorithms for testing whether a given
polynomial is invariant and of reducing it in terms of the
basis. Using these methods a generating set for the polyno-
mial invariants on screw pairs is obtained, together with a
list of invariants for screw triples and a conjecture regarding
a generating set for screw triples.

A longer term goal of this research is to obtain a com-
plete understanding of the polynomial invariants for multiple
screws of any number, both as a set and in sequence in the
way they occur in a serial manipulator. The latter problem
involves the additional subtlety that the multi-screw changes
as the manipulator moves through different configurations
and, moreover, since the manipulator may have singular
configurations, these may become linearly dependent so that
even the dimension of the screw system is not invariant. In
these cases there is an additional action of copies of the real
numbers that propagate through the product of exponentials.

In Section II, the Euclidean group is defined together with
its adjoint action on its Lie algebra, the space of twists
or screws. A brief introduction to polynomial invariants
(Section IIT) and SAGBI bases (Section IV) follows. The
techniques are used in the computation of invariants and
theorems on generating sets are established in Section V. The
connection with Denavit-Hartenberg parameters is described
in Section ??.

II. EUCLIDEAN ADJOINT ACTION

The displacement of a rigid body in ordinary Euclidean
3-dimensional space E® is described by an element of
the special Euclidean group SFE(3), a 6-dimensional Lie
group. Given a choice of origin and orthonormal coordinates,
E? may be regarded as the vector space R® with the
Euclidean inner product. With respect to these coordinates,
a displacement in SE(3) can be described by means of a
combination of rotation about the origin, represented by a
3 x 3 orientation-preserving orthogonal matrix R € SO(3)
(the special orthogonal group) and a translation r € R3.
In this form, composition of displacements is not by direct
product of the rotation and translation subgroups, rather it is a
semi-direct product SE(3) = SO(3)xR3, with composition:

(Ra,r1) - (Ry1,r1) = (R2R1, Rory +12),

and only the translations form a normal subgroup. A dis-
placement A = (R, r) acts on a point x = (21, ¥, 73)" € R3
by

(R,r).x=Rx+r. (D

The motion of a rigid body is a path (R(t),r(t)) where
t € R denotes a time parameter. Assuming the path to be
differentiable and that (R(0),r(0)) = (I,0), the identity
displacement in SO(3) x R3, then the derivative s =
(R(0),#(0)) = (€, v) belongs to the tangent space to SE(3)
at the identity, that is its Lie algebra se(3). Elements of
se(3) are called twists and are closely related to the one-
dimensional subspaces spanned by non-zero twists, called
screws. In given coordinates, se(3) inherits a semi-direct sum
structure, s0(3) @ t(3), where Q € s0(3) is a 3 x 3 skew-
symmetric matrix

0 —w3 w2
Q= ws 0 —Ww1
—Ww w1 0

which it is often convenient to identify with its kernel
element w = (wy,ws,ws)’. The infinitesimal translations 3
can be written simply as 3-vectors v € R3. The components
of the 6-vector (w',v*)! are referred to as the Pliicker
coordinates of a twist. For convenience these will be denoted
(@, ).

A change of coordinates in E3 can be represented by a
transformation 7 € SO(3) x R? and a Euclidean displace-
ment given by A transforms under conjugation to TAT 1.
Differentiating the conjugation of a path A(¢) through the
identity gives rise to the adjoint action of SE(3) on its Lie
algebra se(3):

(R,1).(Q,v) = (RQR™', ROR 'r + Rv). )

Since the Lie algebra is a 6-dimensional vector space, a better
way of writing the adjoint action is in terms of the Pliicker
coordinates, in which case

(R,r), (w,v) = (Rw, Rw X r + Rv)

or better still, by replacing r = (t1,%3,t3)" by the skew-

0 —t3 to
symmetric matrix T = t3 0 —t; |, the adjoint
—t9 t1 0

action is given by the 6 x 6 representation [8]:

R 0\ (w) _ Rw 3
TR RJ)\v) \TRw+ Rv )

One can clearly extend the adjoint action to a vector of
screws or multi-screw ((wi,v1),...,(wg,vE)). It is worth
noting the two subactions associated with the rotation and
translation subgroups. These are represented by matrices of

the form
R 0 I 0
(0 R) and (T I) , 4)

respectively, where [ is 3x 3 the identity matrix. In particular,
the rotation action is the double of the standard action of
SO(3) so that its action on a k-screw corresponds to the 2k-
vector action of the special orthogonal group, whose invariant
theory is fully described in [6], [15].



III. INVARIANT POLYNOMIALS

Given the action of a group G on an affine space K™ (or
a variety contained in it) there is an induced action of the
group on the ring of polynomials Klz1,...,z,] given by
(Af)x) = f(A.x), and the invariant polynomials are those
for which Af = f. The basic theorems for the classical
groups, where both First and Second Fundamental Theorems
hold, are established in [6]. In particular, the vector invariants
of SO(3) acting on a set of m vectors X1, ...,X,, € R? are
generated by the following polynomials:

X X5, 1<14,5 <m;

o (5)
1<i<j<k<m,

[Xi, X, X),
where the bracket denotes the determinant of the 3 x 3 matrix
whose columns are the vectors and is defined only when m >
3. Further, there are three families of relations generating
the syzygies, but again these only arise when m > 3. In
particular, let X denote the m x m matrix whose (i, )"
entry is the scalar product x; - x;. Denote its k x k minors
by:

Xiy * Xjy
L=l ©)

iy~ Xjy

Xiy - Xy,

Xig " Xjy

Then for m > 4, the relations f;ll;j = 0 form one family
of syzygies.

Taking the Pliicker coordinates as variables on the
Lie algebra, there is an induced action of the Euclidean
group SE(3) on the ring of polynomials Rw,v] =
Rlwy,ws,ws, v1,v2,v3], It is well known that the ring of
such polynomials, denoted R|w, V]S E(3), contains the Klein
and Killing forms, w.v and ||w|? = w.w, respectively. It
is, in fact generated by these, that is to say, there is an
isomorphism:

Rlw, v]*FG) ~ Rlw.v, w.w], 7

and there are no relations between these invariants. The proof
in [16], where the general case for SFE(n) is proved, makes
use of reduction to a maximal torus and then careful analysis
of how the invariants there lift back to the whole group.

Another approach is found in [9] where a procedure is
introduced to find explicit generators for the adjoint action
of a semi-direct product G x V, where G is a group whose
adjoint action is isomorphic to its action on V. This is
the case for G = SO(3) with V = R3. It is shown
that if K[V]¢ = K]|fi,..., fx], there are no non-trivial
syzygies and certain other technical conditions hold, then
K[V x V]&%V is (freely) generated by fi,..., fi together
with d(f;)x.y where x,y denote coordinates on the two
copies of V respectively and dfyx is the derivative vector
of polynomials of f. Moreover, when the hypotheses hold,
the invariants of the “translation” subgroup 1 x V' are given
as the coordinates of the first factor x together with the
new invariants above. These results are re-established below
by a different method in the cases m = 1,2 for SE(3) =
SO(3) x R3.

IV. SAGBI BASES

Computations in an ideal I of a polynomial ring
Klxy,...,x,] (for some field of coefficients K) are effec-
tively done using a Grobner basis G. Given an ordering
of the terms in the variables (that satisfies certain natural
properties—see for example [12]), G is a generating sets
for I such that every polynomial in I has leading term
divisible by an element of GG. Using a Grobner basis provides
an effective way of rewriting any element of I in terms
of the generators, i.e. Y . u;g;, where u; € K[z1,..., 2],
g; € G. However, the invariant polynomials form a closed
set only under addition and multiplication by each other,
not by general polynomials in the ring, so they form only a
subalgebra, not an ideal. The theory of SAGBI bases [13],
[14] is an analogue for a subalgebras A.

Definition 4.1: S is a SAGBI basis for a subalgebra A,
with respect to a given term ordering, if the algebra of
leading terms of polynomials in S generates the subalgebra
of all leading terms for A, that is, if f € A then its leading
monomial is a product of leading monomials of elements in
S.

The acronym SAGBI stands for “subalgebra analogue of
Grobner bases for ideals”. There is a procedure, similar to
Buchberger’s algorithm for Grobner bases, for building a
SAGBI basis from a given generating set. This uses a SAGBI
reduction process, termed subduction,the subalgebra version
of the Division Algorithm, and analogues of S-polynomials,
termed féte-a-tétes. However, given that subalgebras are
not necessarily finitely generated (in the sense of (7), the
procedure is not genuinely algorithmic. Its input may be
infinite and/or it may not terminate in a finite number of
steps. Indeed, even when A itself is know to be finitely
generated, there may not exist a finite SAGBI basis with
respect to some or all term orderings. The reader is referred
to [14] for details of the algorithm and its shortcomings and
to [17] for a more recent discussion of the existence of finite
bases.

The application of the procedure to invariant subalgebras
relies on the following construction [18]. Suppose I' is a
group defined as an algebraic variety in some affine space
K™, that is, ' is defined by means of polynomial equations
on K™ that generate an ideal I(G) C Klay,.,.,am]. Let T
act on a variety X in the affine space K™, whose defining
equations determine the ideal I(X) C Klx1,...,x,]. The
action ¥ : I' x X — X gives rise to polynomial functions
w{xi) € Klai,...,am,x1,...,2,], ¢ = 1,...,m, being
the components of v.x in K™. It is convenient to write
yi = ¥*(x;) and treat the polynomials when appropriate
as variables of a polynomial ring in their own right. Then:

K[$17...7.’L‘m]r :K[y17ayn]ﬂ K[xll?)xn}
(X)
K ®)
c (@1, Qo Ty e ey Ty
B I(G)+ I(X)

This translates to a statement about SAGBI bases. A term
ordering in which any term that involves one or more of



a given subset of variables is if higher order than any that
contain none of these variables is called an elimination order.
A pure lexicographic order certainly satisfies this condition
for any leading subset of the variables.

Theorem 4.2 ( [19]): With the notation above, let
{fi,...,f+} be a SAGBI basis for K[yi,...,yn] with
respect to an elimination order, in which any polynomial
involving a;, 1 < i < m exceeds those in z;, 1 < j < n,
alone. Then {f1,..., f}NK[z1,...,2,]/I(X) is a SAGBI
basis for K[X]“, and hence a generating set.

V. COMPUTING INVARIANTS

Richman [15] proves the general n-dimensional case of
the following result for SO(3):

Theorem 5.1: A SAGBI basis for the invariants of SO(3),
under lexicographic ordering x11 > T12 > ... > ... > T3
is given by the minors f;1"* for k = 1,2, together with
the determinants |x;, ...xX;,| for all 1 <1y < ip < iz < m.
In other words, in addition to the generators (5) the 2 x 2
minors of the matrix of scalar products are required.

A. Screw invariants

As an example of the application of this theorem, consider
the translation sub-action of the adjoint action of SE(3) in
(4). Lexicographic ordering with t1 > to > t3 > wy; > we >
w3 > vp > vy > vs, is used. The first three variables relate
to the group G = R? and the last six to the Lie algebra
X = se(3). Since both of these are already affine spaces
the ideals I(G) and I(X) are trivial. The components of the
action are given, in decreasing term order, by:

Y1 = w1, Y2 =w2, Y3 =w3
Ya = towg — t3wa + U1 ©)
Ys = —tiws + tawi + V2

Yo = t1wa — tow1 + U3

Of course, Y1, Y2, y3 are already invariants. Application of the
SAGBI basis construction procedure yields one additional
polynomial, f; = wiv; + wovs + wsvs = w.v. Further
details of the computation can be found in [20]. Hence, by
Theorem 4.2, a SAGBI basis for the invariant polynomial
subalgebra R|wy,ws,ws, v1, v, v3]® is {w1,ws,ws,w.v}.
This can be used to provide an alternative derivation of the
finite generation theorem for the adjoint action of SE(3).

Theorem 5.2: The invariant subring Rlws, ..., vs] for the
adjoint action of SE(3) has a SAGBI basis given by {w -
w,w -V}

Proof: Let f be an SE(3) invariant for the action on a

single screw. As it is, in particular, a translational invariant,
it can be written via the SAGBI basis in the form:

F=Y g(w-v)', (10)
b

where g € R[w;,ws,ws] and the sum is finite. Equally, f

must also be a rotational invariant. If A = g{ Ig S

SE(3), where R € SO(3), then A(w.v) = Rw.Rv = w.v.
Hence

Af =D (Ag)(wr,wa,ws)(w-v)' = f. (11
b
This entails Ag, = gp, for all b. Hence g is an invariant of
the standard action of SO(3) on w, for which a SAGBI basis
is {w-w}, by Theorem 5.1. Hence g, € R[w - w| and so the
SE(3) invariants are generated by {w - w,w - v}. Moreover,
as there are no cancellations among leading terms of these
generators it is also a SAGBI basis. [ ]
Unfortunately, direct application of Theorem 4.2 does not
appear to yield a SAGBI basis for the rotational sub-action.
On the other hand, there are already known SAGBI bases
from Theorem 5.1.

B. Screw pairs and triples

The translation group approach may be used in the case
of 2-vector invariants of adjoint action of SE(3). Consider
a screw-pair (w;, v;), ¢ = 1,2. Straightforward computation
gives a SAGBI basis for the translation sub-action:

Wij for 1 S ) S 2,
for1 <i<2

w1 Vo +wy vy

I<j<3

wW; - V; (12)

Theorem 5.3: The invariant ring of SE(3) acting on two
screws is generated by

{wi-wj,wi~vi,w1~V2+w2-V1|1Si,j§2}. (13)

The proof is essentially the same as for Theorem 5.2 since
the “mixed” invariants are already rotational invariants and so
it is just a matter if filtering the rotation invariants involving
only the w;;s from all polynomials in these variables. It is
also worth noting that these are, of course, the generators
of Panyushev [9], described in Section III, and of Selig [8]
relating to 2-systems.

In the case of screw triples (w;, v;), i = 1,2, 3, application
of Theorem 4.2 has yielded the translational invariants:

Wi for 1 <i4,5<3

w; - V; for1 <i<3

w; Vjt+w;-v; for1<i<j<3 (14)
2123, <231, <312

<121 — 2323, 2232 — 2131, <313 — 212

wip W2 Wsg
where z;, = |wi; w2;  wsjl
Vik V2k U3k
length of the computation, it is not clear that the computation
has terminated. It is conjectured, however, that this is indeed
a SAGBI basis.
In the case of z;j; — zjk, neither z;;; or z;i alone is
a translational invariant. Furthermore, none of the final six
invariants is a rotational invariant, and so the method used for
the cases m = 1,2 to determine SFE(3) invariants (assuming
that we have a full listing of translational invariants) will
not work. By comparison with the known set of SO(3)

However, owing to the



invariants, however, the SFE(3) invariant z123 + 2231 + 2312
can be identified. This is equal to the sum |wjwavs| +
|wawsvi| + |wswive| of SO(3) invariants.

VI. DENAVIT-HARTENBERG PARAMETERS

The DH parameters for a series of screws (or, more
properly, twists so that there is a definitive direction to the
axis corresponding to a positive angle of rotation) are as
illustrated in Figure 1. The parameters are the rwist angle o;

Fig. 1. Denavit-Hartenberg parameters for a screw triple
between the direction vectors of two consecutive screws w;,
wi+1 , the displacement d; being the length of the common
perpendicular between the screw axes and the offser b, which
is only defined when there are three consecutive screws and
is the distance along the middle one between the feet of the
common perpendicular to the other two. Note that if one is
simply interested in three screws, not necessarily connected
in any order, then there is an offset associated with every
triple. It is clear that the DH parameters are not polynomials
in the Pliicker coordinates. Nevertheless they are related, at
least in the case of twist angle and displacement. For a pair of
screws (w;, v;), ¢ = 1,2 with twist angle « and displacement
d:

Wi - W2
cos o =
Vi(wr-wi)(ws - wy) a5)
. w1 - va +bgws - vy
dsina =

\/(wl 'w1)(w2 'wz)

The expressions on the right of (15) are written in terms
of the fundamental invariants for screw pairs in Theo-
rem t:2screws. A version of these formulae can be found,
for example, in [21].

In the case of the offset for a screw triple, it is certainly
possible to obtain an expression in terms of the Pliicker
coordinates of the screws and to show that this expression
is an SE(3) invariant. However, so far, it has not been
possible to write this expression in terms of the conjectured
fundamental generators for the invariant polynomials.

VII. CONCLUSION

Euclidean invariants have long played a fundamental role
in rigid body kinematics. The expression of quantities such
as pitch and the DH parameters in terms of polynomial
invariants demonstrates that knowledge of those particular
invariants is equally important. From the mathematical point
of view, there is a rich theory for polynomial invariants,

both in the classical literature, where the central results
are the Fundamental Theorems of Invariant Theory, and
in the modern computational invariant theory via Grdbner
and SAGBI bases. It is surprising that relatively little has
been known until recently about the adjoint invariants of
the Euclidean group. This paper has briefly surveyed earlier
results and has introduced techniques of SAGBI bases to the
search for more detailed knowledge of Euclidean invariants.
While these have been only partially successful, enumeration
of SAGBI bases in some important cases suggest that it can
be a powerful tool, leading to a deeper understanding of
the classification of serial manipulators and computational
techniques for manipulator algebra.
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