A Linear Regression Approach to Numerical

Simplification in Tree-Based Genetic Programming

Mark Johnston', Thomas Liddle!, and Mengjie Zhang?

! School of Mathematics, Statistics and Operations Research
Victoria University of Wellington, P.O. Box 600, Wellington, New Zealand
mark johnston@msor.vuw.ac.nz
liddlethom@msor.vuw.ac.nz
2 School of Engineering and Computer Science
Victoria University of Wellington, P.O. Box 600, Wellington, New Zealand
mengjie.zhang@ecs.vuw.ac.nz

Abstract. We propose a novel approach to simplification in tree-based Genetic Programming to com-
bat program bloat, based upon numerical relaxations of algebraic rules. We also separate proposal of
simplifications (using linear regression, removing redundant children, and replacing small ranges
with a constant) from an acceptance criterion that checks the effect of proposed simplifications on the
evaluation of training examples, looking several levels up the tree. We test our simplification method
on three classification datasets and conclude that the success of linear regression is dataset depen-
dent, that looking further up the tree can catch unwanted bad case simplifications, and that CPU
time can be significantly reduced while maintaining classification accuracy on unseen examples.

Victoria University of Wellington
School of Mathematics, Statistics and Operations Research
Research Report Series (ISSN: 1174-2011)
http:/ /msor.victoria.ac.nz/Main/ResearchReportSeries

December 14, 2009




1 Introduction

One problem that limits the effective application of Genetic Programming is program
bloat [1-4], where program trees tend to grow exponentially in size due to the crossover
operator, causing the GP process to be computationally expensive. This is often unnec-
essary, as trees in the population tend to have some algebraic redundancy, i.e., the
mathematical expressions that the trees represent can often be algebraically simplified.
Bloat corresponds to “model overfitting” in statistical modelling, i.e., formulating a
model that is more complicated than necessary to fit a set of training examples. In ad-
dition, program trees are often contrived to make the best use of the available constant
values set in the initial population. The usual approach to combating program bloat is
to set a maximum depth limit [1] for program trees, thereby “cutting off” potentially
useful portions of a tree. This allows the GP process to run in reasonable time, but it is
not ideal when it is desired that the GP search covers as much of the search space as
possible.

Two distinct approaches to simplification of programs in tree-based GP are the al-
gebraic and numerical approaches. In the algebraic approach [5, 6], the rules of algebra
are used (in a bottom-up fashion) to directly simplify the mathematical expression that
the tree represents. In the numerical approach [7,8], the evaluation of each of the set
of training examples are examined to determine if particular subtrees can be approxi-
mated by a single constant, removed altogether, or replaced by a smaller subtree. This
is similar to “lossy compression” of images and aims for a minimal effect upon the
evaluation of training examples.

In this paper, we propose to split the process of simplification into two roles: pro-
posers which propose a local change to the program tree; and an acceptor which eval-
uates the proposed local change and determines whether to accept or reject it. The
novel aspects are that the proposers use numerical relaxations of algebraic simplifi-
cation rules, including linear regression, and that the acceptor evaluates the effect of
the proposed local change further up the tree to safeguard against myopic decisions.
These ideas are developed further in Section 3. We investigate how simplification af-
fects classification performance; in particular considering node-wise (myopic) simpli-
fication versus group-wise (local) simplification, investigating sensitivity of program
nodes to the significance threshold and propagation effects, and looking for potential
bad case examples. We will also study how numerical simplification can actively con-
trol program size and achieve parsimony pressure from dynamic simplification versus

enforced pruning from a node-count or depth constraint.



Research goals. The overall research goal is to determine how simplification affects
classification accuracy and computational effort in controlling program bloat for clas-
sification problems. In particular, we wish to balance: the number and severity of sim-
plifications proposed (reduction in tree size or wasted proposals that are not accepted)
and the additional workload in evaluating them; how far up the tree should the accep-
tor look (since looking further up the tree requires increased computational effort but
will certainly catch more bad cases); and how often to simplify the population.

Outline of the paper. The remainder of this paper is structured as follows. Section 2
provides background on algebraic and numerical approaches to simplification in GP
programs. Section 3 develops our new approach to simplification of GP programs
based upon a relaxation of the algebraic rules and separating the roles of simplification
proposer and simplification acceptor. Section 4 describes computational experiments
on three datasets and Section 5 discusses the results. Finally, Section 6 draws some
conclusions and makes recommendations for future research directions.

2 Algebraic and Numerical Approaches to Simplification

In this section we review some existing algebraic and numerical approaches to the
simplification of a program in tree-based GP. We consider a simple GP system which
includes the basic arithmetic operators: +, —, x and protected division % which returns
0 when the divisor is 0. We also include an i f pos operator which returns the middle
child if the left child is positive, and otherwise returns the right child.

2.1 Algebraic Simplification

Algebraic simplification of a GP tree involves the exact application of the simple rules
of algebra to nodes of the tree in order to produce a smaller tree representing an exactly
equivalent mathematical expression. Table 1 lists a number of algebraic simplification
rules applied to a local node of the program tree. For example, for constants a and ¢
and subtree B, we can replace the subtree a x (B%c) with the subtree b x B where
b = a%c is a new constant node. This can be implemented efficiently using hashing in
the finite field Z, for prime p [5, 6].

The strength of this approach is that any proposed simplification has no global ef-
fect on the evaluation of any training example. The weakness is that the rules of alge-
bra are applied exactly, i.e., there is no scope for the rule for approximate equivalence,
nor equivalence across the domain of the training examples. There are also some alge-
braic simplifications that are difficult for a basic set of locally applied algebraic rules to
recognise when applied in a bottom-up fashion.

3



Table 1. Algebraic simplification rules (reproduced from [5]). Lower case letters represent numerical constants,
while the upper case letters represent variable/feature terminal nodes or whole subtrees.

Precondition Result |Precondition Result

a+b — c¢c=a+b|a+(b+0C) — c¢+Cic=a+b
a—>b — c¢c=a—-b|la+(b-0C) — c¢—C,c=a+b
axb — ce=axb|a—(b+C) — c¢—C,c=a—b
a+b — c¢e=a+b|a—(b-C) — c¢c+C,c=a—b
A=+1 — A ax(bxC) — ¢xCic=axb
A+A — 1 ax((b+0C) — c¢c+Cic=axb
0+A — 0 a+(b+0C) — ¢xCic=a=xb
OxA=Ax0 — 0 a+ (B +c¢) — b+ Bb=a+c
Axl=1xA — A a+ (B —c¢) — b+ Bb=a-—c
A+0=0+4 — A a—(B+c¢) — b—B,b=a—c
A-0 — A a—(B—c) — b—B,b=a+c
A-A — 0 a x (B xc) — bxB/b=axc
Ax+=4xA — 4 aXx(B+c) — bxBb=a+c
AxEB=8BxA — B a+(B+c¢) — b+Bb=axc

2.2 Numerical Simplification

Numerical simplification of a GP tree involves the replacement of a subtree with a
smaller (possibly approximate) substitute based upon the local effect on the evaluation
of the training examples. Two methods previously explored are described below.

Range simplification [7]. In evaluating the training examples, if the range of values a
node takes is sufficiently small (less than a range threshold), then the node is replaced
by a single constant-node (the average value). The strengths of range simplification
are that equivalence is based only upon the observed range of the training examples;
it deals with nodes that are calculated from constant values; allows for features or
subtrees with a very small range of values to be simplified; and it is computationally
inexpensive. However, the weakness is that local simplifications can have an adverse
effect further up the tree in some cases. Figure 1 shows an example of the potentially
bad effect of a local range simplification further up the tree and Appendix D discusses
further examples.

Removing redundant children [8]. In evaluating the training examples, if the differ-
ence between the values at a parent node and its child are sufficiently small (less than
a redundancy threshold in this paper) then the parent can be replaced by the child. Song
et al [8] use the criterion that the sum of absolute deviations (SAD) be zero over all

Z|pz‘—0i|:0

4

training examples, i.e.,



original results vector: new results vector:
(447.992, 285.177, 339.286, 440.127, 548.958) (445.355, 287.095, 339.428, 435.687, 553.804)

candidate
simplification

(%)
~
e,

simplification

results vector: results vector: results vector:
(211.9, 136.6, 161.5, 207.3, 263.5)  (0.473, 0.479, 0.476, 0.471, 0.480) (211.9, 136.6, 161.5, 207.3, 263.5)
range = 0.009 unchanged

average value: 0.4758

MSE(original,new) = 10.769

Fig.1. A bad case example where range simplification causes a significant change to the tree one level up. The left
subtree (S1) has relatively large values in its results vector (the evaluation of the subtree on the training examples),
and is divided by the right subtree (S2) which has relatively small evaluation values. Even though the range of S2
is only 0.009, the division means the simplification causes a relatively large change to the tree.

where p; and ¢; are the evaluation of the ith training example at the parent and child
respectively. This is a slight relaxation of algebraic simplification to the actual range of
values taken by the training examples.

3 New Relaxed Approach to Simplification

We propose a new relaxed approach to simplification in which we use numerical eval-
uation of the training examples to determine if the algebraic rules are approximately
satisfied, and then evaluate the numerical effect of any proposed local simplifications
further up the tree before accepting them. Hence, we clearly separate the proposal of
a local simplification from the acceptance or rejection of the proposal based upon its
effect on the numerical evaluation of the training examples. We address the weakness
of exact algebraic simplification by covering simple algebraic rules plus more compli-
cated ones, and allow for approximate satisfaction of these rules, thereby extending
the possible reduction in tree-size of simplification. We also address the weakness of
local numeric simplification by looking further up the tree before accepting a proposed
simplification, and therefore catch the bad cases and reject them.

3.1 Proposers

In this paper we use three numerical simplification operators — range simplification
and removal of redundant children (as in Section 2.2) and linear regression (described
further below) — to numerically evaluate possible algebraic simplifications, relaxing
each equality slightly. Between the three operators, we cover almost all the algebraic
simplification in Table 1 (except those involving two general subtrees) and some more

5



highest correlation l

with

X=S
b=4, a=2

Fig.2. Simplification examples that are not covered by simple (local) algebraic rules, but are covered by linear

regression. Here S represents a particular repeated subtree in each example.

complex ones. We make a small modification to each of the first two operators pre-
sented before: for simplicity, we use a constant range threshold for range simplifica-
tion; and we use mean square error (MSE) for redundancy checking (rather than SAD)

for consistency.

Linear regression. Consider the nodes Y and S in a GP tree, where S is a child or
grandchild subtree of Y. If we can approximate Y by

Y=bxS+a (1)

or
Y =b%S +a (2)

sufficiently closely for some constants a and b, then we may be able to significantly
reduce the size of the tree. This is an extension of simple algebraic rules and allows for
approximate linearity of node Y against subtree S (or ). Figure 2 gives two examples in
which linear regression will reduce a tree where other simplification methods do not.
A candidate simplification’s tree size using this method will be a maximum of 4 + | S|
nodes, with a possible simplification to 2 + |S| under certain conditions on a and b,
where |S| is the number of nodes in subtree S. To evaluate linearity, we use Pearson’s
correlation coefficient. We consider all children and grandchildren of ¥ as .S for sim-
plification and choose the one with the highest value of Pearson’s r? greater than a
regression threshold. The proposal is to replace node Y by the simplest version of equa-

6



Algorithm 1 Pseudocode for Linear Regression Simplification Proposer

Require: subtree Y’

if node Y is a terminal or has 2 terminal children then
return subtree Y
else
calculate Syy and Y
for all children and grandchildren of node Y do
calculate Sx x, Sxy and correlation coefficient r
end for
for child or grandchild with the highest r* do
{either for X = S or X = 1/, giving preference to granchildren in the case of a tie}
if r* > regression threshold then
calculate a and b
return simplest version of new subtree (+(*bX)a) or (+(%bX)a)
else
return subtree Y
end if
end for
end if

tion (1) or (2) as appropriate. For completeness, the formulae for Pearson’s correclation
coefficient and calculation of the regression equation are given in Appendix A.

An important consideration when implementing the linear regression testing on a
particular subtree is how many levels down the tree to go for child comparison (to
get §). This design decision is discussed in some detail in Appendix B. As a result,
Algorithm 1 specifies which candidate linear regression simplifications to propose.

3.2 Acceptor

In order to check that a proposed simplification won’t cause a significant change fur-
ther up the tree, we compare the results vectors (the evaluation of the subtree on all
training examples) of the old and new (simplified) tree. Figure 3 illustrates which nodes
are checked against for different values of n. We go to the ancestor node n levels up
and calculate the mean square error (MSE) at that node, i.e.,

Z(newi — old;)?

7

where old; and new; are the original and newly simplified evaluations of the ith train-
ing example respectively. If the MSE is less than an acceptance threshold, then we accept
the simplification and make the change to the tree; if it is not, then we reject the sim-
plification and keep the old tree. In this way we aim to change the tree’s fitness as little
as possible by catching bad simplifications and rejecting them.

7



proposed simplification

Fig.3. The acceptor evaluates the effect of a proposed simplification n levels up the tree. Here, arrows point to the
node that the MSE calculation applies.

4 Experimental Design

Software package. For our implementation, we modified the RMIT GP (1.5) package
[9], written in C++ (see Appendix C for further details). Experiments were carred out
on a computational grid (Sun Grid Engine [10]) with each computer having the follow-
ing specifications: NetBSD (5.0_STABLE) i386; Core 2 Duo 3.0GHz, Intel Q43 (ICH10D)
Express Chipset; 4096MB DDR SDRAM.

Datasets. To test our simplification system we ran experiments on three different clas-
sification datasets: Coins (14 features, 3 classes, [5, 8]), Wine (13 features, 3 classes, [11])
and Breast-Cancer Wisconsin (9 features, 2 classes, [12]). Coins consists of 600 images
(each 64 x 64 pixels) of five cent pieces against a random noisy background. Wine gives
the result of a chemical analysis of Italian wines from three cultivars (the classes).

GP system setup. All experiments were run with the following setup: population size
100, number of generations 100, maximum depth of tree 40 (effectively unlimited),
mutation rate 28%, crossover rate 70%, elitism rate 2%. The terminal set consists of the
features and random float numbers in the range [—10, 10]. The function set consists of
+, —, X, % (protected division) and i f pos. We used static range selection [13] to choose
the class from the tree output and ten-fold cross validation to evaluate each tree in the
population.

Simplification frequency. We perform simplification checks on the whole population
every k generations, simplifying the population before the selection process occurs for
the next generation. Reductions in tree size will allow more of the search space to be
explored over the subsequent generations. We do not simplify the initial population as
this may remove too many of the useful “building blocks” present.

8



Choice of threshold values. For the operators we have implemented there are six dif-
ferent thresholds that we need to test in our experiments: the proposal thresholds (range
width, redundant MSE and regression r?2); the acceptance thresholds (acceptance MSE
and the number of levels to look up n); and simplifying the population every k gener-
ations.

Preliminary experiments. We performed some initial experiments on the Coins dataset
to determine what values of each threshold could be good to test in more extensive ex-
periments on multiple datasets. We ran each configuration of the thresholds on the
same 10 random seeds, and only ran these for 50 generations. The values tested were
as follows

- Range threshold: {0.0001,0.01,0.1,1, 3}

— Redundancy threshold: {0.0001,0.01,0.1,1, 3}
— Regression threshold: {0.9999,0.99,0.95}

— Looking n levels up: {0, 1,2, 3,4}

— Acceptance threshold: {0.0001,0.01,0.1,1, 3}
— Simplify every k generations: {1,2,3,4,5}

Considering all combinations we have 3 x 5° = 9375 configurations in total.

Preliminary Results. Table 2 shows the results of the different threshold values tested
in these experiments. All average test accuracies performed worse than the base sys-
tem, but this can be understood as each average is over all configurations of the other
thresholds, which includes the poor performing value choices (such as 0 levels up).
These results indicated that looking 3 or 4 levels up shows no significant benefit, and
looking 0 levels up performs poorly. It is useful to include 0 levels up as a comparison
however, since this was a key part of our research goals. We also concluded that we
wanted to include an even more relaxed regression value (0.8) as well as performing
no regression at all, also for comparison. Whilst allowing larger values for the accep-
tance threshold gave much faster results, it degraded the test accuracy significantly as
well, so we chose smaller values for the final experiments.



Table 2. Preliminary experiments results. Average CPU time taken (in seconds) and test classification accuracy (as
a proportion) grouped by different thresholds for the Coins dataset. Results for each of the five levels of the range
threshold are collected over 3 x 5% = 1875 combinations of the other five thresholds, etc.

Threshold||Time (s.d.)| T.Acc (s.d.)| |Threshold||Time (s.d.)| T.Acc (s.d.)
Base 2.18 0.62 |0.8098 0.04 Base 2.18 0.62(0.8098 0.04
Range Threshold Redundancy Threshold
0.0001 |/ 3.00 2.28|0.7761 0.04 0.0001 || 3.20 2.26 (0.7942 0.03
0.01 2.99 2.18/0.7761 0.04 0.01 3.03 2.11|0.7939 0.03
0.1 296 2.26(0.7770 0.04 0.1 2.70 2.0510.7843 0.03
1 2.62 1.92(0.7756 0.04 1 2.56 2.010.7500 0.05
3 241 1.96 |0.7594 0.05 3 2.51 2.18|0.7417 0.05
Regression Threshold Levels Up
0.9999 |/2.90 2.200.7765 0.04 0 1.71 1.19 |0.7320 0.06
0.99 2.82 2.15(0.7733 0.04 291 2.2110.7813 0.04
0.95 2.68 2.07 |0.7686 0.04 3.08 2.30|0.7830 0.03

1
2
3 3.11 2.19|0.7838 0.03
4 3.19 2.22|0.7840 0.03

Acceptance Threshold Simplify Every k Generations
0.0001 |/ 4.35 3.07|0.7929 0.04 1 417 3.310.7720 0.05
0.01 3.44 2.20(0.7907 0.04 2 2.80 1.920.7724 0.04
0.1 2.48 1.36|0.7822 0.04 3 2.51 1.55(0.7752 0.04
1 1.89 1.05|0.7567 0.04 4 2.35 1.36 0.7732 0.04
3 1.83 1.01|0.7415 0.04 5 2.16 1.19(0.7713 0.04

10



5 Results and Discussion

Preliminary experiments suggested a reasonable range of values of each threshold. The
set of values for each threshold used in our more extensive experiments are as follows.

- Range: {0.1,0.5,1.0}

- Redundancy: {0.01,0.05,0.1}

— Regression: {none, 0.99,0.95,0.80}

— Looking n levels up: {0, 1,2}

— Acceptance: {0.01,0.05,0.1}

— Simplify every k generations: {3,4,5}

Considering all combinations we have 3° x 4 = 972 configurations in total, and we ran
each configuration on the same set of 100 random seeds.

We now discuss the results of the final experiments in terms of the research goals out-
lines in Section 1. Over the following several pages, Table 3 summarises the experi-
mental results for each dataset, and Figures 4-12 show graphical representations of the
performance of each configuration, colour coded by the values of the different thresh-
olds, each graph pertaining to one threshold. The base result is a standard GP with no
simplification (and recall that the maximum tree depth is 40), for comparison with all
other results.

5.1 Classification Accuracy vs Computational Effort

All datasets performed differently in our tests. Regarding average test accuracy, the
Coins dataset fluctuated greatly over all configurations, some performing much worse
than the base system, but some also significantly better (see the top graph in Fig-
ure 4). On the other hand, the Wisconsin dataset’s average test accuracy is virtually
unchanged in the range [95.22%, 95.71%], while the Wine dataset is at least 8-9% worse
than the base system. When considering computational effort (CPU time), all datasets
show significant savings. The biggest ‘reasonable’ time savings (meaning not too much
degradation in test accuracy) for the Coins dataset is approximately 75% savings, Wis-
consin roughly 60%, and Wine around 35%. The Wine dataset runs so quickly, however,
that changes in CPU time are difficult to measure accurately, and the time taken across
all configurations varies within approximately 0.1 of a second.

5.2 Proposal and Acceptance Thresholds

In general as we increase the value of each of the range width, redundant MSE and
acceptance MSE thresholds, thereby relaxing the approximation, CPU time goes down
(Wine stays constant however), but so does average test accuracy (except for Coins

11



Table 3. Average CPU time taken (in seconds) and test classification accuracy (as a proportion) grouped by different
thresholds for each dataset. Results for each of the three levels of the range threshold are collected over 3* x 4 = 324
combinations of the other five thresholds, etc.

Coins Wine Wisconsin
Time (s.d.) | T.Acc (s.d.)||Time (s.d.) | T.Acc (s.d.)||Time (s.d.) | T.Acc (s.d.)
Base | 4.87 1.80 | 0.8594 0.0314 || 1.09 0.40 | 0.7346 0.0379 || 6.66 2.27 | 0.9532 0.0063

Range Threshold
0.1 | 2.07 0.25]0.8490 0.0205|| 0.70 0.02 | 0.6567 0.0305 || 3.93 0.55 | 0.9546 0.0020
0.5 | 1.96 0.22 | 0.8498 0.0202 || 0.70 0.02 | 0.6503 0.0295 || 3.89 0.53 | 0.9546 0.0021
1.0 | 1.89 0.20 | 0.8489 0.0192|| 0.70 0.02 | 0.6466 0.0287 || 3.84 0.52 | 0.9545 0.0021

Redundancy Threshold
0.01 | 211 0.26 | 0.8540 0.0188|| 0.70 0.02 | 0.6531 0.0295|| 3.92 0.54 | 0.9546 0.0020
0.05 | 1.94 0.21|0.8491 0.0203 || 0.70 0.02 | 0.6507 0.0294 || 3.88 0.53 | 0.9546 0.0021
0.10 | 1.88 0.20 | 0.8445 0.0205 || 0.70 0.02 | 0.6498 0.0296 || 3.86 0.53 | 0.9546 0.0021

Regression Threshold
none | 1.96 0.26 | 0.8632 0.0210 || 0.70 0.02 | 0.6399 0.0295 || 3.42 0.57 | 0.9541 0.0024
0.99 | 2.07 0.25|0.8547 0.0220 || 0.71 0.02 | 0.6582 0.0314 || 4.22 0.61 | 0.9543 0.0022
0.95 | 1.96 0.21 | 0.8446 0.0201 || 0.70 0.02 | 0.6548 0.0300 || 4.04 0.53 | 0.9549 0.0021
0.80 | 1.90 0.19 | 0.8343 0.0175 | 0.70 0.02 | 0.6520 0.0280 || 3.86 0.47 | 0.9549 0.0018

Levels Up
0 1.49 0.11 | 0.8301 0.0192|| 0.68 0.02 | 0.6241 0.0215 || 3.15 0.31 | 0.9550 0.0019
1 2.18 0.28 | 0.8585 0.0210 || 0.71 0.03 | 0.6630 0.0349 || 4.35 0.70 | 0.9543 0.0022
2 | 225 0.29|0.8590 0.0208 || 0.71 0.03 | 0.6665 0.0343 || 4.15 0.61 | 0.9543 0.0023

Acceptance Threshold
0.01 | 221 0.29 | 0.8534 0.0193 || 0.70 0.02 | 0.6563 0.0306 || 3.98 0.56 | 0.9545 0.0021
0.05 | 1.90 0.20 | 0.8485 0.0199 || 0.70 0.02 | 0.6499 0.0296 || 3.87 0.53 | 0.9546 0.0020
0.10 | 1.80 0.18 | 0.8457 0.0201 || 0.70 0.02 | 0.6474 0.0285 || 3.81 0.51 | 0.9546 0.0020

Simply Every k Generations
3 | 208 0.24|0.8487 0.0200 (| 0.71 0.02 | 0.6585 0.0309 || 4.29 0.60 | 0.9546 0.0021
4 | 1.94 022]0.8490 0.0194| 0.70 0.02 | 0.6488 0.0290 || 3.81 0.53 | 0.9546 0.0022
5 1.89 0.22 | 0.8499 0.0201 || 0.70 0.02 | 0.6463 0.0297 || 3.55 0.48 | 0.9545 0.0022

12



Comparisons graph for Regression Threshold — Coins dataset

Average Test Accuracy (%)

78

Average Time (s)

Comparison graph for looking n levels up — Coins dataset

Average Test Accuracy (%)

Average Time (s)

Fig.4. Two scatter plots showing the average test accuracy vs average CPU time for the Coins dataset. Each point
is one of the 972 configurations. The top graph highlights the different values for the regression threshold (‘" = no
regression, ‘1" = 0.99, ‘5" = 0.95, and ‘8’ = 0.80), and the bottom graph highlights looking n levels up. The lines
represent the performance of the base system for comparison.

13



Comparisons graph for Regression Threshold — Wine dataset

Average Test Accuracy (%)

| |
00 UAMENSNOr
el __________Jeed)
(o

59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74

1 8
| 8
8
T T T T T T T T T T
0.65 0.7 0.75 0.8 0.85 0.9 0.95 110 1.05 11
Average Time (s)
Comparison graph for looking n levels up — Wine dataset
<
NS
{
o _|
R
o
N
- _|
N
e 2
g 81
g 8-
5 1
g %51 z
s
(2] 0 1
g 81 3
g
I 3 l
™ _|
©
8 1 a
© a °
- | X O
© 6 o
o | o g
© (<]
o _
wn
T T T T T T T T T T
0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 1.05 11

Average Time (s)

Fig. 5. Two scatter plots showing the average test accuracy vs average CPU time for the Wine dataset. Each point is
one of the 972 configurations. The top graph highlights the different values for the regression threshold (‘o” = no
regression, ‘1" = 0.99, ‘5" = 0.95, and ‘8’ = 0.80), and the bottom graph highlights looking n levels up. The lines
represent the performance of the base system for comparison.

14



Comparisons graph for Regression Threshold — Wisconsin dataset

95.8 959 9860

Average Test Accuracy (%)

952 953 954 955 956 95.7

9850 95.1
|

25 3 35 4 4.5 5 55 6 6.5

Average Time (s)

Comparison graph for looking n levels up — Wisconsin dataset

958 959 96
1

95.6 95.7

Average Test Accuracy (%)

952 953 954 955

95.1
I

95

25 3 35 4 4.5 5 55 6 6.5

Average Time (s)

Fig.6. Two scatter plots showing the average test accuracy vs average CPU time for the Wisconsin dataset. Each
point is one of the 972 configurations. The top graph highlights the different values for the regression threshold (o’
= no regression, ‘1’ = 0.99, '5" = 0.95, and ‘8" = 0.80), and the bottom graph highlights looking n levels up. The
lines represent the performance of the base system for comparison.

15



Comparison graph for for Range Threshold — Coins dataset

Average Test Accuracy (%)

78

T T T T T T T T T
1 15 2 25 3 35 4 4.5 5

Average Time (s)

Comparison graph for Redundant Threshold — Coins dataset

b 19° 1
1
il
19 i
91°99 99
g
>
(5]
©
5
Q
Q
<
3
(0]
2
(5]
[=)]
o
[
>
<
9
© _|
Q
T T T T T T T T T
1 15 2 25 3 35 4 45 5

Average Time (s)

Fig.7. Two scatter plots showing the average test accuracy vs average CPU time for the Coins dataset. Each point
is one of the 972 configurations. The top graph highlights the different values for the range threshold ("1 = 0.1, ‘5’
= 0.5, and ‘9’ = 1.0), and the bottom graph highlights the different values for the redundancy threshold ('1” = 0.01,
‘5" = 0.05, and ‘9" = 0.1). The lines represent the performance of the base system for comparison.

16



Comparison graph for for Range Threshold — Wine dataset

| |
© U1 HEDEDEIED- -+
[

Average Test Accuracy (%)

| |
R
© S (RO

©o u

59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74

T T T T T T T T T T
0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 1.05 11

Average Time (s)

Comparison graph for Redundant Threshold - Wine dataset

Average Test Accuracy (%)

59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74

T T T T T T T T T T
0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 1.05 11

Average Time (s)

Fig. 8. Two scatter plots showing the average test accuracy vs average CPU time for the Wine dataset. Each point
is one of the 972 configurations. The top graph highlights the different values for the range threshold ("1 = 0.1, ‘5’
= 0.5, and ‘9’ = 1.0), and the bottom graph highlights the different values for the redundancy threshold ('1" = 0.01,
‘5" = 0.05, and ‘9" = 0.1). The lines represent the performance of the base system for comparison.

17



Comparison graph for for Range Threshold — Wisconsin dataset

96
I

958 959

Average Test Accuracy (%)

953 954 955 956 957
!

95.2
I

95.1
I

95

25 3 35 4 4.5 5 55 6 6.5

Average Time (s)

Comparison graph for Redundant Threshold - Wisconsin dataset

958 959 96
1

95.6 95.7

Average Test Accuracy (%)

952 953 954 955

95.1
I

95

25 3 35 4 4.5 5 55 6 6.5

Average Time (s)

Fig.9. Two scatter plots showing the average test accuracy vs average CPU time for the Wisconsin dataset. Each
point is one of the 972 configurations. The top graph highlights the different values for the range threshold (‘1
=0.1,"5 = 0.5, and ‘9" = 1.0), and the bottom graph highlights the different values for the redundancy threshold
("1"=10.01,’5" = 0.05, and ‘9’ = 0.1). The lines represent the performance of the base system for comparison.

18



Comparison graph for Acceptance Threshold — Coins dataset

Average Test Accuracy (%)

78

T T T T T T T T T
1 15 2 25 3 35 4 4.5 5

Average Time (s)

Comparison graph for Simplify every k Generations — Coins dataset

Average Test Accuracy (%)

T T T T T T T T T
1 15 2 25 3 35 4 4.5 5

Average Time (s)

Fig. 10. Two scatter plots showing the average test accuracy vs average CPU time for the Coins dataset. Each pointis
one of the 972 configurations. The top graph highlights the different values for the acceptance threshold (‘1" = 0.01,
‘5" = 0.05, and ‘9" = 0.1), and the bottom graph highlights simplifying every k generations. The lines represent the
performance of the base system for comparison.

19



Comparison graph for Acceptance Threshold — Wine dataset

Average Test Accuracy (%)

59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74

T T T T T T T T T T
0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 1.05 11

Average Time (s)

Comparison graph for Simplify every k Generations — Wine dataset

<

~

o

~

N

~

—

~

o

~
g 2-
g 8-
E 3
g 5 ¢
L
g < i
g
z 3

o _

©

% 1 i

8

- | i

o afls

o | 4

® 3

o _|

wn

T T T T T T T T T T
0.65 07 0.75 0.8 0.85 0.9 0.95 1 1.05 11

Average Time (s)

Fig.11. Two scatter plots showing the average test accuracy vs average CPU time for the Wine dataset. Each point is
one of the 972 configurations. The top graph highlights the different values for the acceptance threshold (‘1" = 0.01,
‘5" = 0.05, and ‘9" = 0.1), and the bottom graph highlights simplifying every k generations. The lines represent the
performance of the base system for comparison.

20



Comparison graph for Acceptance Threshold — Wisconsin dataset

© _|
o
o
2
=
o
2
o
~
5 -
-~ O
S
o
g 87
3
(53
< w0
- n
m =
2
TR
g 8
g
< ™ f
2
o
~ 5
5 4
o
-
a4
(22
8 -
T T T T T T T T T
25 3 35 4 45 5 55 6 6.5
Average Time (s)
Comparison graph for Simplify every k Generations — Wisconsin dataset
© _|
o
(=]
2
o
©
2
o
~
8 4 $
g ° 4 3
I3 5 3 3
3 Q 4 355 M4
(5]
8 w 4
5 ° g?‘h R354 :f 43
= 5 3 3
= 24 B 58% 53 4.8 4733
2 o 4" 4 4 3
g 5 : 3
g 31 s 5 %Af’ :
s & 5
. g
] 5 5 i
3 ] # 4 Ty ?
o~ 5
S 4
o
-
o
o
I(‘D’ -
T T T T T T T T T
25 3 35 4 45 5 55 6 6.5

Average Time (s)

Fig.12. Two scatter plots showing the average test accuracy vs average CPU time for the Wisconsin dataset. Each
point is one of the 972 configurations. The top graph highlights the different values for the acceptance threshold
(1" = 0.01, '5" = 0.05, and ‘9" = 0.1), and the bottom graph highlights simplifying every k generations. The lines
represent the performance of the base system for comparison.

21



when the range threshold is 0.5 and Wisconsin which stays fairly constant). It appears
that linear regression is causing more computational overhead than it is worth. The
Coins dataset shows this most clearly (see the top graph in Figure 4): the time taken
with no regression is similar to that with 0.95 and 0.80 values, but the test accuracy
stays higher than all values, i.e., additional computational overhead is not offset by the
simplifications made. We see similar CPU time savings without regression in the Wis-
consin dataset, but test accuracy remains fairly constant. On the Wine dataset, however,
using linear regression has higher test accuracy than not using it, but the test accuracy
is still significantly less than that of the base system. Figure 10 (top) shows the effect
of relaxing the acceptance threshold, with the clumpings of data moving to the left
(faster) and down (worse accuracy) as the value is increased on the Coins dataset. The
speed reductions on the Wisconsin dataset can also be seen to a lesser extent in Fig-
ure 12. It appears that linear regression is causing more computational overhead than
it is worth. The Coins dataset shows this most clearly in Figure 4 (top): the time taken
with no regression is similar to that with 0.95 and 0.80 values, but the test accuracy
stays higher than all values, i.e., additional computational overhead is not offset by the
simplifications made. Figure 6 (top) shows a similar effect (with the exception of a few
configurations in the top left corner); we can clearly see that no linear regression runs
faster that most configurations. It is hard to see in Figure 5 (top) because of the clump-
ing of all the datapoints, but we can see that linear regression in this case is sitting in
the middle of the data, which is not consistent with the other two datasets.

5.3 How Far Up the Tree to Evaluate

In general it seems that as we increase the number of levels we look up before accept-
ing a simplification, the overall average CPU time increases (with the exception of Wis-
consin with 2 levels), but so does the test accuracy (Wisconsin’s test accuracy remains
relatively constant however; see Figure 6 (bottom)). This is best displayed in the Coins
dataset where both CPU time and test accuracy change significantly (see Figure 4 (bot-
tom)). In general, looking 0 levels up amounts to a significant time reduction but also
a significant reduction in test accuracy (see Figures 4 (bottom) and 5 (bottom)), while
looking 1 or 2 levels up only is slightly more computationally expensive but maintains
a lot higher test accuracy.

5.4 How Often to Simplify

Overall, there doesn’t seem to be much change in test accuracy among the different
values for k, although the Wine dataset does show a very slight reduction as we sim-
plify less often, but it is fairly insignificant. As we simplify less often, the CPU time
reduces significantly on the Coins and Wisconsin datasets (“bands” can be clearly seen

22



in Figures 10 (bottom) and 12 (bottom)), while the time remains unchanged on Wine.
This indicates that it might be useful to investigate higher values (simplifying even less
often).

5.5 Comparing Number of Proposals vs Number of Acceptances

Tables 4-6 compare the number of simplifications proposed and accepted, and per-
centage accepted, for each proposal operator, and shows the effect of increasing the
acceptance threshold within each of these for each of the datasets. Some general trends
are apparent. Unexpectedly, we see fewer proposed simplifications—it is apparent that
there may be some “repeat proposing” of simplifications, i.e., a candidate gets rejected
but is proposed again later on since it is still a good candidate at the local level (this
also explains the higher CPU time for more stringent acceptance threshold values). As
expected, the number of accepted proposals increases (except for Coins when the re-
gression threshold is in {0.99,0.95}, where the number accepted is relatively similar
for acceptance threshold in {0.05,0.10}). The average percentage of proposals accepted
also increases, although at different rates for each dataset and proposal operator (the
best acceptance percentage was just over 50%). The CPU time decreases due to a com-
bination of fewer proposals (lower calculation overhead) and higher number of pro-
posals accepted (overhead incurred in our implementation if a simplification proposal
is rejected). The Coins dataset shows the largest reduction in CPU time, while none is
observed on the Wine dataset. As expected, the average test accuracy decreases—as
we accept less accurate approximations of portions of the tree, this causes the tree itself
to have poorer accuracy in general. Again, Wisconsin is an exception, showing little
change in test accuracy. Coins shows the highest reduction in test accuracy as well as
CPU time seen above, so there seems to be a tradeoff. It is interesting to note, however,
that some individual combinations of the simplification operators actually increase the
average test accuracy compared to the base system (see Figure 4 (top)). This could
mean that simplifications are taking place in an early generation, allowing more of
the search space to be covered in less time, but further research would be required to
establish this.

5.6 How the Proposal Thresholds Affect the Number of Proposals and
Acceptances

Across all datasets, for the linear regression operator, decreasing the value of the thresh-
old increases the number of simplification proposals. Proportionately, the number of
proposals accepted increases but on average the percentage of proposals accepted de-
creases, indicating the acceptance operator is working. Surprisingly, for range simpli-
fication and redundancy, as we increase the value of the threshold, we actually see a

23



Table 4. Comparison of number of simplifications proposed vs number accepted for the Coins dataset. All numbers
are averages over all relevant configurations.

‘Proposal Thresh.‘Accept Thresh.‘#Prop #Acpt %Acpt‘Time (s) (sd) ‘ T.Acc  (sd) ‘

‘ Base Sys. ‘ - ‘ - - - ‘ 487 1.8 ‘ 0.8594 0.0314 ‘
0.01 468.37 131.54 28.09| 229 0.52 0.8531 0.0218
0.1 0.05 340.77 14253 41.82| 200 0.35 0.8483 0.0199
o 0.10 301.51 14729 4885 191 0.32 0.8455 0.0193

»

E 0.01 42895 111.66 26.03| 218 049 0.8535 0.0208
t 0.5 0.05 30513 120.69  39.55| 1.89 0.31 0.8492 0.0192
%D 0.10 270.29 12577 46.53| 1.81 0.28 0.8467 0.0188
2 0.01 42251 9531 2256| 217 0.65 0.8535 0.0223
1.0 0.05 284.44 103.66 36.44| 1.83 041 0.8481 0.0197
0.10 22895 9633 42.07| 1.68 0.31 0.8450 0.0186
0.01 486.03 136.64 28.11| 227 051 0.8566 0.0190
) 0.01 0.05 37032 159.29  43.01| 207 0.38 0.8537 0.0180
@ 0.10 32642 16273  49.85| 198 0.35 0.8517 0.0175
E 0.01 436.42 10946  25.08| 220 057 0.8537 0.0215
E 0.05 0.05 291.89 11138 38.16| 1.84 0.31 0.8477 0.0188
g 0.10 255.86 114.56  44.78| 177 027 0.8460 0.0183
E 0.01 39738 9241 2326| 216 0.60 0.8498 0.0235
0.10 0.05 268.14 96.21 35.88| 1.80 0.34 0.8442 0.0207
0.10 21847 9210 42.16| 1l.66 024 0.8394 0.0188
0.01 213 042 0.8653 0.0076
none 0.05 - - -| 190 0.30 0.8629 0.0066
0.10 1.83 0.29 0.8614 0.0066
= 0.01 252.68 7889  31.22| 231 0.56 0.8580 0.0124
_E‘ 0.99 0.05 181.62 81.38  44.81| 2.00 0.37 0.8539 0.0100
: 0.10 157.63 8111 51.46| 190 032 0.8520 0.0093
'é 0.01 517.82 14215 27.45| 222 0.59 0.8500 0.0201
%D 0.95 0.05 365.83 15147 41.40| 1.89 037 0.8439 0.0161
a 0.10 313.79 151.09 48.15| 1.78 0.30 0.8399 0.0138
0.01 989.28 23030 23.28| 218 0.65 0.8401 0.0300
0.80 0.05 693.01 25632 36.99| 1.81 040 0.8333 0.0254
0.10 596.26 26033 43.66| 170 0.32 0.8296 0.0231

24



Table 5. Comparison of number of simplifications proposed vs number accepted for the Wine dataset. All numbers
are averages over all relevant configurations.

‘Proposal Thresh.‘Accept Thresh. ‘ #Prop #Acpt %Acpt‘Time (s) (sd) ‘ T.Acc (sd) ‘

| BaseSys. | _ - _ | 487 180 | 08594 0.0314]

0.01 26501 9992 3770 071 002 | 06603 0.266

0.1 0.05 24877 10479 4212| 070 001 | 06559 0.0227

p 0.10 24174 10776  4458| 070 001 | 06538 0.0210
g

£ 0.01 24745 8885 3591| 070 002 | 06552 0.0267

=l o5 0.05 23057 9244 4009| 070 001 | 06489 0.0220

g 0.10 22491 9525 4235 070 001 | 06468 0.0204

= 0.01 24733 8456 3419| 070 002 | 06533 0.0287

1.0 0.05 21995 8475 3853| 070 001 | 0.6448 0.0223

0.10 21329 8671 4065 070 001 | 0.6417 0.0205

0.01 25092 9508 3658| 070 002 | 06570 0.266

| oo 0.05 24188 9869 4080| 070 001 | 06522 0.0230

5 0.10 23595 1016 4306 070 001 | 06501 0.0214

= 0.01 25194 9036 3587| 070 0.02 | 06561 0.0276

E 0.05 0.05 23045 9293 4033| 070 001 | 0.6488 0.0223

£ 0.10 22515 9578 4254| 070 001 | 06471 00212

3 0.01 24793 8789 3545| 070 002 | 06557 0.0283

0.10 0.05 22695 9036 39.82| 070 001 | 0.6486 0.0229

0.10 21883 9233 4219| 070 001 | 06451 0.0207

0.01 070 001 | 0.6429 0.0114

none 0.05 - - -| 070 001 | 06391 0.0097

0.10 070 001 | 0.6377 0.0094

P 0.01 17510 7042 4022| 071 001 | 0.6633 0.0230

£l 0w 0.05 16074 7201  44.80| 070 001 | 0.6569 0.0184

= 0.10 15670 7389 47.15| 070 001 | 0.6543 0.0167

3 0.01 28497 107.04 3756| 071 002 | 06606 0.0274

5 09 0.05 26205 11068 4224| 070 001 | 06533 0.0223

a 0.10 25425 113.69 4472| 070 001 | 06504 0.0207

0.01 55299 18698 33.81| 070 002 | 06582 0.0371

0.80 0.05 50059 19329 37.93| 070 002 | 0.6503 0.0313

0.10 19563 19870 40.09| 070 002 | 0.6474 0.0293

25



Table 6. Comparison of number of simplifications proposed vs number accepted for the Wisconsin dataset. All
numbers are averages over all relevant configurations.

‘Proposal Thresh.‘Accept Thresh.‘ #Prop #Acpt %Acpt‘Time (s) (sd) ‘ T.Acc  (sd) ‘

| BaseSys. | - | _ _ | 666 227 | 09532 0.0063]

0.01 61720 15433 2500| 402 083 | 09545 9.0E-4

0.1 0.05 58241 16267 27.93| 391 075 | 09546 9.0E-4

p 0.10 563.67 16884 2995| 385 070 | 09546 8.0E-4
o

£ 0.01 61046 15125 2478| 398 083 | 09545 8.0E-4

=l o5 0.05 57445 15896 27.67| 387 074 | 09545 8.0E-4

& 0.10 55692 16505 29.64| 382 070 | 09546 8.0E-4

2 0.01 60605 14654 2418| 395 085 | 09545 8.0E4

10 0.05 56419 15285 27.09| 3.82 075 | 09545 8.0E-4

0.10 54364 157.83 29.03| 375 069 | 09546 8.0E-4

0.01 62576 15683 25.06| 401 083 | 09546 8.0E-4

| oo 0.05 58019 16680 2831| 390 074 | 09546 8.0E-4

5 0.10 57208 17330 3029| 3.86 070 | 09546 8.0E-4

= 0.01 609.71 15027 24.65| 398 084 | 09545 8.0E-4

E 0.05 0.05 57107 157.00 2749| 385 074 | 09546 8.0E-4

£ 0.10 55426 16372 2954| 380 070 | 09546 8.0E-4

3 0.01 59824 14501 2424| 396 084 | 09545 9.0E-4

0.10 0.05 560.80 150.68 2687| 384 076 | 09545 8.0E-4

0.10 537.88 15470 2876| 376 069 | 09546 8.0E-4

0.01 346 024 | 09541 6.0E-4

none 0.05 - - ~| 341 023 | 09541 6.0E-4

0.10 339 022 | 09542 7.0E-4

= 0.01 37195 9594 2579| 432 075 | 09543 7.0E-4

Bl 0w 0.05 34696 10282 29.64| 420 066 | 09544 7.0E-4

o 0.10 33248 10771 3239| 413 060 | 09543 6.0E-4

3 0.01 66015 16504 25.00| 415 083 | 09548 0.0010

5 09 0.05 61954 17443 2815| 402 074 | 09549 9.0E-4

a 0.10 59875 18227 3044| 395 069 | 09550 9.0E-4

0.01 141285 34184 2420 399 105 | 09549 8.0E-4

0.80 0.05 132824 35539 2676| 384 093 | 09548 8.0E-4

0.10 1287.74 36565 2840| 376 087 | 09549 7.0E-4

26



reduction in proposals on average, and therefore a reduction in proposals accepted as
well. A possible reason for this reduction could be the nature of the proposal opera-
tors: in both cases, once a simplification has occurred, those nodes can no longer be
further simplified through these two methods. However, a linear regression simplifi-
cation could in turn allow for another simplification the next level up the tree, a sort of
cascading effect.

6 Conclusions

All configurations of the simplification operators significantly reduced the CPU time
for the GP process to run. However, the tradeoff between CPU time and classifica-
tion accuracy was different for different configurations and different datasets. Range
simplification and removing redundant children appear to be useful simplification op-
erators to use because they are simple and computationally efficient. However, the
computational tests were inconclusive as to whether the linear regression operator we
introduced is worth using (good for Wine, no change for Wisconsin, poor for Coins).
Evaluating the effect of proposed simplifications further up the tree (rather than blind
acceptance) appears to be very effective in catching bad case simplifications (Coins
and Wine show that classification accuracy improves); looking one level up seems to
be sufficient. As there is little reduction in test accuracy for any of the acceptance MSE
threshold values tested in this paper, a more lenient MSE value may be desired for
further CPU time reductions. Finally, when simplifying a population, it seems to be
better to do so less often because of the high overhead incurred, so the less often you
simplify, the faster the GP process runs (our best results were simplifying every five
generations).

Avenues for future research include investigating the effect of these simplification
methods on tree size and tree depth across different generations, eliminating the repeat
proposing of the same simplification by the regression operator, applying the linear re-
gression operator on more datasets to see if there is any consistency amongst different
types of problems, and further investigating simplifying less often to find the optimal
balance between size reduction and computational overhead.

Acknowledgement

This work was supported in part by the University Research Fund (URF09-2399 /85608)
at Victoria University of Wellington.

27



References

10.
11.

12.

13.

Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT
Press, Cambridge, Mass. (1992)

Soule, T., Foster, J.A., Dickinson, ]J.: Code growth in genetic programming. In J.R. Koza et al, ed.: Genetic
Programming 1996: Proceedings of the First Annual Conference, Stanford University, CA, USA, MIT Press
(1996) p. 215223

Soule, T., Heckendorn, R.B.: An analysis of the causes of code growth in genetic programming. Genetic Pro-
gramming and Evolvable Machines (2002) p. 283-309

Blickle, T., Thiele, L.: Genetic programming and redundancy. In Hopf, J., ed.: Genetic Algorithms within the
Framework of Evolutionary Computation, Max-Planck-Institut fiir Informatik (MPI-1-94-241) (1994) p. 33-38
Wong, P., Zhang, M.: Algebraic simplification of GP programs during evolution. In M. Keijzer et al, ed.: Pro-
ceedings of the 8th Annual Conference on Genetic and Evolutionary Computation (GECCO 2006). Volume 1.,
Seattle, Washington, USA, ACM Press (8-12 July 2006) p. 927-934

Zhang, M., Wong, P.,, Qian, D.: Online program simplification in genetic programming. In T. Wang et al, ed.:
Proceedings of the 6th International Conference on Simulated Evolution and Learning (SEAL 2006). Volume
4247 of LNCS., Hefei, China, Springer (15-18 October 2006) p. 592-600

Kinzett, D., Zhang, M., Johnston, M.: Using numerical simplification to control bloat in genetic programming,.
In X. Li et al, ed.: Proceedings of the 7th International Conference on Simulated Evolution And Learning (SEAL
2008). Volume 5361 of LNCS., Melbourne, Australia, Springer (7-10 December 2008) p. 493-502

Song, A., Chen, D., Zhang, M.: Bloat control in genetic programming by evaluating contribution of nodes. In G.
Raidl et al, ed.: Proceedings of the 11th Annual Conference on Genetic and Evolutionary Computation (GECCO
2009), Montreal, ACM (8-12 July 2009) p. 1893-1894

RMIT  University: RMIT-GP: The RMIT university genetic programming  system.
http:/ /www.cs.rmit.edu.au/~vc/rmitgp/

Sun Software: Sun grid engine. http://www.sun.com/software/sge/

Forina, M., Leardi, R., Armanino, C., Lanteri, S.: PARVUS: An Extendable Package of Programs for Data Explo-
ration, Classification and Correlation. Elsevier, Amsterdam (1988)

Asuncion, A., Newman, DJ.: UCI Machine Learning Repository (2007)
http:/ /www.ics.uci.edu/~mlearn/MLRepository.html.

Zhang, M., Ciesielski, V.: Genetic programming for multiple class object detection. In Foo, N., ed.: 12th Aus-
tralian Joint Conference on Artificial Intelligence. Volume 1747 of LNAI, Sydney, Australia, Springer-Verlag
(6-10 December 1999) 180-192

28



Appendices

A Pearson’s Correlation Coefficient

For completeness, the formulae for Pearson’s correlation coefficient is:

o CXY IV XYY
JEXT - HE X)) (Y- L))
SXY
~ VBxxdvr

where
Sxy =Y XY - %ZXZY
Sex =3 X7 - (S X)?
Sy =3V - ()

and n is the number of training examples, X is the results vector (the evaluation of the
tree up to this point for each training example) for the child subtree S or ¢, and Y is
the results vector for the parent node. The regression equation is

~

Y =0X+a
where

Sxy
p— 2XY

Sxy

1 1
=N v-p»-V"Xx
a= 2.V b
=Y —bX

B How far down the tree to go for S

An important consideration when implementing the linear regression testing on a par-
ticular subtree is how many levels down the tree to go for child comparison (to get
S). Since the general case for linear regression would produce a simplified tree of size
4 + |S| nodes, it would not be sensible to perform the calculations on subtrees that
were either terminal (|S| = 1) or had two terminal children (|S| = 3). We built this
size check into our implementation to save wasted time. This means that for any pos-
sible size-reduction benefit (in the smallest-tree worst case scenario, see Figure 13), we
would need to look at least to the third level of the subtree (which in the worst case
would not reduce the tree size), and probably would need to look to the fourth level

29



Fig.13. Examples of the smallest tree sizes for 3 levels (left) and 4 levels (right). The numbers inside the stars indicate
the number of nodes linear regression tests will be performed on, and the order in which they are done.

(which, if a suitable linear correlation is found, would guarantee at least a reduction
of 2 nodes in the smallest-tree case). The tradeoff that needs to be considered is the
number of nodes that the linear correlation tests (which are reasonably computation-
ally expensive) would need to be calculated on. Even though in the worst case, looking
down to the second level won’t save any tree size, it is possible that one or both sides
have a very large subtree, so we considered it worth checking against these children as
well. Therefore we did the tests in a ‘bottom-up’ fashion, from the lowest level, to the
second level. If we test to only the third level, we would need to do the calculations on
a minimum of 2 + 2! = 4 nodes (or 3 + 3! = 6 if all functions above are i f pos) and a
maximum of between 22 + 2! = 6 and 3% + 3! = 12 (if all functions above are i f pos)
nodes.

Once we go to the fourth level however, the maximum number of nodes in that
level stretches out to between 23 = 8 and 33 = 27 (if all functions above are i f pos).
Because our function set is made up of 4 functions that have 2 children (+, —, x, %)
and 1 function that has 3 children (i f pos), our worst-case scenarios are more likely to
lean more towards the binary tree cases, which are not so bad, but it is still important
to note the ternary worst case (as unlikely as it is). Compounding the size of the fourth
level is the fact that if we go this far down, we also need to check the third level as well,
in case no simplification candidates are found in the 4" level. So in the worst case (a
full tree to the 4™ level) this gives us a total of either 8 +4+2 = 14 nodes (a fully binary
tree) or up to 274 9 + 3 = 39 (a fully ternary tree) nodes to do linear regression testing
on. This is just too expensive.

In order to save computational time, we also built into our implementation a check
to see if the subtree Y’s size is already 4 + |S| nodes, and therefore would not be able
to produce any reduction. However, we also note a possible advantage to allowing the
linear regression process to “re-arrange” Y anyway. In a special case, where b = 1, the
re-arranging “formats” the tree in such a way that the regression can catch a simpli-

30



fication case that would normally only be possible by going to the next level down.
The following example shows this process (see Figure 14 for visual representation). We
allow the re-arranging, and we get a special case regression in Step 3, which reduces
the tree’s size to 2 + | S].

Tree: (+ (+ 3 (* 4 F2)) 6)

*** Beginning Simplification

Step 1:

Simplify (* 4 F2):

Redundancy check:

Child 0, sum square error: 2828.32

Child 1, sum square error: 1892.25

Regression check:

Subtree too small to do regression (size = 3)

Step 2:

Simplify (+ 3 (* 4 F2)):

Redundancy check:

Child 0, sum square error: 3364

Child 1, sum square error: 4860

Regression check:

Parent node size 5 (regression won’t reduce tree size)
Child 1 size = 1 - F2

Child 1 regression:

r-2: 1, a: 3, b: 4

NewNode: (+ (* F2 4) 3)

Current Simplified Tree: (+ (+ (* F2 4) 3) 6)

Step 3:

Simplify (+ (+ (* F2 4) 3) 6):
Redundancy check:

Child 0, sum square error: 19440
Child 1, sum square error: 15105.8
Regression check:

Parent node size 7

Child O size = 3 - (* F2 4
Child O regression:

r-2: 1, a: 9, b: 1

NewNode: (+ (* F2 4) 9)

*** Simplification complete

Original Tree: + (+ 3 (*4F2) 6)
Number of nodes: 7, Depth: 4

Simplified Tree: (+ (* F2 4) 9)
Number of nodes: 5, Depth: 3

31



Savings: 2 nodes, 1 level

In the above example, the re-arranging in Step 2 doesn’t result in size reduction, but
in Step 3, re-arranging allows us to catch a simplification the next level down by doing
the tests on the subtree (* F2 4). This only works because of the special case b = 1
in Step 3’s regression tests. Not allowing the re-arranging causes Steps 2 and 3 to stop,
and we miss out on catching the special case.

Tree: (+ (+ 3 (* 4 F2)) 6)

*** Beginning Simplification

Step 1:

Simplify (* 4 F2):

Redundancy check:

Child 0, sum square error: 2828.32

Child 1, sum square error: 1892.25

Regression check:

Subtree too small to do regression (size = 3)

Step 2:

Simplify (+ 3 (* 4 F2)):

Redundancy check:

Child 0, sum square error: 3364

Child 1, sum square error: 4860

Regression check:

Parent node size 5

Child size = 1 - F2

Subtree already at optimum size, regression won’t reduce

Step 3:

Simplify (+ (+ 3 (* 4 F2)) 6):

Redundancy check:

Child 0, sum square error: 19440

Child 1, sum square error: 15105.8

Regression check:

Parent node size 7

Child size = 3 - (4 F2)

Subtree already at optimum size, regression won’t reduce

*** Simplification complete

Original Tree: + (+ 3 (™ 4F2) 6)
Number of nodes: 7, Depth: 4
Simplified Tree: (+ (+ 3 (* 4 F2)) 6)
Number of nodes: 7, Depth: 4

Savings: 0 nodes, 0 levels

32



()
() ©
ONO
ON®@

Fig.14. An example GP tree, that will be simplified if re-arranging is allowed, but won’t be if not (because it is a
special case where b = 1).

Since these special case scenarios are too rare to justify the extra overhead for all
the other cases, we do not allow for rearranging. We also limit ourselves to performing
regression to the third level, for a combination of possibly large reductions in tree-size
while not allowing the computational time to be too expensive. The final algorithm
that we used for finding a linear regression simplification candidate can be seen in
Algorithm 1.

C Software Package

For our implementation, we modified the RMIT GP (1.5) package [9], written in C++.
We needed to make several changes to this package for our simplification system, in-
cluding the following.

— “Vectorise” the evaluations, meaning that each node in a program tree held a vector
of its evaluation results over all training examples for the subtree below it. We use
this vector to calculate the range of values that a node takes for range simplification,
and also for use in comparing the change to the tree that a candidate simplification
will make. This is also much faster than the original system (tests on 10 random
seeds showed a reduction from an average of 1.43 seconds to 0.78 seconds on the
symbolic regression problem 222 + 4zy + 3y).

— Convert the symbolic regression example into classification, including adding the
i f pos operator.

- Modity the program so that it will read in data from file, with a particular pattern.
This pattern can be seen in Appendix 3.

- Modity the way the program handles feature terminals — created one class that al-
lows unlimited number of features (terminals) to be added to the GP system, as
specified by the data file, instead of having to duplicate the Feature classes for as
many as you need.

33



— Add capacity for multiple command line arguments to be passed into the program
for different configurations.

- Add different levels of ‘tracing’ for debugging and results processing purposes.

— Implement the simplification process, and run it at the end of every k'™ generation,
with the ability to turn simplification off completely.

— Add statistics calculations for the number of simplifications proposed/accepted.

Data File Format

Our implementation takes a single dataset file with all the examples in it, and uses the
n-fold cross validation method for training and test accuracy. The file format that our
implementation can read requires the following.

— Filename: [dataname].txt
— A header line in the following format:

[num feat] [numex] [n-fold] [class _b4] [classes start O]

e num f eat : The number of features in the dataset.

e num _ex: The number of examples in the dataset.

e n-f ol d: For cross fold validation. n is the number of subsets the datafile will be
split into. (e.g. 10 = 10-fold cross validation)

e cl ass_b4: Boolean value (1 or 0) that allows the class to be either at the start of
the example line or at the end

e cl asses_st art _0: Boolean value that allows the class labels to begin at either
0 or 1. (Use 1 if classes start at 0, 0 otherwise).

— Fill the rest of the file with the data for each example according to the specifications
in the header line. Feature values should be separated by a single space only, and
each example should begin on a new line.

A couple of limitations to this file formate are that all data should be numeric, class
labels must be sequential (e.g. 0,1,2 or 1,2,3), and our system at this stage can only han-
dle 2 or 3 classes, no more. The datafile should be randomised so that cross-validation
can have a good chance of picking a wide variety of example combinations.

An example first few lines of the Wi ne. t xt file are:

13 178 10 1 0 3

2 12.17 1.45 2.53 19 104 1.89 1.75 0.45 1.03 2.95 1.45 2.23 355
2 12.37 1.13 2.16 19 87 3.5 3.1 0.19 1.87 4.45 1.22 2.87 420

3 12.85 3.27 2.58 22 106 1.65 0.6 0.6 0.96 5.58 0.87 2.11 570

34



D Bad case examples of range simplification

Here we give some bad case examples of range simplification without checking the
effect looking further up the tree.

Example 1. A trivial division.

The following is a trivial example of a bad simplification case-type, that, when allow-
ing a range simplification threshold of 0.05, results in a large change to the tree one
level up.

The feature F1 in this example takes values in the range (—0.01,0.01)
The feature F2 in this example takes values in the range (—20.0, 20.0)

Tree: (+ (% F2 (* 2 F1)) 0)
Nunber of nodes: 7, Depth: 4
Eval uat ed range: 32345.6

*** Beginning Sinplification

Step 1:

Sinmplify (* 2 F1):

Eval uated Range = -0.019797 -> 0.0191529 = 0.0389499, Depth: 3
Sinmplification possible, replacing with average: -0.000322031
Current Sinplified Tree: (+ (% F2 -0.0003) 0)

Step 2:

Sinmplify (% F2 -0.0003):

Redundancy check:

Child 0, sumsquare error: 6.06993e+10
Child 1, sumsquare error: 6.06603e+10

Step 3:

Simplify: (+ (% F2 -0.0003) 0)

Redundancy check:

Child 0, sumsquare error: O

Sinmplification possible, replacing parent node with child 0

*** Sinplification conplete

Original Tree: (+ (% F2 (* 2.0000 F1)) 0.0000)
Simplified Tree: (% F2 -0.0003)

Number of nodes: 3, Depth: 2

Eval uat ed range: 117960

Mean Square Error for sinplification: 1.17658e+09
Savi ngs: 4 nodes, 2 levels

In this case, the range of the node in Step 1 is small enough to be simplified, and
is replaced with a constant value which is very small. This becomes the denominator

35



of the fraction one level above, which has a large range of (comparatively) large val-
ues. The division operator causes this node’s values to change very significantly. This
bad case simplification type can be caught by checking the tree one level up before
accepting the simplification.

Example 2. A harder case

The following bad case example is one created using the Coins dataset, from simplify-
ing a tree in the initial random population. It will get caught as a bad simplification if
we look 2 levels up (to the root).

Oiginal Tree: (* (% (% (- (- F12 F8) (- F8 F9))
(% dr and- 42. 053000 (if>0 F11 F2 F5)))
(if>0 (if>0 (if>0 F3 F3 F3)
(if>0 F7 F9 F7)
(- F4 F8))
(% (- F13 F12) (% F1 FO))
(- drand4.173399 (if>0 F6 F1 F1))))
(% (+ (* (%F9 F2) (+ F3 F1))
(- (+ FO F4) (+ F4 F2)))
(+ (- F12 F2)
(- (+ F8 drand2.014714) (+ F2 F1)))))
Nunmber of nodes: 69, Depth: 6
Eval uat ed range: 184.315 (-82.9886 --> 101. 326)

*** Begi nning Sinplification

Sear ch:
Can sinplify (% (- (- F12 F8) (- F8 F9))
(% drand-42. 053000 (if>0 F11 F2 F5)))
Eval uated Range = -0.00491354 -> 0.00472195 = 0. 00963548, Depth: 3
Sinplification possible, replacing with average: -9.57958e-05

*** Sinplification conplete

Sinplified Tree: (* (% drand-0.000096
(if>0 (if>0 (if>0 F3 F3 F3)
(if>0 F7 F9 F7)
(- F4 F8))
(% (- F13 F12) (% F1 FO))
(- drand4.173399 (if>0 F6 F1 F1))))
(% (+ (* (%F9 F2) (+ F3 F1))
(- (+ FO F4) (+ F4 F2)))
(+ (- F12 F2)
(- (+ F8 drand2.014714) (+ F2 F1)))))
Nunber of nodes: 56, Depth: 6
Eval uat ed range: 26.9512 (-17.8945 --> 9.05671)
Mean Square Error for sinplification: 44.4615
Savi ngs: 13 nodes, O levels

Nunmber of nodes in each |evel
Before sinplifying: 1 2 4 9 19 34
After sinplifying: 12 4 7 15 27

36



At the level the simplification takes place, it seems a good simplification. Even look-
ing one level above will not reveal a massive change (MSE: 0.00148394) to the original
tree. To try and understand why this is a bad simplification two levels up, we need to
look at the different parts of the tree. The “sibling’ to the simplification is the following;:

Sibling tree: (if>0 (if>0 (if>0 F3 F3 F3)
(if>0 F7 F9 F7)
(- F4 F8))
(% (- F13 F12) (% F1 FO))
(- drand4.173399 (if>0 F6 F1 F1))))
Nunmber of nodes: 26, Depth: 4
Eval uat ed range: 3.35834 (-3.36416 --> -0.00581753)

This sibling has all negative values, in a relatively small range. Our simplification,
though small in range, had a mix of positive and negative values, but was replaced by
a negative value, which may be part of the cause. So looking at the parent one level up,
and the effects of the simplification:

Parent (1 Level Up): (% (% (- (- F12 F8) (- F8 F9))
(% drand-42. 053000 (if>0 F11 F2 F5)))
(if>0 (if>0 (if>0 F3 F3 F3)
(if>0 F7 F9 F7)
(- F4 F8))
(% (- F13 F12) (% F1 FO))
(- drand4.173399 (if>0 F6 F1 F1))))
Nunmber of nodes: 41, Depth: 5
Eval uat ed range: 0.237106 (-0.204258 --> 0.0328484)

*** Beginning Sinplification

Sear ch:
Can sinmplify (% (- (- F12 F8) (- F8 F9))
(% dr and- 42. 053000 (if>0 F11 F2 F5)))
Eval uat ed Range = -0.00491354 -> 0.00472195 = 0. 00963548, Depth: 3
Sinplification possible, replacing with average: -9.57958e-05

*** Sinplification conplete

Sinplified Tree: (% drand-0.000096
(if>0 (if>0 (if>0 F3 F3 F3)
(if>0 F7 F9 F7)
(- F4 F8))
(% (- F13 F12) (% F1 FO))
(- drand4.173399 (if>0 F6 F1 F1))))
Nunber of nodes: 28, Depth: 5
Eval uat ed range: 0.0164383 (2.84754e-05 --> 0.0164667)
Mean Square Error for sinplification: 0.00148394
Savi ngs: 13 nodes, 0 levels

37



While there is not a significant MSE change at this parent level, we can see that the
range of the parent is narrowed quite a lot and all values have become positive. The
final factor causing the simplification to be bad is the top root level, which contains a
multiplication operator, with the left child being this newly simplified parent, (with all
positive values rather than a mix of both positive and negative), while the right child is
the following tree which has a large range of large values, both positive and negative:

Right Child of Root: (% (+ (* (%F9 F2) (+ F3 F1))
(- (+ FO F4) (+ F4 F2)))
(+ (- F12 F2)
(- (+ F8 drand2.014714) (+ F2 F1))))
Nunber of nodes: 27, Depth: 5
Eval uat ed range: 5495.59 (-2853.92 --> 2641.68)

So the multiplication operator, which was previously multiplying a mix of positive
and negative values in both children, is now multiplying a mix on one side with all
positive values on the right. Compounded with a smaller range of values in the left
child, this causes the large change in the resulting simplified tree. This is a hard case
to pick up with the naked eye, which gives motivation for the numerical checks up
multiple levels of the tree.

38



