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1 Introduction

Consider the classical non-parametric regression problem: we observe a sequence of pairs
(Xi, Yi), where Xi ∈ Rd are d-dimensional explanatory random variables, and Yi are
corresponding responses, and assume that

Yi = m(Xi) + ei, i = 1, . . . , n

and the errors e1, . . . , en are i.i.d. random variables. We do not know the regression
function m(x) and do not presume it has any given parametric form.

What we need is to test the hypothesis that the distribution function of ei is a given
0−mean distribution function F . Since we do not know m(x) we can not observe ei and
will have to use some non-parametric estimator m̂n(x) of the regression function and use
estimated errors

êi = Yi − m̂n(Xi)

to test our hypothesis. However, these ê1, . . . , ên, are neither independent nor identically
distributed any more.

Here we will consider two ways of testing our hypothesis. One way is to use the
estimated empirical process

v̂n(x) =
1√
n

n∑
i=1

[I{êi≤x} − F (x)]

and use goodness of fit statistics based on this process. The other way is to use another
version of the empirical process, called the Khmaladze transformation,

wn(x) =
1√
n

n∑
i=1

[I{êi≤x} −Kn(x)]

where we give the explicit form of the centering process Kn(x) below, and to base goodness
of fit statistics on this process.

The theoretical advantage of the process wn(x) is that under the usual time transfor-
mation t = F (x) it converges, under the null hypothesis, to standard Brownian motion
on the interval [0, 1] (Khmaladze and Koul 2007). Hence, the null distribution of any
goodness of fit statistic from wn(x), invariant under the time transformation t = F (x),
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will be free from the underlying F , m̂n and m, which is a useful property in practice,
as even though we know the hypothetical F , we have no knowledge of the underlying
regression function m(x) and a large variety of non-parametric estimators m̂n could have
been used. Contrary to this, the null distribution of v̂n(x), in general, depends on all
three functions F , m̂n and m, and this inconvenient property is inherited by goodness of
fit statistics, based on this process.

The aim of this work is

• to provide convenient computational formulae for the calculation of trajectories of
the process wn(x) in the case of testing normality, i.e. when the hypothetical F is
just a standard normal distribution function;

• to verify, through simulation experiments, that the convergence of wn to its limit
is sufficiently rapid and indeed is not affected by the choice of various regression
functions m(x) and its non-parametric estimators;

• to investigate to what degree the distribution of v̂n depends on regression function
m and its estimator m̂n;

• to compare the power of the tests based on v̂n(x) and wn(x) for various alternatives.

2 Computational Formulae for Kn(x)

The formula for Kn(x) above is defined as

Kn(x) =
1

n

n∑
i=1

(

∫ x∧êi

−∞

(y − µ(y))(êi − µ(y))

σ2
f (y)

f(y)dy − ln[1− F (x ∧ êi)])

where f(x) is the standard normal density function, F (x) is the standard normal distri-
bution function,

µ(y) =
f(y)

1− F (y)

and
σ2

f (y) = [1− F (x)](1 + xµ(x)− µ2(x))

3 Simulation Experiments under H0

3.1 The regression structure

As a simple test, the data was chosen to be of the form:

Yi = m(Xi) + ei, i = 1, . . . , n

where ei are i.i.d with distribution F . The null hypothesis is

H0 : F = N(0, 1)

i.e the ei are from the standard normal distribution.
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Initially the function m(x) was chosen to be of the form m(x) = cx with c = 1 or 5,
the Xi were chosen as uniform U [0, T ] with T = 2 and the sample size n was chosen as
200 or 500. Thus we generate each sample as

Yi = cXi + ei, i = 1, . . . , n

Later simulations used the exponential function m(x) = ecx as the regression function
with the value of c chosen as 1 or 2.

3.2 The estimation procedure

Once the form of the explanatory random variable, the regression function and the error
distribution have been decided to allow generation of the responses Yi, the next step of
the simulation is to find the residuals, i.e. to generate êi = Yi − m̂(Xi). Thus we need a
procedure to calculate an estimate m̂ for the function m(x).

The procedure chosen was the Nadaraya-Watson estimator which depends on a window
width (or bandwidth) parameter a.

Thus we have:

m̂n(x) =
n∑

i=1

YiI{Xi∈[x−a,x+a]}/
n∑

i=1

I{Xi∈[x−a,x+a},

with various choices for window width (or bandwidth) parameter a.
This a was initially chosen to be 0.08, but further experimentation led to different

values being chosen and to a minor modification.
The modification was implemented to reduce the end-effects of a fixed window width

parameter. This was achieved by adjusting the window width parameter near the end-
points so that at all times the total active window was symmetric about the point (the
particular Xi) being analyzed. Thus in particular, when the extreme end-points were
being analyzed, the window was effectively just that single point.

The initial sample size was selected as n = 200 since this is not too big, but is such
that one could expect asymptotic results to be visible.

It is, of course, difficult to speak about the distribution of the processes wn or v̂n as
such, and instead we speak about the distribution of the K-S statistics based on these
processes, namely:

V̂n = sup
x
|v̂n(x)| and Wn = sup

x
|wn(x)|.

3.3 The null distribution of V̂n

We now proceed to generate the K-S statistics for V̂n under H0 for the different situations
described above.

3.3.1 Linear regression

Figure 1 shows the empirical distributions of V̂n under H0 when m(x) = cx with c = 1,
for a selection of values of a.
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Figure 1: Empirical distributions of V̂n under H0 when m(x) = x.
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Figure 2: Empirical distributions of V̂n under H0 when m(x) = 5x.
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When the value of the slope c is chosen as 5, i.e. m(x) = 5x, there is no discernible
change in the plotted e.d.f.s. Figure 2 shows the empirical distributions of V̂n under H0

when m(x) = 5x for the same selection of values of a as for Figure 1.
Indeed, in the case of any linear regression, the behaviour of m̂(x) is more or less the

same. In particular it contains no bias.

3.3.2 Exponential regression function

Now we choose m(x) = ecx, initially with c = 1. Figure 3 shows the empirical distribution
of V̂n under H0 for a selection of values of a. Note that these e.d.f. curves are similar but
not identical to those for the case of a linear regression function.
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Figure 3: Empirical distributions of V̂n under H0 when m(x) = ex.

When the value of c is chosen as 2, i.e. m(x) = e2x, there are more noticeable
differences than for the case of a linear regression function. Figure 4 shows the empirical
distribution of V̂n under H0 when m(x) = e2x for the same values of a as Figure 3.

The overall impression delivered by this set of four figures is that the distribution of
V̂n under the null hypothesis shows noticeable variation with respect to both the choice of
window width parameter a for the Nadaraya-Watson estimator of the regression function
m(x) and the actual regression function used.
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Figure 4: Empirical distributions of V̂n under H0 when m(x) = e2x.

3.4 The null distribution of Wn

We now proceed to generate the K-S statistics for Wn under H0 for the same situations
as analysed for V̂n.

Unlike the case of V̂n, the distribution of Wn is fixed, and is free from the hypothesis
H0, the regression function m and its estimator m̂n. As a matter of fact

P (Wn < x) =
4

π

∞∑
n=0

(−1)n

2n + 1
exp(−π2(2n + 1)2

8x2
)

(Shorak 1987 p. 34).

3.4.1 Linear regression

Figures 5 and 6 show the empirical distributions of Wn under H0 for a selection of values
of a when m(x) = x and m(x) = 5x respectively.

3.4.2 Exponential regression function

Figures 7 and 8 show the empirical distributions of Wn under H0 for a selection of values
of a when m(x) = ex and m(x) = e2x respectively.
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Figure 5: Empirical distributions of Wn under H0 when m(x) = x.
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Figure 6: Empirical distributions of Wn under H0 when m(x) = 5x.
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Figure 7: Empirical distributions of Wn under H0 when m(x) = ex.
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Figure 8: Empirical distributions of Wn under H0 when m(x) = e2x.
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4 Power of K-S tests

The alternative distribution chosen for determining the power of various test statistics is a
mixture distribution of 80% standard normal distribution and 20% “double exponential”
distribution with density 0.5e−|x|. The density of the mixture, compared with a standard
normal density, is shown in Figure 9. Different proportions of the mixture were tested
in the early stages of the following analyses, but in general this did not affect the overall
picture. Further, some different sample sizes were also tested, but as can be seen below,
these do not affect the effects demonstrated either.
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Figure 9: Standard normal density and the density of the mixture of 4/5 standard normal
and 1/5 double exponential densities.

4.1 Power of V̂n compared to V̄n.

The paper Khmaladze and Koul (2007) contains a section which explains why there is an
intrinsic loss of power in statistics based on the process v̂n(x). Graphs below illustrate
this point.

For comparison’s sake, consider the problem where Yi-s are i.i.d. with unknown con-
stant mean value m:

Yi = m + ei, i = 1, . . . , n .

We estimate m by the average of Yi-s, and consider the empirical process based on the
estimated errors ēi = Yi − Ȳn, i = 1, . . . , n. This process we denote

v̄n(x) =
√

n(F̄n(x)− F (x)),
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where again the hypothetical F is a standard normal distribution function. Finally, we
denote

V̄n = sup
x
|v̄n(x)|

as the K-S statistic from v̄n(x).

The next set of graphs, Figures 10 – 17, show the simulated distributions of both V̄n

and V̂n under the null and under the alternative distribution for two different sample sizes,
two different regression functions and two different window widths. In all these graphs,
the upper (black) and lower (red) dashed lines are respectively the null and alternative
distributions for V̄n and the upper (black) and lower (red) solid lines are respectively the
null and alternative distributions for V̂n.

We see that indeed V̄n has greater power, but sometimes not by much - as was dis-
cussed in Khmaladze and Koul (2007).
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Figure 10: Empirical distributions of V̄n and V̂n for null and mixture distribution when
a = 0.12 and m(x) = x. Sample size 200.
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Figure 11: Empirical distributions of V̄n and V̂n for null and mixture distribution when
a = 0.08 and m(x) = x. Sample size 200.
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Figure 12: Empirical distributions of V̄n and V̂n for null and mixture distribution when
a = 0.12 and m(x) = ex. Sample size 200.
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Figure 13: Empirical distributions of V̄n and V̂n for null and mixture distribution when
a = 0.08 and m(x) = ex. Sample size 200.
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Figure 14: Empirical distributions of V̄n and V̂n for null and mixture distribution when
a = 0.12 and m(x) = x. Sample size 500.
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Figure 15: Empirical distributions of V̄n and V̂n for null and mixture distribution when
a = 0.08 and m(x) = x. Sample size 500.
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Figure 16: Empirical distributions of V̄n and V̂n for null and mixture distribution when
a = 0.12 and m(x) = ex. Sample size 500.
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Figure 17: Empirical distributions of V̄n and V̂n for null and mixture distribution when
a = 0.08 and m(x) = ex. Sample size 500.

5 Comparison of Powers of wn and v̂n

Figures 18 – 21 show, for two different sample sizes and two different regression functions,
the limit and simulated null distribution of the statistic Wn and its distribution under the
alternative as well as the respective graphs of V̄n and V̂n. Now the increase of power is
much more noticeable.

However, we note that this effect is the superposition of two different effects: one is
that some loss of power in v̂n, which was mentioned above - and no such loss is associated
with wn as v̄n and wn are, asymptotically in a one-to-one relationship, and another is
that the alternative distributions for ei-s must, again, have mean 0, while K-S tests based
on either v̂n(x) or v̄n(x) are not very powerful against such alternatives. Indeed, for
alternatives with expected value 0, the largest (uniform) deviation from the hypothesis
will occur on the ”flanks” while the supremum is likely to occur at the point close to 0,
where the deviation of the alternative distribution from F will not be sufficiently large
(Janssen 2000).

Acknowledgements

I would like to thank Professor Estate Khmaladze for valuable discussions and comments
made during the preparation of this report.

14



0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 18: Empirical distributions of V̄n, V̂n and Wn for null and mixture distribution
when a = 0.08 and m(x) = x. Sample size 200.
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Figure 19: Empirical distributions of V̄n, V̂n and Wn for null and mixture distribution
when a = 0.08 and m(x) = x. Sample size 500.
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Figure 20: Empirical distributions of V̄n, V̂n and Wn for null and mixture distribution
when a = 0.08 and m(x) = ex. Sample size 200.
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Figure 21: Empirical distributions of V̄n, V̂n and Wn for null and mixture distribution
when a = 0.08 and m(x) = ex. Sample size 500.
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