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1 Introduction

In a series papers, Scott and wild (1986,1997,2001) and Wild (1991) have developed a method-

ology which can be applied to a variety of response-selective sampling method. The efficiency of

these methods has been demonstrated in special cases by several authors. For example, Breslow,

Robins and Wellner (2000) consider case-control sampling, assuming that the data are generated

by Bernoulli sampling, where either a case or control is selected by a randomisation device with

known selection probabilities, and the covariates of the resulting case or control are measured.

In the case of two-phase outcome-dependent sampling, Breslow, McNeney and Wellner (2003)

apply the missing value theory of Robins, Rotnitzky and Zhao (1994) and Robins, Hsieh and

Newey (1995). Here, individuals in the population are selected at random and their status (e.g.

case or control) is determined. Then with a probability depending on their status, the covariates

are measured or not. The unobserved covariates are treated as missing data. Lee and Hirose

(2008) used an adaptation of the the profile likelihood method due to Newey (1994) to derive a

semi-parametric efficiency bound, and then show that this bound coincides with the asymptotic

variance of the Scott-Wild estimator, hence demonstrating the efficiency of the estimator.

In Lee and Hirose (2008), they demonstrated that, in the case of the Scott-Wild estima-

tor, it is possible to reparametrise the least favorable submodel so that the efficient score

function and the efficient information matrix can be expressed in terms of the parameters in

the reparametrised model. The aim of this paper is to investigate conditions under which a

reparametrization of the least favorable submodel yields this situation.

We consider an S-vector of semi-parametric models (P1, . . . ,PS) where, for each s = 1, . . . , S,

Ps = {ps(x;β, η) : β ∈ Θβ ⊂ Rm, η ∈ Θη}

is a probability model on the sample space Xs with the parameter of interest β, an m-dimensional

parameter, and the nuisance parameter η, which may be an infinite-dimensional parameter.

Let (β0, η0) be the true value of (β, η). We assume Θβ is a compact set containing an open

neighborhood of β0 in Rm, and Θη is a convex set containing η0 in a Banach space B. We refer

the S-vector of semi-parametric models (P1, . . . ,PS) as the multi-sample model.

Under the model, we observe S independent samples Xs1, . . . , Xsns , s = 1, . . . , S, where

Xs1, . . . , Xsns are independently and identically distributed (i.i.d.) according to the model Ps.

Let n =
∑S

s=1 ns. We assume the sample size proportions (n1
n , . . . , nS

n ) converge to weight

probabilities (w1, . . . , wS):

(
n1

n
, . . . ,

ns

n
) → (w1, . . . , ws) (1)

where wi > 0 and
∑s

i=1 wi = 1.

The log-likelihood for the multi-sample data is

`n(β, η) =
S∑

s=1

ns∑
i=1

log ps(Xsi;β, η).
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The log-likelihood function for a one observation is

`(s, x, β, η) = log ps(x;β, η). (2)

The expectation with respect to the density ps(x;β, η) is denoted by Es,β,η.

The efficient score function We assume that there is a differentiable function η̂(β) such that

η̂(β0) = η0 (3)

and
˙̀∗
β(s, x, β0) =

∂

∂β

∣∣∣∣
β=β0

`(s, x, β, η̂(β)) (4)

is the efficient score function. We call the model

ps(x;β, η̂(β)), β ∈ Θβ s = 1, . . . , S,

the least favorable submodel for the multi-sample model (P1, . . . ,PS).

2 Main result

Definition of reparametrised model: Suppose the density for the least favorable submodel

is of the form

ps(x;β, η̂(β)) = p′s(x;β, q(β)), for β ∈ Θβ, s = 1, . . . , S, (5)

where the function p′s(x;β, q) is twice continuously differentiable with respect to (β, q) and q is

a finite dimensional parameter. Further, suppose

S∑
s=1

ws

∫
p′s(x;β, q)dx = 1, for all (β, q) ∈ Θβ ×Dq (6)

where Θβ and Dq are neighborhoods of β0 and q(β0), respectively. Then the model

p′s(x;β, q) : β ∈ Θβ, q ∈ Dq, s = 1, . . . , S,

is called a reparametrised model for the least favorable submodel. The score functions for β and

q in the reparametrised model are denoted by ˙̀
β(s, x;β, q) = ∂

∂β log p′s(x;β, q) and ˙̀
q(s, x;β, q) =

∂
∂q log p′s(x;β, q), respectively.

Remark 2.1: In general, we may not have the condition∫
p′s(x;β, q)dx = 1, for all (β, q) ∈ Θβ ×Dq, s = 1, . . . , S.

Therefore, there is no guarantee that each p′s(x;β, q) : β ∈ Θβ, q ∈ Dq is a probability model.

Remark 2.2: Note that, since η̂(β0) = η0, we have ps(x;β0, η0) = p′s(x;β0, q(β0)), s = 1, . . . , S.

Therefore for the reparametrised model, the notation Es,0, s = 1, . . . , S is used for the expecta-

tions at the true value (β0, q(β0)).
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Centering: For a measurable function f(s, x;β, q), define the centering of f(s, x;β, q) by

f c(s, x;β, q) = f(s, x;β, q)− Es,0f(s, x;β0, q(β0)).

The function f c(s, x;β, q) is called the centered f(s, x;β, q).

Theorem 1. [Efficiency in a reparametrised model] We assume that the least favorable submodel

and the corresponding reparametrised model are as in Equations (3), (4), (5) and (6). Further,

assume that
∂

∂q

∣∣∣∣
q=q(β)

S∑
s=1

wsEs,0[log p′s(x;β, q)] = 0 for β ∈ Θβ. (7)

Then, the efficient score function and the efficient information matrix in the original multi-

sample model (P1, . . . ,Ps) are given by

˙̀∗
β(s, x;β0, η0) = ˙̀c

β −
S∑

s=1

wsEs,0( ˙̀c
β

˙̀cT
q )

(
S∑

s=1

wsEs,0( ˙̀c
q
˙̀cT
q )

)−1

˙̀c
q, (8)

and

I∗β(β0, η0) =
S∑

s=1

wsEs,0( ˙̀c
β

˙̀cT
β )

−
S∑

s=1

wsEs,0( ˙̀c
β

˙̀cT
q )

(
S∑

s=1

wsEs,0( ˙̀c
q
˙̀cT
q )

)−1 S∑
s=1

wsEs,0( ˙̀c
q
˙̀cT
β ) (9)

where ˙̀c
β(s, x;β, q) and ˙̀c

q(s, x;β, q) are the centered score functions for β and q in the reparametrised

model, respectively.

Proof. By Equation (5), the efficient score function is given by

˙̀∗
β(s, x;β0, q(β0)) =

∂

∂β

∣∣∣∣
β=β0

log p′s(x;β, q(β))

= ˙̀
β(s, x;β0, q(β0)) + q̇(β0)T ˙̀

q(s, x;β0, q(β0)) (10)

Since Es,β0η0
˙̀∗
β(s, x;β0, q(β0)) = 0, for s = 1, . . . , S, we have

Es,β0η0
˙̀
β(s, x;β0, q(β0)) + q̇(β0)T Es,β0η0

˙̀
q(s, x;β0, q(β0)) = 0, s = 1, . . . , S. (11)

Therefore, Equations (10) and (11) imply

˙̀∗
β(s, x;β0, q(β0)) = ˙̀c

β(s, x;β0, q(β0)) + q̇(β0)T ˙̀c
q(s, x;β0, q(β0)). (12)

By differentiating Equation (6) with respect to q, for all (β, q) ∈ Θβ ×Dq, we have

S∑
s=1

ws

∫
˙̀
q(s, x;β, q)p′s(x;β, q)dx = 0.

4



In particular, for all β ∈ Θβ,

S∑
s=1

ws

∫
˙̀
q(s, x;β, q(β))p′s(x;β, q(β))dx = 0.

By differentiating with respect to β at β0,

S∑
s=1

ws

∫ (
∂

∂β

∣∣∣∣
β=β0

˙̀
q(s, x;β, q(β))

)
p′s(x;β0, q(β0))dx

= −
S∑

s=1

ws

∫
˙̀
q(s, x;β0, q(β0))

(
∂

∂β

∣∣∣∣
β=β0

p′s(x;β, q(β))

)
dx.

Since p′s(x;β0, q(β0)) = ps(x;β0, η̂(β0, F0)) = ps(x;β0, η0) and by the first equality in Equa-

tion (10), this equation is equivalent to

S∑
s=1

wsEs,0

[
∂

∂β

∣∣∣∣
β=β0

˙̀
q(s, x;β, q(β))

]
= −

S∑
s=1

wsEs,0[ ˙̀q ˙̀∗T
β (s, x;β0, q(β0))]. (13)

By differentiating Equation (7) with respect to β at β0, we get

0 =
∂

∂β

∣∣∣∣
β=β0

∂

∂q

∣∣∣∣
q=q(β)

S∑
s=1

wsEs,0[log p′s(x;β, q)]

=
S∑

s=1

wsEs,0

[
∂

∂β

∣∣∣∣
β=β0

˙̀
q(i, x, β, q(β))

]

= −
S∑

s=1

wsEs,0[ ˙̀q ˙̀∗T
β (s, x, β0, q(β0))] (by Equation (13))

= −
S∑

s=1

wsEs,0[ ˙̀cq ˙̀∗T
β (s, x, β0, q(β0))] (since Es,0

˙̀∗
β(s, x, β0, q(β0)) = 0, s = 1, . . . , S).

Therefore, the centered score function ˙̀c
q(s, x, β0, q(β0)) and the efficient score function ˙̀∗

β(s, x, β0, q(β0))

are uncorrelated. Since ˙̀∗
β = ˙̀c

β + q̇(β0)T ˙̀c
q (cf. Equation (12)), by the projection theorem (cf.

Appendix A), we have

q̇(β0)T ˙̀c
q = −

S∑
s=1

wsEs,0( ˙̀c
β

˙̀cT
q )

(
S∑

s=1

wsEs,0( ˙̀c
q
˙̀cT
q )

)−1

˙̀c
q.

The rest of the claims follow by substituting this expression into Equation (12). �

Remark 2.3: Under the usual regularity conditions, the solution (β̂n, q̂n) to the system of the

score equations, { ∑S
s=1

∑ni
i=1

˙̀
β(s,Xsi; β̂n, q̂n) = 0∑S

s=1

∑ni
i=1

˙̀
q(s,Xsi; β̂n, q̂n) = 0,

is asymptotically distributed as( √
n(β̂n − β0)

√
n(q̂n − q0)

)
∼ N

((
0

0

)
, [I(β0, q0)]−1

)

5



where

I(β0, q0) =

( ∑S
s=1 wsEs,0( ˙̀c

β
˙̀cT
β )

∑S
s=1 wsEs,0( ˙̀c

β
˙̀cT
q )∑S

s=1 wsEs,0( ˙̀c
q
˙̀cT
β )

∑S
s=1 wsEs,0( ˙̀c

q
˙̀cT
q )

)
.

Then the asymptotic variance of
√

n(β̂n − β0) is given by [I∗β(β0, η0)]−1 where I∗β(β0, η0) is the

efficient information for β given by Equation (9) (cf. Bickel, Klaassen, Ritov and Wellner (1993),

page 28). In this case, the estimator β̂n is efficient.

3 Example: Stratified sampling

We assume that the underlying data generating process on the sample space Y × X is a model

Q = {p(y, x; θ, G) = f(y|x; θ)g(x) : θ ∈ Θ, G ∈ G}

where f(y|x; θ) is a conditional density of Y given X which depends on a finite dimensional

parameter θ, G(x) is an unspecified distribution function of X which is an infinite-dimensional

nuisance parameter (g(x) is the density of G(x)). We assume the set Θ is a compact set con-

taining a neighborhood of the true value θ0 and G is the set of all distribution functions of x.

Unless stated otherwise Y may be a discrete or continuous variable.

For a partition of the sample space Y × X = ∪S
s=1Ss, let

Qs(θ, G) =
∫

f(y|x; θ) 1(y,x)∈Ss
dy dG(x)

be the probability of (Y, X) belonging to stratum Ss. Also, let

Qs|X(x; θ) =
∫

f(y|x; θ) 1(y,x)∈Ss
dy.

In standard stratified sampling, for each s = 1, . . . , S, a random sample of size ni is taken

from the conditional distribution

ps(y, x; θ, G) =
f(y|x; θ)g(x)1(y,x)∈Ss

Qs(θ, G)

of (X, Y ) given stratum Ss.

3.1 Finding the least favorable submodel

The aim of this section is to find the form of the density function for the least favorable submodel

in stratified sampling.

Theorem 2.[The least favorable submodel] For θ ∈ Θ, let

ĝ(θ) = ĝ(x, θ, Q̂(θ)) =
f∗0 (x)∑S

s=1 ws
Qs|X(x;θ)

Q̂s(θ)

, (14)
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where

f∗0 (x) =
S∑

s=1

ws

Qs|X(x; θ0)g0(x)
Qs(θ0, g0)

, (15)

and

Q̂s(θ) =
∫

Qs|X(x; θ)ĝ(x, θ, Q̂(θ))dx, s = 1, . . . , S. (16)

Then the efficient score function is given by

˙̀∗
β(s, y, x; θ0) =

∂

∂β

∣∣∣∣
θ=θ0

log ps(y, x; θ, ĝ(θ)). (17)

The proof is given in Appendix C.

Remark 3.1 Note that the equations (Equation 14 and Equation 16) are consistent at θ0:

Equation 16 at θ = θ0 has a solution when Q̂s(θ0) = Qs(θ0, g0). But, since ĝ(θ0) = g0, Q̂s(θ0) =∫
Qs|X(x; θ0)g0(x)dx = Qs(θ0, g0).

3.2 Efficiency of reparametrised model

In this section, we study the efficiency of the Scott & Wild estimator in the context of stratified

sampling using a reparametrised form of the least favorable submodel.

By Theorem 2, the least favorable submodel is given by

ps(y, x; θ, ĝ(θ)) =
f(y|x; θ)1(y,s)∈Ss

ĝ(x, θ, Q̂(θ))

Q̂s(θ)
.

By replacing Q̂(θ) = (Q̂1(θ), . . . , Q̂S−1(θ), Q̂S(θ)) with q = (q1, . . . , qS−1, 1), we consider a

reparametised model of the form

p′s(y, x; θ, q) =
f(y|x; θ)1(y,s)∈Ss

ĝ(x, θ, q)
qs

, (18)

where

ĝ(x, θ, q) =
f∗0 (x)∑S

s=1 ws
Qs|X(x;θ)

qs

(19)

with f∗0 (x) is given by Equation (15).

The true value of (θ, q) is

(θ0, q0) =
(

θ0,

(
Q1(θ0, g0)
QS(θ0, g0)

, . . . ,
QS−1(θ0, g0)
QS(θ0, g0)

, 1
))

.

Let Dq be some neighborhood of q0.

We will demonstrate that the conditions in Theorem 1 are satisfied, so that we can apply

the theorem to identify the efficient score function and the efficient information matrix in the

example.
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First, we will show that

S∑
s=1

ws

∫
p′s(y, x; θ, q)dydx = 1, for all (θ, q) ∈ Θ0 ×Dq.

For any (θ, q), since Qs|X(x; θ) =
∫

f(y|x; θ)1(y,s)∈Ss
dy,

S∑
s=1

ws

∫
ps(y, x; θ, q)dydx =

S∑
s=1

ws

∫
f(y|x; θ)1(y,s)∈Ss

ĝ(x, θ, q)
qs

dydx

=
S∑

s=1

ws

∫
Qs|X(x; θ)ĝ(x, θ, q)

qs
dx

=
∫ S∑

s=1

ws

Qs|X(x; θ)
qs

ĝ(x, θ, q)dx

=
∫

f∗0 (x)dx (by Equation 19 )

= 1.

Second, we will show that for all θ ∈ Θ0,

∂

∂q

∣∣∣∣
q=Q̂(θ)

S∑
s=1

wsEs,0 log ps(y, x; θ, q) = 0. (20)

For j = 1, . . . , S − 1, the derivative is

∂

∂qj

S∑
s=1

wsEs,0 log ps(y, x; θ, q)

= − ∂

∂qj

S∑
s=1

wsEs,0

(
log

S∑
s′=1

ws′
Qs′|X(x; θ)

qs′
+ log qs

)

=
S∑

s=1

wsEs,0

 wj
Qj|X(x;θ)

q2
j∑S

s′=1 ws′
Qs′|X(x;θ)

qs′

− wj

qj

=
S∑

s=1

ws

∫ wj
Qj|X(x;θ)

q2
j∑S

s′=1 ws′
Qs′|X(x;θ)

qs′

Qs|X(x; θ0)g0(x)
Qs(θ0, g0)

dx− wj

qj

=
∫ wj

Qj|X(x;θ)

q2
j

f∗0 (x)∑S
s′=1 ws′

Qs′|X(x;θ)

qs′

dx− wj

qj
(by Equation (15))

=
wj

q2
j

(∫
Qj|X(x; θ)ĝ(x, θ, q)dx− qj

)
.

Therefore by Equation (16), at q = (q1, . . . , qS−1, 1) =
(

Q̂1(θ)

Q̂S(θ)
, . . . ,

Q̂S−1(θ)

Q̂S(θ)
, 1
)
, we have Equa-

tion (20).

By Theorem 1, the efficient score function and the efficient information matrix in the example

are calculated by Equation (8) and (9), respectively, where the score functions ˙̀
θ and ˙̀

q are given
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by

˙̀
θ(s, y, x; θ, q) =

∂
∂θf(y|x; θ)
f(y|x; θ)

−
∑S

s′=1 ws′
∂
∂θ

Qs′|X(x;θ)

qs′∑S
s′=1 ws′

Qs′|X(x;θ)

qs′

and

˙̀
qj (s, y, x; θ, q) =

wj

q2
j

 Qj|X(x; θ)∑S
s′=1 ws′

Qs′|X(x;θ)

qs′

− qj

 , j = 1, . . . , S − 1.

3.3 Identifiability of the parameter in stratified sampling

For a reference, see Breslow, Robins & Wellner (2000).

3.3.1 Non-identifiability in the semiparametric model

In stratified sampling, let θ = (α, β) where α ∈ R and β ∈ RJ , and assume the logistic regression

model

f(y|x;α, β) =
exp(y(α + xT β))
1 + exp(α + xT β)

. (21)

The sample space is partitioned as Y × X = ({0} × X ) ∪ ({1} × X ) and let

Qs(α, β, g) =
∫

f(y = s|x;α, β)g(x)dx, s = 0, 1.

Then the parameters (θ, g) = (α, β, g) in the multi-sample model for stratified sampling are

not identifiable: Let

g∗(x) =
g(x)[1 + exp(xT β)]
1 + exp(α + xT β)

.

Then

ps(x;α, β, g) =
f(y = s|x;α, β)g(x)

Qs(α, β, g)

=
f(y = s|x; 0, β)g∗(x)

Qs(0, β, g∗)
= ps(x; 0, β, g∗),

but (α, β, g) 6= (0, β, g∗) for any α 6= 0, β and g.

3.3.2 Non-identifiability in the reparametrised model

A reparametrised model for the logistic regression model (Equation (21)) is

p(s, x;α, β, ρ1) = wsps(x;α, β, ρ1)

=
ρsf(y = s|x;α, β)∑1

s′=0 ρs′f(y = s′|x;α, β)
f∗0 (x)

=
ρs exp(s(α + xT β))
1 + ρ1 exp(α + xT β)

f∗0 (x)

9



where f∗0 (x) =
∑1

s=0 ρ0,sf(y = s|x;α0, β0)g0(x) and we took a parameterization so that ρ0 = 1.

The score functions for α, β, and ρ1 are

˙̀
α(s, x;α, β, ρ1) = s− ρ1 exp(α + xT β)

1 + ρ1 exp(α + xT β)
,

˙̀
β(s, x;α, β, ρ1) = x

(
s− ρ1 exp(α + xT β)

1 + ρ1 exp(α + xT β)

)
,

and

˙̀
ρ1(s, x;α, β, ρ1) =

1
ρ1

(
s− ρ1 exp(α + xT β)

1 + ρ1 exp(α + xT β)

)
.

Therefore the score function ˙̀
(α,β,ρ1) for (α, β, ρ1) is

˙̀
(α,β,ρ1)(s, x;α, β, ρ1) =


1

x
1
ρ1

(s− ρ1 exp(α + xT β)
1 + ρ1 exp(α + xT β)

)
.

The components of the score function { ˙̀
α, ˙̀

β, ˙̀
ρ1} are not linearly independent. This implies:

(1) The parameterization (α, β, ρ1) → p(s, x;α, β, ρ1) is not one-to-one (i.e. the parameteri-

zation is not identifiable).

(2) The information matrix I(α0, β0, ρ1,0) = Pα0,β0,g0( ˙̀
(α,β,ρ1)

˙̀T
(α,β,ρ1)) is not invertible.

(3) The nuisance tangent space (the tangent space for ρ1) in the reparametrised model coin-

cides with the tangent space for α.

However, the parameter β is identifiable and can be estimated in this model. (See Breslow,

Robins & Wellner (2000).)

4 Conclusion

Theorem 1 gives conditions under which the efficient score function and the efficient informa-

tion matrix can be expressed in terms of the parameters in the reparametrised model, namely,

Equation 8 and Equation 9, respectively. This result extend the result of Lee and Hirose (2008)

in more general situation.

Appendix A: The projection theorem

Let H be the Hilbert space of m-dimensional measurable functions with zero mean and finite

variance:

H =

{
f(s, x) : Es,β0,η0f = 0, s = 1, . . . , S,

S∑
s=1

wsEs,β0,η0f
2 < ∞

}
.
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The covariance of f, g ∈ H is defined by Cov(f, g) =
∑S

s=1 wsEs,β0,η0(fgT ). We say f and g are

uncorrelated (orthogonal) if Cov(f, g) = 0. For a set of functions G in H, G⊥ is the set of all

functions f ∈ H with Cov(f, g) = 0. The projection π(f |G) of f ∈ H onto a closed subspace G
is characterized by

π(f |G) ∈ G and f − π(f |G) ∈ G⊥.

Theorem A.[The projection theorem] Suppose g(s, x) is a l-dimensional vector of measurable

functions such that

(1) for s = 1, . . . , S, Es,θ0(g) = 0;

(2)
∑S

s=1 wsEs,θ0(g
T g) < ∞;

(3)
[∑S

s=1 wsEs,θ0(ggT )
]−1

exists.

Let G = {Ag : A ∈ Rm×l} be the closed subspace of H generated by g. Then, for each f ∈ H,

the projection of f onto the closed subspace G is given by

π(f |G) =

[
S∑

s=1

wsEs,θ0(fgT )

][
S∑

s=1

wsEs,θ0(ggT )

]−1

g.

Proof. Note that π(f |G) ∈ G implies π(f |G) = A0g for some A0 ∈ Rm×l. Then, by the

properties of the projection, we have

A0g ∈ G and f −A0g ∈ G⊥.

It follows that, since g ∈ G,
S∑

s=1

wsEs,0[(f −A0g)gT ] = 0.

This implies
S∑

s=1

wsEs,0(fgT )−A0

S∑
s=1

wsEs,0(ggT ) = 0.

By the assumption that [
∑S

s=1 wsEs,0(ggT )]−1 exists, we have

A0 =

[
S∑

s=1

wsEs,0(fgT )

][
S∑

s=1

wsEs,0(ggT )

]−1

.

Therefore,

π(f |G) = A0g =

[
S∑

s=1

wsEs,0(fgT )

][
S∑

s=1

wsEs,0(ggT )

]−1

g.

�
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Appendix B: Theorem to identify the least favorable submodel

To verify Condition (R0), the following theorem may be useful.

Theorem 2. A path η(t) is a continuously differentiable map in a neighborhood of 0 such that

η(0) = η0. Define α(t) = η(t)− η0. If η̂(β) is a differentiable function such that

η̂(β0) = η0 (22)

and, for each β ∈ Θβ, and for each path η(t),

∂

∂t

∣∣∣∣
t=0

Eβ0,η0 [log p(x;β, η̂(β) + α(t))] = 0, (23)

then the function ˙̀∗
β(x, β0) = ∂

∂β |β=β0
log p(x;β, η̂(β)) is the efficient score function.

Proof. See Hirose(2008) for the proof. �

Appendix C: Proof of Theorem 2

For each s = 1, . . . , S, let Fs0 be the cdf for the true distribution for the model

{ps(y, x; θ, G) : θ ∈ Θ, G ∈ G}.

The expected likelihood in the model is

S∑
s=1

ws

∫
log ps(y, x; θ, G)dFs0(y, x).

In Step 1, we find a function ĝ(θ) by using the method of Scott and Wild (1997, 2001).

In Step 2, we show that
∑S

s=1 ws

∫
log p(y, x; θ, ĝ(θ))dFs0 satisfies Conditions (22) and (23) in

Theorem 2 in Appendix B so that the claim follows form this theorem.

Step 1: First, we find a function ĝ(x, θ) under the assumption that the support of the

distribution of X is finite: i.e. supp(X) = {v1, . . . , vK}. Let (g1, . . . , gK) = (g(v1), . . . , g(vK)),

then log g(x) and Qs(θ, g) can be expressed as log g(x) =
∑K

k=1 1x=vk
log gk and Qs(θ, g) =∫

Qs|X(x; θ)g(x)dx =
∑K

k=1 Qs|X(vk; θ)gk.

To find the maximizer (g1, . . . , gK) of

S∑
s=1

ws

∫
log p(y, x; θ, ĝ(θ))dFs0 =

S∑
s=1

ws

{∫
(log f(y|x; θ) + log g(X)) dFs0 − log Qs(θ, g)

}
at θ, differentiate this expression with respect to gk and set the derivative equal to zero,

∂

∂gk

S∑
s=1

ws

∫
log p(y, x; θ, ĝ(θ))dFs0 =

S∑
s=1

ws

{∫
1X=vk

dFs0

gk
−

Qs|X(vk; θ)
Qs(θ, g)

}
= 0.
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The solution gk to the equation is

ĝ(vk, θ) = gk =
∑S

s=1 ws

∫
1X=vk

dFs0∑S
s=1 ws

Qs|X(vk;θ)

Qs(θ,g)

.

Since f∗0 (vk) =
∑S

s=1 ws

∫
1X=vk

dFs0 by Equation (15), this expression is of the form in Equa-

tion (14).

Step 2: Condition (22) is verified in Remark 3.3. Now, we verify Condition (23). Let

g(x, t) be a path in the space of density functions with g(x, 0) = g0(x). Define α(t) = α(x, t) =

g(x, t)− g0(x) and write α′(x, 0) = ∂
∂t |t=0 α(x, t). Then

∂

∂t

∣∣∣∣
t=0

S∑
s=1

ws

∫
log ps(y, x; θ, ĝ(θ) + α(t))dFs0

=
∂

∂t

∣∣∣∣
t=0

S∑
s=1

ws

{∫
log(ĝ(x, θ) + α(t))dFs,0 − log Qs(θ, ĝ(θ) + α(t))

}

=
∂

∂t

∣∣∣∣
t=0

{∫
log(ĝ(x, θ) + α(t))f∗0 (x)dx−

S∑
s=1

ws log Qs(θ, ĝ(θ) + α(t))

}

=
∫

α′(x, 0)
ĝ(x, θ)

f∗0 (x)dx−
S∑

s=1

ws

∫
Qs|X(x; θ)α′(x, 0)dx

Q̂s(θ)
= 0

by Equations (14) and (15). By Theorem in Appendix B, the claim follows. �
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