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1. Introduction

Cox (1972) introduced an proportional hazard model, known as the Cox model, where the
cumulative hazard function of the survival time T for a subject with covariate Z ∈ R

k is
given by

Λ(t|Z) = eβT ZΛ(t) (1)

where Λ(t) is an unspecified baseline cumulative hazard function. In the same paper, Cox
also proposed an estimation of β using partial likelihood. Since then, several authors, Cox
(1975), Tsiatis (1981), Andersen and Gill (1982), Bailey (1983, 1984), Johansen (1983) and
Jacobsen (1984) have tried to justify the method of partial likelihood estimation, and es-
tablish the asymptotic equivalence of the partial likelihood estimator and the maximum
likelihood estimator. We show that the profile likelihood is the most natural way to jus-
tify the partial likelihood in the Cox model and establish the asymptotic properties of its
estimator. Murphy and van der Vaart (2000) discussed asymptotic normality of the pro-
file likelihood estimator by applying an approximate least favorable submodel which was
proposed in their paper. Our approach uses the direct asymptotic expansion of profile
likelihood for the Cox regression model and show the estimator is efficient.

Suppose we observe (X, δ, Z) in time interval [0, τ ], where X = T ∧C, δ = 1{T≤C}, Z ∈
R

k is a regression covariate, T is a right-censored failure time with cumulative hazard is given
by Equation (1), and C is a censoring time independent of T given Z and uninformative of

(β,Λ). Let N(t) = 1{X≤t,δ=1}, Y (t) = 1{X≥t} and M(t) = N(t) −
∫ t

0 Y (s)eβT ZdΛ(s). The
log-likelihood for a single observation (X, δ, Z) is

ℓ(X, δ, Z;β,Λ) = (βTZ + log ∆Λ(X))δ − eβT ZΛ(X), (2)

where ∆Λ(t) = Λ(t) − Λ(t−).
For a cdf F , write EF f =

∫

fdF and define

Λ̂(t;β, F ) =

∫ t

0

EFdN(s)

EF [Y (s)eβT Z ]
. (3)
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The Breslow estimator is given by Λ̂(t;β, Fn) =
∫ t

0
EFn dN(s)

EFn [Y (s)eβT Z ]
where Fn is the empirical

cdf. If F0 is the cdf at the true value (β0,Λ0), then Λ̂(t;β0, F0) = Λ0(t). We substitute the
function Λ̂(β, F ) = Λ̂(t;β, F ) in the log-likelihood (Equation (2)) and call it the induced
model. The log-likelihood for an observation (X, δ, Z) in the induced model is

ℓ(X, δ, Z;β, Λ̂(β, F )) =

(

βTZ + log
EF ∆N(X)

EF [Y (X)eβT Z ]

)

δ − eβT Z

∫ X

0

EF dN(s)

EF [Y (s)eβT Z ]
.(4)

The score function and its derivative at (X, δ, Z) in the induced model are

ℓ̇(X, δ, Z;β, F ) =
∂

∂β
ℓ(X, δ, Z;β, Λ̂(β, F ))

=

∫ τ

0

{

Z − EF [ZY (t)eβT Z ]

EF [Y (t)eβT Z ]

}

{

dN(t) − Y (t)eβT ZdΛ̂(t;β, F )
}

(5)

and

ℓ̈(X, δ, Z;β, F ) =
∂

∂β
ℓ̇(X, δ, Z;β, F )

= −
∫ τ

0

{

EF [Z⊗2Y (t)eβT Z ]

EF [Y (t)eβT Z ]
− (EF [ZY (t)eβT Z ])⊗2

(EF [Y (t)eβT Z ])2

}

{

dN(t) − Y (t)eβT ZdΛ̂(t;β, F )
}

−
∫ τ

0

{

Z − EF [ZY (t)eβT Z ]

EF [Y (t)eβT Z ]

}⊗2

Y (t)eβT ZdΛ̂(t;β, F ). (6)

Since Λ̂(t;β0, F0) = Λ0(t), the induced score function at (β0, F0),

ℓ̇(X, δ, Z;β0, F0) =

∫ τ

0

{

Z − E0[ZY (t)eβT
0

Z ]

E0[Y (t)eβT
0

Z ]

}

dM(t) =: ℓ̇∗(X, δ, Z) (7)

is the efficient score function ℓ̇∗(X, δ, Z) and the efficient information matrix is given by

I∗0 := −E0ℓ̈(X, δ, Z;β0, F0)

= E0

∫ τ

0

{

Z − E0[ZY (t)eβT
0

Z ]

E0[Y (t)eβT
0

Z ]

}⊗2

Y (t)eβT
0

ZdΛ0(t) (8)

where E0 = EF0
is the expectation at the true value (cf. Murphy and van der Vaart (2000)).

We assume

(C1) P (X ≥ τ) = E0(Y (τ)) > 0, and

(C2) the range of Z is bounded;

(C3) the efficient information matrix I∗0 is invertible;

(C4) the empirical cdf Fn is
√
n-consistent, i.e.,

√
n(Fn − F0) = OP (1).
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2. Efficiency in Profile and Partial likelihood

The partial likelihood and and the corresponding score equation are given by

Ln(β) =

n
∏

i=1

∏

0≤t≤τ

{

Yi(t)e
βT Zi

∑n
j=1 Yj(t)eβT Zj

}∆Ni(t)

and

∂

∂β
logLn(β) = Pn

∫ τ

0

{

Z − EFn
[ZY (t)eβT Z ]

EFn
[Y (t)eβT Z ]

}

dN(t) = 0. (9)

On the other hand, for the empirical cdf Fn, Pnℓ(X, δ, Z;β, Λ̂(β, Fn)) gives a version of
profile (log-) likelihood, where ℓ(X, δ, Z;β,Λ) is the log-likelihood for an observation given
by Equation (2) and Λ̂(β, Fn) is the Breslow estimator given by Equation (3) . By Equation
(5), the score equation for the profile likelihood is

Pn

∫ τ

0

{

Z − EFn
[ZY (t)eβT Z ]

EFn
[Y (t)eβT Z ]

}

{

dN(t) − Y (t)eβT ZdΛ̂(t;β, Fn)
}

= 0. (10)

Since

Pn

∫ τ

0

{

Z − EFn
[ZY (t)eβT Z ]

EFn
[Y (t)eβT Z ]

}

Y (t)eβT ZdΛ̂(t;β, Fn) = 0,

the score equations Equation (9) and Equation (10) are the same equation. This establishes
the equivalence of the estimators based on the profile likelihood and the partial likelihood.

The following theorem shows that the estimator based on the profile likelihood and the
partial likelihood are efficient.

Theorem 1. Suppose (C1)–(C4). The solution β̂n to the score equation for the profile

likelihood (Equation (10)) and the solution β̂n to the score equation for the partial likelihood
(Equation (9)) are both asymptotically linear estimators with the efficient influence function
(I∗0 )−1ℓ̇∗ so that

√
n(β̂n − β0) =

√
nPn(I∗0 )−1ℓ̇∗(X, δ, Z) + oP (1)

d→ N(0, (I∗0 )−1). (11)

where the efficient score ℓ̇∗ and the efficient information I∗0 are given by Equations (7) and
(8), respectively.

Proof. Conditions (R0)–(R3) in Theorem A in Appendix A are verified in Appendix B.
The claim follows from Theorem A. 2

3. Discussion

The equivalence of the estimator in the partial likelihood and profile likelihood in the
Cox regression model has been established by Bailey (1983, 1984), Johansen (1983), and
Jacobsen (1984). Asymptotic behavior of the estimator has been studied by Tsiatis (1981)
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and Andersen and Gill (1982). Murphy and van der Vaart (2000)) discussed the profile
likelihood estimator in the Cox regression model to illustrate the method of an approximate
least favorable submodel that was used to establish the efficiency of the profile likelihood
estimator for general semiparametric models. Our approach uses the direct expansion of
profile likelihood (cf. Hirose (2009)) to show the efficiency of the profile likelihood estimator
in the Cox regression model.

Appendix A: Theorem A

This section is a modification of the result in Hirose (2009).

Hadamard differentiability

We say that a map ψ : B1 → B2 between two Banach spaces B1 and B2 is Hadamard
differentiable at x if there is a continuous linear map dψ(x) : B1 → B2 such that

ψ(x+ th′) − ψ(x)

t
→ dψ(x)(h) as t→ 0 and h′ → h.

The map dψ(x) is called derivative of ψ at x, and is continuous in x. (For reference, see
Gill (1989) and Shapiro (1990).)

Theorem and its assumptions

On the set of cdf functions F , we use the sup-norm, i.e., for F, F0 ∈ F ,

‖F − F0‖ = sup
x

|F (x) − F0(x)|.

For ρ > 0, let
Cρ = {F ∈ F : ‖F − F0‖ < ρ}.

Suppose we consider a semi-parametric model of the form

P = {p(x;β, η) : β ∈ Θβ ⊂ R
m, η ∈ Θη}

where β is the m-dimensional parameter of interest, and η is a nuisance parameter, which
may be infinite-dimensional. Let (β0, η0) be the true value of (β, η). We assume Θβ is a
compact set containing an open neighborhood of β0 in R

m, and Θη is a convex set containing
η0 in a Banach space B. The expectation at the true value (β0, η0) is denote by E0.

For a map η̂ : Θβ×F → Θη, define a model (called the induced model) with log-likelihood
for one observation

ℓ(x;β, F ) = log p(x;β, η̂(β, F )), β ∈ Θβ , F ∈ F .

The score function in the induced model is denoted by

ℓ̇(x, β, F ) =
∂

∂β
ℓ(x;β, F ). (12)

We assume that:
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(R0) η̂ satisfies η̂(β0, F0) = η0 and the function

ℓ̇∗(x) = ℓ̇(x, β0, F0)

is the efficient score function.
(R1) The empirical process Fn is

√
n-consistent, i.e.,

√
n‖Fn − F0‖ = OP (1), and for

each (β, F ) ∈ Θβ × F , the log-likelihood function ℓ(x;β, F ) is twice continuously
differentiable with respect to β and Hadamard differentiable with respect to F for all
x.
(Derivatives are denoted by ℓ̇(x, β, F ) = ∂

∂β
ℓ(x;β, F ), ℓ̈ = ∂

∂β
ℓ̇(x, β, F ), A(x, β, F ) =

dF ℓ(x;β, F ) and dF ℓ̇(x, β, F ).)
(R2) The efficient information matrix I∗0 = E0(ℓ̇

∗ℓ̇∗T ) is invertible.
(R3) There exist a ρ > 0 and a neighborhood Θβ of β0 such that the class of functions

{ℓ̇(x, β, F ) : (β, F ) ∈ Θβ × Cρ} is Donsker with square integrable envelope function,

and such that the class of functions {ℓ̈(x, β, F ) : (β, F ) ∈ Θβ×Cρ} is Glivenko-Cantelli
with integrable envelope function.

Theorem A. Suppose sets of assumptions {(R0), (R1), (R2), (R3)}, then a consistent so-

lution β̂n to the estimating equation

Pnℓ̇(X, β̂n, Fn) = 0 (13)

is an asymptotically linear estimator for β0 with the efficient influence function (I∗0 )−1ℓ̇∗(x)
so that √

n(β̂n − β0) =
√
nPn(I∗0 )−1ℓ̇∗(X) + oP (1)

d−→ N
(

0, (I∗0 )−1
)

.

This demonstrates that the estimator β̂n is efficient.

Proof.
Since (i) the range of the score operatorA(X, β0, F0) = dF ℓ(x;β0, F0) = dF log p(x;β0, η̂(β0, F0))

for F is in the nuisance tangent space (the tangent space for η), and (ii) the function
ℓ̇(x, β0, F0) is the efficient score function, we have

E0dF ℓ̇(X, β0, F0) = −E0[ℓ̇(X, β0, F0)A(X, β0, F0)] = 0 (the zero operator). (14)

For Fn and F0 in F , consider a path F ∗
n(t) = F0+t(Fn−F0), t ∈ [0, 1]. Then F ∗

n(0) = F0

and F ∗
n(1) = Fn. Under the assumption

√
n‖Fn − F0‖ = OP (1) (condition (R1)), we have

that supt∈[0,1] |F ∗
n(t) − F0| = oP (1).

By the mean value theorem for vector valued function (cf. Hall and Newell (1979)),

‖
√
nE0ℓ̇(X, β0, Fn)‖

= ‖
√
nE0ℓ̇(X, β0, F

∗
n(1)) −

√
nE0ℓ̇(X, β0, F

∗
n(0))‖

≤ sup
t∈[0,1]

‖E0dF ℓ̇(X, β0, F
∗
n(t))‖

√
n‖Fn − F0‖

= ‖E0dF ℓ̇(X, β0, F0) + op(1)‖
√
n‖Fn − F0‖ (since sup

t∈[0,1]

|F ∗
n(t) − F0| = oP (1))

= op(1)
√
n‖Fn − F0‖ (by Equation (14))

= oP (1) (since
√
n‖Fn − F0‖ = OP (1)). (15)
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Since the functions ℓ̇(x, β, F ) and ℓ̈(x, β, F ) are continuous at (β0, F0), and they are
dominated by the square integrable function and the integrable function, respectively, by

dominated convergence theorem, for every (β∗
n, F

∗
n)

P→ (β0, F0), we have

E0‖ℓ̇(X, β0, F
∗
n) − ℓ̇(X, β0, F0)‖2 P→ 0.

and
E0‖ℓ̈(X, β∗

n, F
∗
n) − ℓ̈(X, β0, F0)‖ P→ 0.

Together with condition (R3), this implies that

√
nPn

{

ℓ̇(X, β0, Fn) − ℓ̇(Xi, β0, F0)
}

=
√
nE0

{

ℓ̇(X, β0, Fn) − ℓ̇(X, β0, F0)
}

+ oP (1) (16)

by Lemma 13.3 in Kosorok (2008), and for every (β∗
n, F

∗
n)

P→ (β0, F0),

Pnℓ̈(X, β
∗
n, F

∗
n)

P→ E0ℓ̈(X, β0, F0) = −I∗0 . (17)

By combining Equation (15) and (16), we get
√
nPnℓ̇(X, β0, Fn) =

√
nPnℓ̇(X, β0, F0) + oP (1). (18)

Finally, by Taylor’s expansion, for some β∗
n with ‖β∗

n − β0‖ ≤ ‖β̂n − β0‖ P→ 0,

0 =
√
nPnℓ̇(X, β̂n, Fn)

=
√
nPnℓ̇(X, β0, Fn) + Pnℓ̈(X, β

∗
n, Fn)

√
n(β̂n − β0)

=
√
nPnℓ̇(X, β0, F0) + oP (1) + {−I∗0 + oP (1)}

√
n(β̂n − β0)

where the last equality is by Equations (17) and (18). Hence, by condition (R2),
√
n(β̂n − β0) = (I∗0 )−1

√
nPnℓ̇(X, β0, F0) + oP (1){1 +

√
n(β̂n − β0)}.

Since (I∗0 )−1
√
nPnℓ̇(X, β0, F0) = OP (1), this equality implies

√
n(β̂n − β0) = OP (1) and

√
n(β̂n − β0) = (I∗0 )−1

√
nPnℓ̇(X, β0, F0) + oP (1).

2

Appendix B: Proof of Theorem 1

To prove Theorem 1, Conditions (R0)–(R3) in Theorem A (in Appendix A) are verified
here.
Condition (R0): This condition is verified by two lines below Equation (3) and Equation
(7).
Condition (R1): Equation (4) is twice continuously differentiable with respect to β with
the first and second derivatives (5) and (6). We show that Equation (4) is Hadmard differ-
entiable with respect to F . Suppose Λt be a path such that Λt → Λ and t−1{Λt − Λ} → g

as t ↓ 0. Then, as t ↓ 0,

t−1{ℓ(x, δ, z;β,Λt) − ℓ(x, δ, z;β,Λ)}
= δt−1{log∆Λt(x) − log ∆Λ(x)} − eβ′z(t−1{Λt(x) − Λ(x)})

→ δ
∆g(x)

∆Λ(x)
− eβ′zg(x) ≡ [dΛℓ(δ, z;β,Λ)](g)(x).
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This shows ℓ(x, δ, z;β,Λ) is Hadmard differentiable with respect to Λ.

If we show Hadamard differentiability of the function Λ̂(t;β, F ) (defined by Equation
(3)) with respect to F , then, by the chain rule of Hadamard differentiable maps, Equation
(4) is Hadamard differentiable with respect to F .

Suppose Ft be a path such that Ft → F and t−1{Ft − F} → h as t ↓ 0. Then, as t ↓ 0,

t−1
{

Λ̂(s;β, Ft) − Λ̂(s;β, F )
}

= t−1

{
∫ s

0

EFt
dN(u)

EFt
[Y (u)eβT Z ]

−
∫ s

0

EF dN(u)

EF [Y (u)eβT Z ]

}

→
∫ s

0

EhdN(u)

EF [Y (u)eβT Z ])
−

∫ s

0

EFdN(u)Eh[Y (u)eβT Z ]

(EF [Y (u)eβT Z ])2
≡ [dF Λ̂(β, F )](h)(s),

Therefore, the function Λ̂(t;β, F ) is Hadamard differentiable with respect to F and
hence Condition (R1) is verified.
Condition (R2): We assumed that the efficient information matrix given by Equation (8)
is invertible (C3).

Condition (R3): Let F be the set of cdf functions and for some ρ > 0 define Cρ = {F ∈
F : ‖F − F0‖∞ ≤ ρ}. We show that the class

{ℓ̇(X, δ, Z;β, F ) : β ∈ Θ, F ∈ Cρ}

is Donsker with square integrable envelope function and the class

{

ℓ̈(X, δ, Z;β, F ) : β ∈ Θ, F ∈ Cρ

}

is Glivenko-Cantelli with integrable envelope function.
The set of cdf functions F is uniformly bounded Donsker. Hence the subset Cρ ⊂ F is

uniformly bounded Donsker.
We assumed Z is bounded. The classes of functions {Z}, {N(t) : t ∈ [0, τ ]} and

{Y (t) : t ∈ [0, τ ]} are uniformly bounded Donsker. The class {βTZ : β ∈ Θ}, with the
compact set Θ, is uniformly bounded Donsker. It follows from f(x) = ex is a Lipschitz

continuous function that {eβT Z : β ∈ Θ} is uniformly bounded Donsker.

By Example 2.10.8 in van der Vaart and Wellner (1996), the class of functions {Y (t)eβT Z :
t ∈ [0, τ ], β ∈ Θ} is uniformly bounded Donsker. Since the map (f, F ) → EF f =

∫

fdF

is Lipschitz, by Theorem 2.10.6 in van der Vaart and Wellner (1996), {EF (Y (t)eβT Z) :
t ∈ [0, τ ], β ∈ Θ, F ∈ Cρ} is Donsker since it is uniformly bounded. Similarly, the class
{EF (N(t)) : t ∈ [0, τ ], F ∈ Cρ} is uniformly bounded Donsker.

We assumed P (X ≥ τ) = E0(Y (τ)) > 0. Since the map F → EF f =
∫

fdF is
continuous, there are ρ > 0 and ρ1 > 0 such that for all F ∈ Cρ,

EF (Y (τ)) ≥ ρ1 > 0.

Since Z is bounded and β is in the compact set Θ, 0 < m < eβT Z < M for some 0 < m <

M <∞. It follows that

0 < ρ1m ≤ mEF (Y (s)) ≤ EF (Y (s)eβT Z) ≤MEF (Y (s)) ≤M <∞.
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By Example 2.10.9 in van der Vaart and Wellner (1996), the class

{

1

EF (Y (t)eβT Z)
: t ∈ [0, τ ], β ∈ Θ, F ∈ Cρ

}

is uniformly bounded Donsker.
Since the map (f, F ) → EF f =

∫

fdF is Lipschitz, by Theorem 2.10.6 in van der Vaart
and Wellner (1996), the class of functions

{

Λ̂(t;β, F ) =

∫ t

0

dEF [N(s)]

EF [Y (s)eβT Z ]
: t ∈ [0, τ ], β ∈ Θ, F ∈ Cρ

}

is uniformly bounded Donsker.
By Examples 2.10.7, 2.10.8 and 2.10.9 in van der Vaart and Wellner (1996), the class

{

N(t) − Y (t)eβZ

Λ̂(t;β, F ) : t ∈ [0, τ ], β ∈ Θ, F ∈ Cρ

}

is uniformly bounded Donsker.
Clearly, the class of functions

{

Z − EF [ZY (t)eβT Z ]

EF [Y (t)eβT Z ]
: β ∈ Θ, F ∈ Cρ

}

is uniformly bounded Donsker.
Again, since the map (f, F ) →

∫

fdF is Lipschitz, by Theorem 2.10.6 in van der Vaart
and Wellner (1996), the class of functions

{

ℓ̇(X, δ, Z;β, F ) =

∫ τ

0

{

Z − EF [ZY (t)eβT Z ]

EF [Y (t)eβT Z ]

}

{

dN(t) − Y (t)eβT ZdΛ̂(t;β, F )
}

: β ∈ Θ, F ∈ Cρ

}

is uniformly bounded Donsker and hence it has square integrable envelope function.
Similarly, we can show that

{

ℓ̈(X, δ, Z;β, F ) : β ∈ Θ, F ∈ Cρ

}

is uniformly bounded Donsker, hence it is Glivenko-Cantelli with integrable envelope func-
tion.
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