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Abstract. Consider a questionnaire with q {0, 1} questions, which is filled by
N individuals, thus providing N “opinions”. Probabilities of the answer 1 to each
question can be more or less arbitrary. Out of 2q, how many different opinions,
µq, would one expect to see in the sample? How many of these opinions, µq(k),
will occur exactly k times?

The paper gives asymptotic expression for µq/2q and the limit for the ratios
µq(k)/µq, when the number of questions q increases along with the sample size N
so that N = λ2q, λ = const.

In the context of questionnaires, the q is often not too big, and we show how
the asymptotic expressions work numerically for q of order 10-30.
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1 Formulation of the problem

Suppose a person is asked to fill in a form with q binary (yes/no) questions.
Obviously, there are 2q possible ways to fill such form. Suppose N = λ2q



persons were asked to fill it in, so that we have a sample of size N of all
possible responses. We will be interested in the diversity of responses in this
sample when q →∞ and λ = const.

Suppose this fixed λ, a “rate per cell”, equals, say, 10, so that we have asked
10 times more persons than there are possible ways to fill the form. How
many different responses will we see in the sample? And how many of them
will we see only once, or twice, or any fixed k number of times? The first
impression well may be that we will see basically all possible responses, some
of them, say, 3 times and some of them, say, 16 times. More careful intuition
may suggest that some outcomes may occur 30 times and some will not occur
at all, but at least the number of different outcomes in the sample will be of
the same order of magnitude as 2q and that the fraction of unique responses
(with frequency 1) will not be that big.

Although the latter situation may indeed occur, in a majority of cases the
number of different outcomes in the sample will be much less than 2q, and the
number of unique outcomes will constitute not small fraction of it, but often
close to a half. In general, in the total number of different observed outcomes
the fraction of outcomes observed exactly k times will tend to certain lim-
its, which we show below. Strangely enough, these limits do not depend on λ.

Let us formalize the problem. Suppose
−→
ξ = (ξ1, ξ2, . . . , ξq) is a vector of

q Bernoulli random variables. The set Ξq of its possible values is the set
of all sequences −→x = (0, 1, 0, . . . , 1) of length q consisting of 0-s and 1-s.

Suppose we have now a sample of such
−→
ξ , i.e. a sequence of N i.i.d. vectors−→

ξ 1, . . . ,
−→
ξ N . Each of 2q possible values will have then its frequency

fq(
−→x ) =

N∑

j=1

I{−→ξ j=
−→x }

in this sample. Let

µq =
∑

−→x ∈Ξq

I{fq(−→x )≥1}, µq(k) =
∑

−→x ∈Ξq

I{fq(−→x )=k}, k = 1, 2, . . . .

Then we are interested in the asymptotic behaviour of the quotients

µq

2q
and

µq(k)

µq
, (1)
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when q → ∞ and N → ∞. In the situations, where sample size N is much
smaller than the number of possible values 2q, it is obvious that most frequen-
cies will be 0. On the other hand, the case with N much larger than 2q and
q increasing can have a matching situation in practice only very rarely. So,
we assume here that N is of the order 2q, that is, N ∼ λ2q, λ = const, q →∞.

Usually, rare and infrequent objects or outcomes are placed in a group called
“others”. From some point of view, these objects may seem unimportant.
But as soon as we ask questions about diversity, that is, “how many dif-
ferent objects do we have”, or “how many different species do we observe”,
these rare objects become most important. At the same time, they may look
awkward to study from statistical point of view, as their frequencies, even in
large samples, remain small and, therefore, unstable.

The problems where we meet sequences of 0 and 1 of increasing length oc-
cur in many situations. The case of large opinion pools with relatively long
sequence of {0, 1} questions we mentioned already. In this context we would
mean to prove that the saying “as many men as many minds” is mostly
incorrect: typically, the number of “minds” will be much smaller than the
number of “men”. It is no less common a situation in classification problems
- for example, in the medical diagnostic problems, where they check presence
of absence of q symptoms in each patient. Then we ask, how many different
cases should they expect to see in the large data-bases, if q is also large?
Similar situation with the so called “sparse tables” is very common in, say,
economic statistics: if companies are classified using q-dimensional param-
eter, then many of possible “sells” will remain empty, and our question is
how many of the cells will have any object, or a given number of objects, in
them? In the cases like this, cells with only one object are often of special
interest, as the corresponding objects will be unique and, therefore, easily
indentifiable. How many of them should occur “naturally”, then?

Different class of problems, where potentially q can be very large, is men-
tioned in the beginning of Sec. 4. For still another class of problems, studied
in mathematical methods of taxonomy, we refer the reader to Gyllenberg and
Koski (1996) and Gyllenberg and Koski (2001) and references therein.

The questions we ask here were studied in Khmaladze and Tsigroshvili (1993)
in the context, close to questionnaires and to the so-called “McArthur’s stick”
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(see McArthur(1957)). Namely, suppose we fix some positive a < 1/2 and
break the interval [0, 1] in proportion a : 1 − a. At the second step each
of the resulting two intervals we break into two in the same proportion and
repeat this steps q times. Consider the lengths of the 2q resulting intervals as
probabilities and generate a sample of size N from this distribution. This is

equivalent to generation of N i.i.d.
−→
ξ , when the coordinates of

−→
ξ are inde-

pendent Bernoulli random variables with the same probability P(ξi = 1) = a.
Then Khmaladze and Tsigroshvili (1993) considered the questions: will this
sample behave in the way similar to the situation where we would have bro-
ken [0, 1] into 2q subintervals using spacings formed by 2q − 1 uniformly
distributed points, as in McArthur(1957)? The authors showed that for any
a %= 1/2 the former situation is very different form the latter and obtained
the asymptotics for the quotients (1). In particular, unlike McArthur’s stick,
for any a %= 1/2 the ratio µq/2q converges to 0.

In this paper we obtain more general result with different tools to prove
it. Although we keep the assumption of independence of the coordinates

ξ1, . . . , ξq of each
−→
ξ , otherwise their distribution can be arbitrary: P(ξi =

1) = ai, possibly different for different i. We show that, basically, there
are two possibilities. Namely, if the probabilities a1, . . . , aq form, in q, a
triangular array converging to 1/2 so that the distributions, given on Ξq by

pq(
−→x ) = Πq

i=1a
xi
i (1− ai)

1−xi

form a sequence, contiguous to the uniform distributions, given by p0(
−→x ) =

(1/2)q, then Eµq/2q has the positive limit – see Theorem 1, and see the form
of the limit of Eµq(k)/Eµq in (5). If a1, . . . , aq are fixed, that is, they form
just a sequence in q, then Eµq/2q → 0, and we show the rate. The quotients
Eµq(k)/Eµq still converge to limits, which we describe in Theorem 2.

There is a long tradition of probabilistic research, of which the asymptotic
behaviour of Eµq(k)/Eµq is one of the main objects. Perhaps the most
known key word for this research is “Zipf’s Law”. This law was observed
in very large number of different situations. In particular, it is often con-
sidered in the statistical analysis of texts – the state of art of this research
is represented by the monograph Baayen(2000). The quotients Eµq(k)/Eµq

are said to follow Zipf’s law if they would tend to 1/k(k + 1). However, as
Theorem 2 shows, in the situation we consider they converge to a different

4



“law”. The expression they converge to is known in the literature under the
name of Karlin-Rouault Law (Rouault(1978) obtained this expression in the
situation very different from ours – for frequencies of different events in a
Markov chain).

Initially, asymptotic analysis of the integrals Eµq(k) and Eµq looked not so
simple. It was a certain challenge to find relatively transparent and purely
probabilistic proofs.

In sections 2 and 3 we prove our main limit theorems. In section 4 we con-
sider the “reverse” question: if Karlin-Rouault law for µq(k)/µq is observed,
what can be said about underlying probabilities? - how many how small
probabilities there were? Exact answer to this question is given in Theorem
4. We will see, in passing, that the usual estimates p̂(−→x ) = fq(

−→x )/N for
“most” −→x are not good. We also show implications of Theorems 1 and 2 for
Good-Turing indices.

2 The approach and the case of contiguity.

The key step in asymptotic analysis of the ratio µq/2q and of µq(k)/µq con-
sists of the analysis of Eµq/2q and Eµq(k)/Eµq, because the ratios µq/Eµq

and µq(k)/Eµq(k) converge to 1 a.s. Therefore we concern ourselves with
the expressions for the expected values.

Denote b(k,N, p) binomial probability of k with parameters N and p. Since
each frequency fq(

−→x ) has the distribution b(·, N, p(−→x )) we have

Eµq =
∑

−→x ∈Ξq

(1− b(0, N, p(−→x )))

and
Eµq(k) =

∑

−→x ∈Ξq

b(k,N, p(−→x )), k = 1, 2, . . . .

It is clear that, as q →∞, all probabilities p(−→x )→ 0. Therefore, it is natural
to expect that binomial probabilities in above can be replaced by the Poisson
probabilities. As this step is only of a technical importance for us, we use
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the easiest way to justify this replacement – we assume that the sample size
N is Poisson random variable with expected value λ2q. As we know, then all
fq(
−→x ) become independent Poisson random variables (or Poisson processes

in q) with parameters λ2qp(−→x )). Consequently, we can use the expressions

Eµq =
∑

−→x ∈Ξq

(1− π(0, λ2qp(−→x )))

and
Eµq(k) =

∑

−→x ∈Ξq

π(k, λ2qp(−→x )), k = 1, 2, . . . ,

where π(k, z) denotes Poisson probability, of k, with parameter z.

One can study the sums above as they are. For example, if all ai were equal
1/2, i.e. if all pq(

−→x ) = 1/2q we immediately obtain that

Eµq

2q
= 1− π(0, λ) and

Eµq(k)

Eµq
=

π(k, λ)

1− π(0, λ)
. (2)

This, in particular, implies that one should expect the number of different
opinions in a sample to be of the same order as the number of possible opin-
ions.

In general situation, the asymptotic analysis of the sums Eµq and Eµq(k)
looked for this author a challenging problem. However, some, technically
insignificant, change in the point of view on the quantity 2qp(−→x ) transforms
the situation and makes it possible to use powerful probabilistic tools, which
otherwise would seem irrelevant and distant to the problem.

Namely, denote Pq and P0q the distributions on Ξq defined by pq(
−→x ) and

p0(
−→x ) = 1/2q respectively. Then

Mq(
−→x ) := 2qpq(

−→x ) =
pq(
−→x )

p0(
−→x )

,

is the likelihood ratio of Pq and P0q and we can write

Eµq = 2qE0(1− π(0, λMq(
−→
ξ ))),

Eµq(k) = 2qE0π(k, λMq(
−→
ξ ))), k = 1, 2, . . . ,

(3)
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where E0 denotes expected value calculated with respect to the uniform dis-

tribution P0q of
−→
ξ .

We rewrite the previous display as

Eµq

2q
= E0(1− π(0, λMq(

−→
ξ ))),

Eµq(k)

Eµq
=

E0π(k, λMq(
−→
ξ )))

E0(1− π(0, λMq(
−→
ξ )))

, k = 1, 2, . . . ,
(4)

and in what follows will consider asymptotic behaviour of the expectations
on the right hand side.

As an immediate consequence of this point of view we obtain the following
statement: if the sequence of distributions Pq is contiguous with respect to
the sequence of uniform distributions P0q, then Mq typically converges in
distribution, under P0q, to a random variable eL, where L ∼ N (−c2/2, c2)
and c2 is specified below. But since π(k, λez), for each k, are bounded and
continuous functions in z, the expected values in (4) converge to the corre-
sponding limits. Theorem below recalls the formal conditions and specifies
c2. In this theorem and everywhere below, Φµ,σ2(z) and φµ,σ2(z) denote nor-
mal distribution function and normal density, respectively, with mean µ and
variance σ2.

Theorem 1. Suppose probabilities a1q, . . . , aqq form in q a triangular array,
such that maxi |aiq − 1/2| → 0 and

aiq =
1

2
+

ciq√
q
, with lim sup

q→∞

q∑

i=1

c2
iq/q <∞.

Then

lim inf
q→∞

Eµq

2q
> 0 .

If the finite limit

lim
q→∞

q∑

i=1

c2
iq/q = c2
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exist, then
Eµq

2q
∼

∫
(1− π(0, λez))Φ−c2/2,c2(dz)

and
Eµq(k)

Eµq
=

∫
π(k, λez)Φ−c2/2,c2(dz)∫

(1− π(0, λez))Φ−c2/2,c2(dz)
. (5)

Proof. The condition on the upper limit of
∑q

i=1[aiq−1/2]2 =
∑q

i=1 c2
iq/q

guaranties contiguity of the sequence of distributions, given by pq(
−→x ), to the

sequence of uniform distributions given by p0(
−→x ). In its turn, the contiguity

implies that the sequence of distributions of Mq is weakly compact. Hence
the result on E0µq follows. Existence of the limit, together with the condi-
tion on maxi |aiq−1/2| guaranties asymptotic normality of the log-likelihood
ratio ln Mq (see, e.g., Oosterhof and van Zwet (1979)) with parameters, un-
der the null distribution, equal −c2/2 and c2. This asymptotic normality
implies convergence of the expected values as the integrands are continuous
and bounded functions of lnMq. !

Note that the result extends to very general class of distributions. Namely,
whether ξ1, . . . , ξq are independent and pq(

−→x ) is a product of Bernoulli distri-
butions or not does not matter much. For any distribution on Ξq the quantity
Mq still remains a likelihood ratio and, hence, a martingale in q. The condi-
tions of asymptotic normality of lnMq, if Mq is a positive martingale, are well
known: if now aiq is random and stands for conditional probability of ξi = 1,
given ξ1, . . . , ξi−1, then notationally the same conditions, with convergence
replaced by convergence in probability, imply asymptotic normality for Lq

(see Greenwood, Shiryayev (1985)). Therefore, the statement of the theorem
remains still true.

3 The case of arbitrary ai-s. Large devia-
tions.

Suppose now that probabilities a1, a2, . . . , aq are arbitrary, that is, they form
some sequence in q. In this case the behaviour of the likelihood ratio Mq

becomes somewhat erratic: under P0q we have Mq → 0 in probability, but
E0Mq = 1, and therefore increasingly large values of Mq are unavoidable. As
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the consequence of this, in asymptotic analysis of the expected value E0(1−
π(0, λMq)) one can not rely, for example,on Taylor series approximation like,
say,

1− π(0, λMq) ∼ λMq,

because in mean it is not correct: we will see below that

E0(1− π(0, λMq))→ 0, while E0λMq = λ.

How small is the quantity E0(1−π(0, λMq)) is not immediately obvious: for
large q, although the random variable Mq is small with high probability, the
integrand 1− π(0, λMq) also becomes small, while although Mq is large with
only small probability, the integrand is close to 1, that is to say, not small.

In a little bit more detail, for small ε

E0(1− π(0, λMq))I{λMq<ε} ≈ λE0MqI{λMq<ε} = Pq{λMq < ε}

becomes, in the terminology of testing statistical hypothesis, almost the prob-
ability of the type two error, while, for large n

E0(1− π(0, λMq))I{λMq>n} ≈ E0I{λMq>n} = P0{λMq > n}

becomes, in the same terminology, almost the probability of the type one
error. Therefore, with interpretation of Mq as a likelihood ratio, both tails
are of comparable size and both could be comparable in size with the “cen-
tral” part of the expectation E0(1 − π(0, λMq)). We did not find it fruit-
ful to try and locate a part where the main contribution to the integral
E0(1 − π(0, λMq)) is made directly. Instead we suggest to give it a form of
a certain probability, which, as we will see, is naturally connected with the
theory of large deviations.

Let T1 be exponential random variable (with scale parameter 1), independent
from Mq, and let η1 = ln T1. The distribution function of η1 is 1− π(0, ex) =
1− e−ex

. Let, as above, Lq = ln Mq denote the log-likelihood. Then one can
write

E0(1− π(0, λMq)) = P0{Lq > η1 − ln λ}.

Moreover, if Tk is a Gamma-distributed random variable with shape param-
eter k, that is, if Tk is a sum of k independent copies of T1, independent from
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Mq, and if ηk = ln Tk, then in the similar way

E0

∞∑

j=k

π(j, λMq) = P0{Lq > ηk − ln λ}

Here and above P0 denotes, obviously, the joint distribution of Lq, under
uniform distribution on Ξq, and ηk.

It is clear that

Lq = ln
p(
−→
ξ )

p0(
−→
ξ )

=
q∑

i=1

[ξi ln 2ai + (1− ξi) ln 2(1− ai)]

where ξ1, . . . , ξq, under P0, are independent symmetric Bernoulli random vari-
ables: P{ξi = 1} = 1/2. Let ψi(u) denote the logarithm of the moment
generating function of each summand

ψi(u) = ln E0 exp u[ξi ln 2ai + (1− ξi) ln 2(1− ai)]

= ln[(2ai)
u + (2(1− ai))

u]− ln 2.

As we know, ψi(u) is convex, infinitely differentiable function of u and
ψi(0) = ψi(1) = 0. Then so is the sum

∑q
i=1 ψi(u), which is logarithm

of the moment generating function of Lq.

Consider the sequence a1, a2, ..., aq and denote

Fq(a) =
1

q

q∑

i=1

I{ai<a}

empirical distribution function of this sequence. By using the term “empiri-
cal distribution function” we do not imply that a1, a2, . . . , aq are considered
independent random variables. We will only assume certain ergodic prop-
erty and, namely, that there is a continuous distribution function F on the
interval [0, 1], such that, as q →∞,

Fq(a)→ F (a) for all a ∈ [0, 1] ,
∫ 1

0

ln2 a

1− a
dFq(a)→

∫ 1

0

ln2 a

1− a
dF (a).

(6)
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In the second condition we assume that asymptotically we will not have too
many ai too close to 0 or 1. For example, it can be any Beta distribution.

Let ψ′i(u) and ψ′′i (u) denote first and second derivatives of ψi(u).

Lemma 1. Suppose condition (6) is satisfied. Let u = uq be such that∑q
i=1 ψ′i(u) = 0. Denote

σ2
q =

q∑

i=1

ψ′′i (uq)/q.

Then,
0 < lim

q→∞
uq < 1 and 0 < lim

q→∞
σ2

q <∞.

Proof. It is easy to see that condition (6) implies convergence

q∑

i=1

ψi(u)/q →
∫ 1

0

(ln[(2a)u + (2(1− a))u])dF (a)− ln 2,

for all u ∈ [0, 1] along with the same convergence for the first two derivatives.
In particular

q∑

i=1

ψ′i(0)/q →
∫ 1

0

(ln 4a(1− a))dF (a)/2 > −∞

and

q∑

i=1

ψ′i(1)/q →
∫ 1

0

(a ln a + (1− a) ln(1− a))dF (a) + ln 2 <∞ .

Therefore, both limits in the lemma exist and since the limit of
∑q

i=1 ψi(u)/q
is also convex function, equal 0 at u = 0 and 1, then the limit of uq can not
be equal 0 or 1. !

Essential step in the theorem below is given by the following lemmas.

Lemma 2. Suppose condition (6) is satisfied. Then, with u as in Lemma 1,

P0{Lq > z} ∼ e
Pq

i=1 ψi(u)−uz 1

u
√

q
φ0,σ2

q
(z/
√

q)[1 + rq(z)] (7)
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with
sup

−β
√

q<z<β
√

q
|rq(z)| = o(1), q →∞,

for any fixed β > 0.

Since

E0Lq/q →
∫ 1

0

(ln 4a(1− a))dF (a)/2 < 0,

and therefore Lq → −∞, the probability, P0{Lq > c} is, for any given c,
probability of large deviations for Lq. Although the proof basically follows
the known pattern (cf., e.g., Kallenberg (2003), ??) the lemma shows the
asymptotic expression for this probability and not its logarithm, as is com-
monly stated in the literature. For the i.i.d. case, the idea can already be
seen in Bahadur and Ranga Rao (1960), sec. 5, and for general case it was
carried through, with the aid of some assumptions, in Chaganty and Sethura-
man (1993). The lemma states, in addition, that the asymptotic expression
is correct uniformly in c in increasing intervals of the length

√
q. This is

sufficient for the application of (7) in Theorem 2 below, although it could be
easily extended to the length o(q3/4).

Proof. Consider the adjoint to P0 distribution Q defined by the relation-
ship

P0{Lq > z} = e
Pq

i=1 ψi(u)

∫ ∞

z

e−uxdQ(x) (8)

One can see that the moment generating function of Q is
∫

ertdQ(t) = e
Pq

i=1 ψi(u+r)−ψi(u),

and therefore, with the choice of u as in the lemma, the expected value of Q
is 0 and the variance is qσ2

q . Denote QLq/
√

q the distribution of Lq/
√

q under
the distribution Q. Then (8) can be re-written as

P0{Lq > z} = e
Pq

i=1 ψi(u)

∫ ∞

z/
√

q

e−u
√

qydQLq/
√

q(y)

= e
Pq

i=1 ψi(u)−uz

∫ ∞

0

e−u
√

qxdQLq/
√

q(x + z/
√

q),

(9)
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Since QLq/
√

q is the distribution of normalized sum of independent and bounded
random variables and has expected value 0 and variance σ2

q , it can be approx-
imated by normal distribution with the same moments. First let us replace
QLq/

√
q(x) by Φ0,σ2

q
(x) and then justify this replacement. We get

u
√

q

∫ ∞

z/
√

q

e−u
√

qyφ0,σ2
q
(y)dy = e−uzu

√
q

∫ ∞

0

e−u
√

qxφ0,σ2
q
(x + z/

√
q)dx

= e−uzφ0,σ2
q
(z/
√

q)[1 + rq(z)],

(10)

where
sup

|z|<β
√

q
|rq(z)| → 0 as q →∞.

Note, that to obtain non-zero asymptotics we had to normalise the integral
above by

√
q. Therefore we have to consider normalised difference

u
√

q

∫ ∞

z/
√

q

e−u
√

qy(QLq/
√

q(dy)− Φ0,σ2
q
(dy)).

The difference
√

q(QLq/
√

q(y)−Φ0,σ2
q
(y)) does not have to be a small function.

Therefore we need better approximation for QLq/
√

q(y), which one can obtain
in the form of Edgeworth expansion (see the next lemma). According to this
expansion

sup
y

|QLq/
√

q(y)− Cq(y)| = o(1/
√

q), (11)

where
Cq(y) = Φ0,σ2

q
(y) + P (y)φ0,σ2

q
(y)/

√
q

and where P (y) = y3−3y is third Hermite polynomial. The term P (y)φ0,σ2
q
(y)/

√
q

will not change the asymptotics in (19), while using integration by parts we
get

√
q

∫ ∞

0

e−u
√

qxd(QLq/
√

q(x+
z
√

q
)−Cq(x+

z
√

q
)) = −√q(QLq/

√
q(

z
√

q
)−Cq(

z
√

q
))

+uq

∫ ∞

0

e−u
√

qx(QLq/
√

q(x +
z
√

q
)− Cq(x +

z
√

q
))dx→ 0

uniformly in z. !

The next lemma shows that the Edgeworth expansion (11) for distribution
QLq/

√
q(z) indeed exists.
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Lemma 3. If (6) is satisfied, then there exists Edgeworth expansion for the
distribution function QLq/

√
q(z).

Proof. Use the notation q(ai) = qi = Q(ξi = 1) and ωi = ln ai
1−ai

. Note

that q(a) = au

au+(1−a)u . Then

ξi(t) = e−itqiωi [qi(e
itωi − 1) + 1)

is characteristic function of i-th summand of Lq in measure Q. For the proof
we need to show (12), because the rest basically follows the lines of the proof
for the i.i.d. case as given in Feller (19??), Ch.XVI.2-4. We give only a sketch
of it. If Gq(z) is as in the previous lemma and γq(t) is its Fourier transform,
then for arbitrarily small ε there is large enough constant b, such that

|QLq/
√

q(z)−G(z)| ≤
∫ b

√
q

−b
√

q

|Πq
i=1ξi(

t√
q )− γq(t)|
t

dt +
ε
√

q
,

and we can split the domain of integration for |t| < δ
√

q and δ
√

q < |t| < b
√

q.
For |t| < δ

√
q the expansion of characteristic function Πq

i=1ξi(
t√
q ) of Lq/

√
q,

just as in the case of i.i.d. random variables, shows that the corresponding
integral is o(1/

√
q). As to the range of δ

√
q < |t| < b

√
q, it would be sufficient

to show that

sup
δ<|t|/√q<a

|Πq
i=1ξi(

t
√

q
)| < cq, for some 0 < c < 1. (12)

However, for the norm of this characteristic function we have

1

q
ln Πq

i=1|ξi(s)| =
1

q

q∑

i=1

ln(1 + 2qi(1− qi)(cos sωi − 1))

=

∫ 1

0

ln(1 + 2q(a)(1− q(a))(cos sω(a)− 1))dFq(a))

≤ 2

∫ 1

0

q(a)(1− q(a))(cos sω(a)− 1)dFq(a)

Now we need to show that this integral becomes less than some negative
number −ε, uniformly in s ∈ [δ, b]. If Hq and H are empirical distribution
function and the limit distribution function of ωq-s, then
∫ 1

0

(1− cos sω(a))(dFq(a)− dF (a)) =

∫ ∞

−∞
(1− cos sω)(dHq(ω)− dH(ω))
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and integration by parts leads to

s|
∫ ∞

−∞
sin sω(Hq(ω)−H(ω))dω| ≤ s

∫ ∞

−∞
|Hq(ω)−H(ω)|dω

Conditions (6) imply that the last integral converges to 0, because they
guarantee that Hq(ω) → H(ω) uniformly in ω and the second, and, hence,
the first absolute moments converge. Obviously, this is true uniformly in
s ∈ [δ, b]. On the other hand, for any continuous distribution

∫ ∞

−∞
cos sω dH(ω) < 1− 2ε

for s > δ and therefore (6) is true with c = 1− ε. !

Note that the form of condition (12) vary in the literature. Often it may
seem simpler to require this inequality uniformly for s > δ (see, e.g., Kolassa
(1994), p.34). However, this requirement would be restrictive for us: under
(6) it will not be generally true. To see this one can consider Fq which at-
taches equal weight 1/q to regularly spaced points i/q, j = 1, . . . , q. However,
if a1, . . . , aq were assumed to be independent random variables, then (12) will
be true for s > δ.

Now we are ready to formulate the following theorem.

Theorem 2. If condition (6) is satisfied, then

Eµq

2q
∼ e

Pq
i=1 ψi(uq) λ2u

u
√

q
φ0,σ2

q
(0)Γ(1− u),

Eµq(k)

Eµq
→ uΓ(k − u)

Γ(k + 1)Γ(1− u)
,

(13)

where u = lim uq.

Proof. We start with asymptotic expression for E0

∑∞
j=k µq(j) = P0{Lq >

ηk − ln λ}. The result will then follow from (4). Denote Fk gamma distri-
bution function with the shape parameter k (and scale parameter 1). Then
Fk(ex) is the distribution function of ηk. We have

P0{Lq > ηk − ln λ} =

∫ ∞

−∞
P0{Lq > z − ln λ}dFk(e

z). (14)
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Let us split the domain of the integration into three parts. Using (9), for the
integral over (−∞,−β

√
q] we have

∫ −β
√

q

−∞
P0{Lq > z − ln λ}dFk(e

z) = Fk(e
−β
√

q)P0{Lq > −β
√

q − ln λ}+

+ e
Pq

i=1 ψi(u)

∫ −β
√

q

−∞
Fk(λe

√
qz)e−u

√
qzdQLq/

√
q(z).

Since Fk(ε) < εk/2 < ε/2 for all sufficiently small ε, we obtain

∫ −β
√

q

−∞
P0{Lq > z − ln λ}dFk(e

z) < e−β
√

q P0{Lq > −β
√

q − ln λ}+

+ e
Pq

i=1 ψi(u)λ

∫ −β
√

q

−∞
e
√

q(1−u)zdQLq/
√

q(z)

The last integral on the right side is O(e−q(1−u)β), where u stays strictly inside
[0, 1] for all q large enough.
For the interval [β

√
q,∞) we have:

∫ ∞

β
√

q

P0{Lq > z − ln λ}dFk(e
z) < P0{Lq > β

√
q − ln λ}e−eβ

√
q
.

For the middle part we can use Lemma 2:

∫ β
√

q

−β
√

q

P0{Lq > z− ln λ}dFk(e
z) ∼

∼ e
Pq

i=1 ψi(u) λu

u
√

q

∫ β
√

q

−β
√

q

e−uzφ0,σ2
q
(
z − ln λ
√

q
)dFk(e

z)

∼ e
Pq

i=1 ψi(u) λu

u
√

q

∫ ∞

−∞
e−uzφ0,σ2

q
(
z − ln λ
√

q
)dFk(e

z)

= e
Pq

i=1 ψi(u) λu

u
√

q

∫ ∞

0

s−uφ0,σ2
q
(
ln s− ln λ
√

q
)dFk(s)

(15)

Therefore, altogether

P0{Lq > ηk − ln λ} ∼ e
Pq

i=1 ψi(u) λu

u
√

q
φ0,σ2

q
(0)

Γ(k − u)

Γ(k)
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and
P0{Lq > ηk}
P0{Lq > η1}

∼ Γ(k − u)

Γ(1− u)Γ(k)
(16)

Taking the difference in k will end the proof. !

It is interesting to note how the statements of Theorems 1 and 2 are related
to each other. It is, of course, not true that in studying asymptotic behaviour
of the tail of the distribution of Lq when z and q increase simultaneously we
can use sequential limit, first in q → ∞ and then in z → ∞. However, as
the corollary below shows, if we consider the limit of the ratio in (5), as the
distributions P become “less and less” contiguous to P0, it agrees with (13)
in a very natural way.

Corollary 3. If c→∞, then
∫

π(k, λez)Φ−c2/2,c2(dz)∫
(1− π(0, λez))Φ−c2/2,c2(dz)

→ uΓ(k − u)

Γ(k + 1)Γ(1− u)
|u=1/2 = 0.282

Γ(k − 1/2)

Γ(k + 1)
.

Proof. In equation (14) we can now replace P0{Lq > z − ln λ} directly by
the tail of normal distribution function and use its asymptotics for c→∞:

1− Φ−c2/2,c2(z − ln λ) = 1− Φ0,1(
z − ln λ

c
+

c

2
) ∼ λe−z[1− Φ0,1(

c

2
)] .

Taking the integral will then produce the result. !

4 On Good-Turing indices and behavior of
underlying probabilities.

The question we consider now is reverse to the question we studied so far
and is more of statistical than of probabilistic nature: given the statistics
µq(k), k = 1, 2, . . . , and µq agree with Karlin-Rouautl law, what can one say
about overall behavior of the underlying probabilities p(−→x ),−→x ∈ Ξq? To
answer this question we start with the Good-Turing indices.
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In his famous paper Good (1953), with reference to A.Turing, I.J.Good in-
troduced quantities

Gq(k) =
∑

−→x ∈Ξq

p(−→x )I{fq(−→x )=k} and pq(k) =
Gq(k)

µq(k)
.

Intuitive meaning of these quantities is very appealing and transparent:
Gq(k) is the total probability of outcomes (in our case - opinions) that hap-
pened to appear k times in the sample while pq(k) is an “average” or “typical”
probability of each of such outcomes. The definitions extend to k = 0, and
Gq(0) is the total probability of outcomes that did not appear in the sample,
while pq(0) is an “average” probability of any such outcome.

Prior to any asymptotic analysis of these quantities it may look quite reason-
able to say that since the frequency fq(

−→x ) of −→x is equal to k, its expected
value is best estimated by k and, therefore, the sample suggests that there
were µq(k) probabilities, each equal

p̄q(k) =
k

N
.

This is, basically, to say that as an estimation of p(−→x ) we take fq(
−→x )/N .

Since
∑∞

k=1 p̄q(k)µq(k) = 1, for events that did not appear in a sample this
would imply the estimate Ḡq(0) = 0 .

Despite of being MLE, such a pessimistic estimate does not look satisfactory,
and one would hope to produce reasonable positive estimator for Gq(0) and
pq(0). The paper Orlitsky et al. (2003) recalls that P. Laplace, in his “Philo-
sophical Esseys on Probabilities” of 1825 (see translation Laplace(1995)) sug-
gested to use the quantities

p̃q(k) =
k + 1

N + µq + 1
, k = 1, 2 = . . . .

Since
∑∞

k=1 p̃q(k)µq(k) = (N + µq)?(N + µq + 1), this leaves the value

G̃q(0) = 1/(N + µq + 1)

to the total probability of unseen outcomes.

18



Based on easily obtainable equality

EGq(k) =
k + 1

N
Eµq(k + 1),

Good(1953) proposed to estimate Gq(k) and pq(k) as

Ĝq(k) =
k + 1

N
µq(k + 1) and p̂q(k) =

k + 1

N

µq(k + 1)

µq(k)

respectively. Since then several authors investigated the statistical quality of
these estimators. For example, their rate of convergence was recently studied
in McAllester and Schapire (2000).

Notwithstanding importance of this work, we note, however, that Theorems
1 and 2 imply that for a sample, which agrees with Karlin-Rouault law, there
is no need to use any estimators. In particular, under conditions of Theorem
2 it follows that

EGq(k) ∼ 1

N

uΓ(k + 1− u)

Γ(1− u)Γ(k + 1)
Eµq and pq(k) ∼ k − u

N
, (17)

and thus

EGq(0) ∼ u

N
Eµq and Epq(0) ∼ u

N

Eµq

2q − Eµq
,

as q → ∞. This, in its turn, leads to conclusion that if Karlin-Rouault law
is satisfied, then in the underlying probabilities there should have been ap-
proximately µq(k) probabilities, equal (k− u)/N , while the total probability
of unseen outcomes was uµq/N , more optimistic (small but infinitely larger)
than value G̃q(0) suggested by Laplace.

Note that the right hand side of (17) provides “smoothing” of Gq(k) in k:
even if µq(k + 1) = 0 (while µq(k) %= 0), unlike Gq(k), which then also is
equal 0, the right hand side of (17) is not and behaves in k “smoothly”.
The need for “smoothing” was discussed in Good(1956) and more recently
in Gale and Sampson(1995) and, among other things, in Orlitski et al (2003).

The possible spread of values of the underlying probabilities, which can be
extracted from Good-Turing indices, is, however, inherently an approxima-
tion only. Indeed, every probability p(−→x ) can be estimated as a pq(k) or,
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say, pq(k + 1), depending on whether fq(
−→x ) = k or, say, fq(

−→x ) = k + 1.
However, for most −→x its frequency fq(

−→x ) have Poissonian behavior and can
take these different values with no small probability. Thus, even for large q,
classification for p(−→x ) remains random and misclassification very possible.
The statement below shows, however, that more accurate and complete eval-
uation of overall behavior of probabilities is possible.

Let

Hq(z) =
1

2q

∑

−→x ∈Ξq

I{Np(−→x )>z} and Rq(z) =
1∫∞

0 (1− e−y)dHq(y)
Hq(z)

be (tail of) empirical distribution function of Np(−→x ) under P0q and its nor-
malized form respectively. Theorem 4 shows the limit of Rq(z). Although
this limit is lurking behind Lemma 2 or Theorem 2, in Theorem 4 we do not
use any assumption about the structure of probabilities p(−→x ).

Theorem 4. If, as q →∞ and sample size N = λ2q with λ = const,

µq(k)

µq
→ uΓ(k − u)

Γ(k + 1)Γ(1− u)
, k = 1, 2, . . . , 0 < u < 1,

then for all z > 0

Rq(z)→ R(z) =
1

Γ(1− u)
z−u.

One might think that the overall spread of probabilities p(−→x ),−→x ∈ Ξ, in the
questionnaire model above could be more or less arbitrary and, for exam-
ple, in the case of independent questions, should essentially depend on the
distribution function F of individual probabilities a1, . . . , aq. Contrary to
this, Theorem 4 shows that the spread can be described through very narrow
class of functions and the dependence on F is very weak - only through the
value of the parameter u. In the next section we will see that numerically u
changes very little.

Note that Rq can be written as

Rq(z) =
1

Eµq

∑

−→x ∈Ξq

I{Np(−→x )>z}.
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It is interesting to compare the statement of Theorem 4 with what one could
get, in the same conditions, if one uses naive estimators p̄q(k) or the esti-
mators pq(k) that follow from Good-Turing indices. We formulate it as a
corollary (of Theorem 2.

Define functions Rq,MLE(z) and Rq,GT (z) as

Rq,MLE(z) =
1

Eµq

∞∑

k=0

I{Np̄q(k)≥z} and Rq,GT (z) =
1

Eµq

∞∑

k=0

I{Npq(k)≥z}

Corollary 5. Suppose the condition of Theorem 4 is satisfied. Then

Rq,MLE(z) ∼
{

Γ(k − u)/Γ(1− u)Γ(k), k − 1 < z ≤ k, k = 1, 2, . . . ,

2q/Eµq →∞, z = 0,

while

Rq,GT (z) ∼
{

Rq,MLE(z + u), uEµq

2q < z,

2q/Eµq →∞, 0 ≤ z ≤ uEµq

2q .

Proof of Theorem 4. It is easy to check that

−
∫ ∞

0

π(k, z)dR(z) =
uΓ(k − u)

Γ(k + 1)Γ(1− u)
, k = 1, 2, . . . (18)

and, integrating by parts, that

−
∫ ∞

0

(1− π(0, z)dR(z) =
1

Γ(1− u)

∫ ∞

0

z−uezdz = 1. (19)

Equations (18) determine the mixing measure R uniquely, given it has no
weight at the point z = 0, or, equivalently, up to summand aδ{0}(z). On the
other hand, the ratio Eµq(k)/Eµq can be viewed, see (4), as a mixture of
Poisson probabilities

µq(k)

µq
= −

∫ ∞

0

π(k, z)dRq(z).

The sequence −
∫ z

0 (1−e−y)dRq(y), q = 1, 2, . . . , forms a sequence of probabil-
ity distribution functions in z. For any its sub-sequence, weakly converging
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Figure 1: Statisitcs µq(k) from NLTCS disability data (solid line) and its
approximation by Karlin-Rouault law. On the left graph k = 1, . . . , 15 while
k = 7, . . . , 25 are shown, on larger scale, separately on the right graph

to a (possibly deficient) distribution function −
∫ z

0 (1−e−y)dR′(y), one should
have ∫ ∞

0

π(k, z)dRq′(z)→
∫ ∞

0

π(k, z)dR′(z), as q′ →∞,

which therefore must equal R. !

Consider a practical example on disability data from NLTCS, which recently
received careful consideration in Erosheva et al. (2007). The data represented
(0-1) responses on presence or absence of q = 16 parameters in N = 21574
disability patients. Among other things, H. Erosheva and co-authors demon-
strated that the parameters were not independent random variables and
probabilities p(−→x ) are of more complex structure. At the same time, one
can see that the ratios µq(k)/µq in the data follow, as it is shown in Fig 1,
Karlin-Rouault law with u = 0.55 quite closely. Therefore, Theorem 4 can be
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Figure 2: The graph on the left compares R(z) of Theorem 4, corresponding
to NLTCS, dotted line, and Rq,MLE as in the corollary. The graph on the
right compares R(z) with Rq,GT .

applied to show how many how small have been the underlying probabilities.
Fig 2 shows this and illustrates the mutual behavior of the function R and
asymptotic form of Rq,MLE and Rq,GT . We replaced Eµq by µq = 3152 from
the NLTCS data.

The best way to judge whether the functions Rq,MLE and Rq,GT are suffi-
ciently accurate to describe the underlying probabilities is to generate sam-
ples from all three and compare. This was done in Kvizhinadze and Wu
(2009) and the samples produced from Rq,MLE and Rq,GT were quite differ-
ent from each other and from the NLTCS disability data (Fig 1 ); the former
produced far too small, while the latter produced far too large µq(1). The
differences faded away for µq(k) after k = 10.
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5 Numerical behaviour of the asymptotic for-
mulas for moderate q.

It would be quite possible to consider our problem within a context, where q
is very large. For example, in the context of complex systems, with q differ-
ent “on/off” components, the value of q can easily be of several hundreds or
thousands. For such systems, each −→x will describe the state of the system
(the list of states of its components), while µq and µq(k) will be the number
of the different observed states and the number of states observed k times in
a long sequence of trials, respectively.

In a testing problem for such a system, the states −→x , in which the system
will fail, for practically interesting cases will be of quite small probability,
but there most likely will be many of such states. Therefore, the question
of what proportion of them will we see in testing trials is of considerable
interest, when high reliability is needed. There is a number of interesting
questions, apart from those we consider in this paper, arising in the context
of such systems. We intend to study some of them in a separate work.

In the context of questionnaires or classifications, although, e.g., Loughin
and Scherer(1998) and Agresti and Liu(1999) demonstrated advantages of
viewing a questionnaire with, say, q′ questions with multiple responses as a
longer one with binary responses, the number of questions or number of clas-
sifying parameters q will rarely be larger than several tens. For this reason
we would prefer to stay within the case of not very large q and consider how
good the asymptotic expressions above work for q between only 10 and 20.

Stability of uq: the arg min, defined in Lemma 1, is surprisingly stable nu-

merically - not only for the sum
∑q

i=1 ψi(u), but even for one single summand
ψi(u). For ai changing in the interval [0.55, 0.90], and by symmetry, in the
interval [0.1, 0.45], the value of u, where ψi(u) attains its minimum, changes
only in the interval [0.46, 0.50]. If we choose ai uniformly distributed on
[0, 1] and q = 10, when values considerably larger than 0.9 (or smaller than
0.1) can easily occur, the mean value of uq turned out to be 0.442 with the
standard deviation of only 0.024. For values of ai closer to 0.5, ψi(u), as a
function in u, becomes quite “flat” and therefore its arg min will be more
volatile. However, in this case its the exact value will not matter much.
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Figure 3: The bundle of trajectories of µq(k)/µq for k = 1, . . . , 10. The num-
ber of questions q = 10 and probabilities a1, . . . , a10 are uniformly distributed
on [0,1]. Dots show the limits of µq(k)/µk.

Convergence of µq(k)/µq: the plots in Fig 3 and 4 show that this conver-
gence, although not too quick, is reasonable. The bundle of graphs of the
ratio µq(k)/µq for q = 10 uniformly distributed probabilities ai along with the
limiting expression is given on Fig 3. For q = 20, the next Fig 4 shows closer
approximation and smaller spread in the bundle of trajectories of µq(k)/µq.

Transition from the contiguity case to Karlin - Rouault law: it is interesting
to see which limiting values c of Hellinger distance correspond to the con-
tiguity case, and which ones would already correspond to large deviations.
It is also interesting to see, what is the influence of “rate per cell” λ on the
transition from one case to another as c increases. The graphs below show
the ratio of integrals (5) for three values c = 1, 3, 6. For c = 1 the distance
(uniform and in the total variation) between Φ−c2/2,c2 and Φc2/2,c2 is equal
to only 0.3829, while for c = 6 it is equal 0.9973, so the latter case can be
thought of as the case of “large deviations”. The corresponding, uppermost
at k = 1, graph is quite close to the limit, while the graph for c = 1 is very
far from it. In Fig 5 the value of λ = 5 is not very high. As Fig 6 shows,
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Figure 4: The bundle of trajectories of µq(k)/µq for k = 1, . . . , 10. The num-
ber of questions q = 20 and probabilities a1, . . . , a20 are uniformly distributed
on [0,1].
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Figure 5: Three graphs of the ratio (5) in k for c = 1, 3, 6. Here λ = 5.
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Figure 6: The same situation as in the previous graph, but with λ = 10.

for higher λ and not large c the ratio (5) can behave very differently from
its limit - in this graph λ = 10. However, with c increasing, the influence of
large λ fades away noticeably.

Convergence of µq/2q to 0: the rate of this convergence, numerically, is not
too high. For example, for q = 20 and λ = 3 one would still see in a sample
about 20% of all possible “opinions”. Also, one would expect that this rate
will strongly depend on the overall spread of a1, . . . , aq, that is, on F . As for
ai-s all equal 1/2 the expectation Eµq reaches its maximum value 1 − e−λ,
one would expect that for ai-s tending to 1/2 the ratio µq/2q should be es-
sentially larger that for the case when they tend to the end-points of [0, 1].
This effect, although visible on Fig 7, is, however, not too strong.

Related question is whether the asymptotic expression for µq/2q in (13) is
accurate for our choice of not very large q. The graph in Fig 8 illustrates the
convergence of µq/2q and its asymptotic form to each other. However, we
can increase this convergence sharply if we note there is a loss in numerical
accuracy in the step from last integral in (15) to the final form, because, as
a function in s, φ0,σ2

q
((ln s − ln λ)/

√
q) for not too large q decreases notice-

ably as s/λ deviates from 1. To replace it by its maximum value φ0,σ2
q
(0)
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Figure 7: The graph of µq/2q in q for three different distributions F of ai-s:
the middle graph is for uniform F , the upper one - for B-distribution with
the density aβ−1(1− a)β−1/B(β, β) and β = 1.2 while the lower graph is for
U -shaped B-distribution with β = 0.8.

with sufficient accuracy requires q ≥ 50. Since σ2
q is numerically stable, one

can calculate the integral without much difficulty and use the asymptotic
expression

µq

2q
∼ e

Pq
i=1 ψi(u) λu

u
√

q

∫ ∞

0

s−uφ0,σ2
q
(
ln s− ln λ
√

q
)e−sds. (20)

The third graph in Fig 8 shows that this latter expression is quite accurate.
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Figure 8: The graph of µq/2q in q (in the middle) along with two asymptotic
expressions: given in Theorem 2 (the upper graph) and in (15) and (20)
above. The graphs show that the approximation based on large deviations
works reasonably well.
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