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1 Introduction

This study on Maud Island in the Marlborough Sounds, New Zealand, extends

over 25 years. The second author visited the island at least annually, on each trip

spending several nights capturing, marking, measuring, releasing and recapturing

the Maud Island frog Leiopelma pakeka on two 12 × 12 m grids. The frogs are

small (12–51 mm long), nocturnal and long-lived (up to 35 years). They occupy

retreat sites under rocks and logs, emerging occasionally to feed (particularly on

moist or humid nights).

As part of the analysis, estimates of population density and survival rates are re-

quired, with a check for changes over time. Comparisons of these parameters be-

tween grids and between sexes are also needed, together with estimates of the

proportion underground (and hence unavailable for capture) at any one time.

The influence of the marking method (toe clipping) on survival and capture proba-

bilities is also to be appraised.

The capture-recapture models include robust design models with temporary emi-

gration (Sections 2 to 7), simple design Jolly-Seber models (Section 8) and closed-

population models (Section 9). The other statistical methods are a customised per-

mutation test (Section 10) and generalised linear models (Section 11).

2 The Robust Design Temporary Emigration Model

Open population temporary emigration capture-recapture models are the most ap-

propriate for this study and these animals. This capture-recapture study has Pol-

lock’s robust design (Pollock 1982, Kendall et al. 1995), in which the population is

open between the primary samples (the trips to the island), but is assumed to be

closed during the secondary samples (the nights within each trip). The assumption

of a closed population within each trip is reasonable for such a long-lived species,

where births and deaths are rare on a short time scale. Migration is also though to

be extremely low with this species.

One important advantage of the robust design is that it allows for the fitting of

temporary emigration models (Kendall et al. 1997). Another advantage of the

robust design is the possibility of modelling and estimating short-term (within-

trip) behavioural response, such as trap-shyness after handling and marking. We

propose a new model in Section 6 which allows for two different types of trap-

shyness.
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Justification for the assumption of individual homogeneity, the evaluation of du-

ration underground, and estimating the possible effects of toe clipping all require

special methods, given later.

Our central model, detailed in Kendall et al. (1997), is based on Mt
t in Kendall et

al. (1995), which allows the probability of capture to vary over time, both within

and between trips. Extra parameters are included to allow for temporary emigra-

tion below ground. If retreat under rocks is occurring, on each trip there will be

a proportion of frogs unavailable for capture. This leads to a discrepancy between

population size estimates based on open populations, and those based on a series

of closed populations. The open population estimates are higher, as frogs captured

both before and after a particular trip are deemed to be present during that trip,

even if underground, while the closed population model for that trip is estimating

only the number currently on the surface and available for at least one capture that

trip. This discrepancy in abundance estimates is used to estimate the proportion γj

temporarily out of the (surface) study area during trip j. We assume random tem-

porary emigration, with each animal’s probability of being in retreat during trip j

being independent of its retreat probability at other trips, a reasonable assumption

because of the long time between trips. The model for a study with K trips has the

following basic parameters:

Nj = population size, including those underground, at trip j (j = 1, 2, . . . , K)

φj = survival rate from trip j to j + 1 (j = 1, 2, . . . , K − 1)

γj = probability of temporary emigration (underground or elsewhere) for the

duration of trip j (j = 2, 3, . . . , K − 1)

p∗jℓ = probability of capture on night ℓ of trip j for a frog on the surface.

Derived parameters include:

pj = probability of at least one capture during trip j for an animal alive at j

= (1 − γj)(1 − Π(1 − p∗jℓ)) where the product Π is taken over the nights l in

trip j

Vj = surface population on trip j (number available for at least one capture)

= (1 − γj)Nj .

Model fitting is done by maximum likelihood, with the equations given in Kendall

et al. 1997. This means that comparisons by likelihood ratio tests are feasible, as

well as model comparison by Akaike’s Information Criterion (AIC, see e.g. Burn-

ham and Anderson 2002).

This model assumes that temporary emigration occurs on a time scale of at least a

few days underground, rather than a short phase of one or two days underground

alternating with one or two days above ground. A permutation test to verify this

time scale is given in Section 10.
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There is a possibility that the probability of capture on any given night is largely

explained by the weather conditions, with emergence more likely on moist or rainy

nights. Models using weather as a covariate are in Section 5.

Our central model also assumes homogeneity of capture probability among individ-

ual animals. To justify this assumption, we used the within-trip data and closed

population capture-recapture models, as detailed in Section 9.

Although we have started with a central model which excludes behavioural effects

(capture shyness or capture happiness), later models check for and model such

effects, including the introduction of a new model with two types of behavioural

response (Section 6).

3 Comparing Groups

There were four basic data sets, from a cross-classification by grid and apparent

sex, and four combined data sets (all apparent females, all apparent males, all

grid 1 frogs and all grid 2 frogs). Different groups were compared using joint like-

lihoods. Survival, temporary emigration and capture parameters may differ by

group as well as by time; this model is labelled {φ(tg), γ(tg), p∗(tg)}. The label φ(tg),
for example, specifies that each group g has its own vector of survival probabili-

ties φjg over time (between trips j and j + 1). If the groups have similar survival

probabilities, there is only one vector φj applicable to all groups, and the model is

labelled φ(t). Similar labelling is used for p and γ.

In comparing two groups, there are eight possible models, depending on whether

survival, capture and/or temporary emigration match or differ between the groups.

The eight models are shown in Table 1.

For the male/female groups, and then for the grouping by grid, all eight models

were fitted, and AIC was used to select the best model. Likelihood ratio χ2 tests

could be used instead.

4 Parameters Constant Through Time

For a single group, any of the parameters could be constrained to be constant

through time, replacing annual φ(t) by annual φ(c), γ(t) by γ(c), and/or p∗(t) by

p∗(c). (Annual φ is φ
365/dj
j , with dj = number of days between trips j and j + 1.)

These simplified models may be compared with the central model for any of the
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Model Survival Temporary Capture

Emigration

a. φ(t) γ(t) p∗(t)
b. φ(t) γ(t) p∗(tg)
c. φ(tg) γ(t) p∗(t)
d. φ(t) γ(tg) p∗(t)
e. φ(tg) γ(t) p∗(tg)
f. φ(t) γ(tg) p∗(tg)
g. φ(tg) γ(tg) p∗(t)
h. φ(tg) γ(tg) p∗(tg)

Table 1: Possible models for groups of data, where φ, γ and p∗ all vary over time,

but may or may not vary by group.

data sets, to test if parameters are constant through time. Either AIC or likelihood

ratio tests may be used for the comparisons. We fitted these models for each of the

four basic data sets.

5 Weather as a Covariate

To see if p∗ is mainly dependent on the weather (rainfall and moisture), categories

were used to give just three distinct values of p∗. The weather covariate replaces

the nightly time variation, greatly reducing the number of parameters. This model,

labelled {φ(t), γ(t), p∗(w)}, had three different time scales tried for weather w: rain-

fall during the preceding day (wd), rainfall during the night of sampling (wn), and

a combined measure of rain either before or during sampling (wdn).

A further model {φ(t), γ(w), p∗(t)} was used to test if the temporary emigration rate

could be explained by weather during the trip. For this model, γ took one of three

values, γn for no rain that trip, γs for some rain and γh for heavy rain.

These weather models were fitted to each of the four basic data sets.

6 Behavioural Response Models

Because of the potential behavioural response to marking and handling, the central

model was varied to allow for different short-term responses to the first capture per

trip for a frog on the surface. Only temporary trap response can be modelled and
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tested, as a permanent behavioural effect is confounded with survival.

We used three different models for p∗, the nightly probability of capture for surface

animals.

1. One type of response for all animals, labelled p∗(tb):

This is the behavioural model of Kendall et al. (1997), in which every ani-

mal, whether or not previously marked, responds to a first within-trip cap-

ture during trip j by moving to a new capture probability for the remainder of

the nights during that trip. For this short-term behavioural response, there

are two series of capture probabilities. The p∗ series has different values each

night, and measures the probability of capture for an animal not yet caught

on this trip. The c∗ series, used for within-trip recapture, has a different value

for each night except the first night of each trip, where it is not relevant. Re-

cently caught animals move onto the c∗ series for the remainder of the trip,

where c∗jℓ < p∗jℓ represents trap-shyness, a short-term avoidance of capture.

We assume that all animals revert to the p∗ series at the start of the next trip.

The closed population model with time and behavioural effects needs some

extra assumptions to be fitted. We use the model in Pledger (2000), which is

linear on the logit scale:

log

(

p∗jℓ

1 − p∗jℓ

)

= αjℓ and log

(

c∗jℓ

1 − c∗jℓ

)

= αjℓ + β,

where β is an adjustment factor. A negative estimate of β suggests trap-

shyness, and the hypotheses H0: β = 0 versus HA: β 6= 0 (for trap response)

or HA: β < 0 (for trap-shyness) may be tested to determine if there is a sig-

nificant behavioural response. Alternatively, the model including β may be

compared with the simpler model excluding β, using AIC to decide if the in-

clusion of β is justified.

2. A trap response from newly-marked animals only, labelled p∗(tb1):

There are again two series, p∗jℓ and c∗jℓ, with the linear logistic connection, as

in Case (1). However, in this model, only the newly toeclipped frogs move

to the c series. This model assumes that only the initial capture, with the

associated toe-clip, induces a behavioural response, and that previously toe-

clipped animals are not substantially affected by the first within-trip capture

on later trips.

In this case a test of H0: β = 0 versus HA: β 6= 0 determines if frogs respond

to the first capture overall.
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3. Two different levels of trap response, labelled p∗(tb2):

We also constructed a new model, with two different trap responses, depend-

ing on whether or not the frog had been captured and toe-clipped before the

current trip. We now have two different adjustment parameters, β for the

trap response of newly-marked animals, as in Case (2), and a different ad-

justment δ for animals first seen on a previous trip. Animals marked before

trip j start trip j with capture probability p∗, but after their first capture in

trip j, move to a d∗ series for the remainder of the trip, with linear logistic

equation

log

(

d∗jℓ

1 − d∗jℓ

)

= αjℓ + δ.

The new parameter δ measures the capture response of this group. Estimates

of β < δ < 0 would support a stronger capture-shyness from the overall first

capture with marking. If β and δ are both negative, a test of H0: β = δ versus

HA: β < δ determines if there is a more severe response to the initial capture,

with its associated toe-clipping.

For each animal group, all three models may be fitted, and compared by AIC or

likelihood ratio tests. We fitted these three models to each of our four basic data

sets.

7 Combined Models

The behavioural models may be combined with other variations, to build and ex-

plore appropriate combinations of effects. For example, {φ(c), γ(w), p∗(tb2)} repre-

sents the model with constant annual survival, with weather as a covariate for

temporary emigration, and with two types of behavioural response in the nightly

capture probabilities for frogs on the surface.

The model variations in Sections 4 to 7 were all fitted on each of the four basic

groups. Since they are likelihood-based, these varied models could also be fitted on

combined data sets with more than one group, using joint likelihoods. In this way,

tests could be constructed to decide if any groups have similar survival, temporary

emigration or capture probabilities, using any of these variations to the central

model. For example, we could check if apparent males and females show a similar

strength of trap response after the initial toe-clip (H0: βF = βM ).
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8 Jolly-Seber Model

After detailed investigations using the robust design models, we obtained an overview

of the populations using the Jolly-Seber model (Jolly 1965, Seber 1965) for abun-

dance (Nj) and survival (φj) estimates over time. These match some of the param-

eters in the central model (Section 2). Within-trip information is pooled, and the

abundance estimates are for all frogs, above or below ground.

This simplification represents just a condensation of the data, giving estimates

of Nj and φj which closely match those in the robust design models, but without

the detailed option of modelling or estimating temporary emigration. The cap-

ture probability is now per trip, so estimation of weather or behavioural effects on

nightly capture probability is no longer possible.

The advantage of the simpler model is that estimates and standard errors for Nj

and φj are more easily obtained, and model fitting is faster and more stable. The

traditional Jolly-Seber model gives these estimates and standard errors (Seber

1973).

Tests for trends in population size are also possible, by using the fully likelihood-

based version of the Jolly-Seber model proposed by Schwarz and Arnason (1996).

We may construct the likelihoods to compare models with fluctuating Nj (the tra-

ditional Jolly-Seber, with no constraints on the Nj estimates) with models showing

either a linear trend in Nj over time or constant Nj over time. Our methods of

constructing these models are similar to those suggested in Schwarz (2001).

Any data set may have AIC comparisons, or likelihood ratio tests, among the three

models, with fluctuating, linear or constant Nj.

The trend line or constant N may be fitted to just a subset of the data if desired.

We chose to fit these models to just the last 15 years, as well as to the whole 25

year study. The 15-year models had fluctuating Nj for the first ten years, followed

by a linear trend or constant Nj. This gave information on whether a new trend

had set in over more recent years.

9 Closed Population Models

The within-trip closed population information enables us to check if time effects,

behavioural effects or individual heterogeneity are affecting the probability of cap-

ture.
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Otis et al. (1978) and Norris & Pollock (1996) give the development of likelihood-

based closed population models in which the probability of capture may vary by

time (different nights, Model Mt), by capture response (capture shyness or capture

happiness, Model Mb) or by individual heterogeneity (intrinsic differences between

animals, Model Mh). Combined effects may also be modelled (Norris & Pollock

1996; Pledger 2000), with models Mtb, Mth, Mbh and Mtbh.

Since these models are all based on likelihoods, they may be compared by likelihood

ratio tests or AIC, to select the most appropriate model for the population.

For each grid and for each closed-population model, we calculated the AIC from

the joint likelihoods over all the trips (the sum of the separate AIC values from

each trip). The models were compared to see whether the pooled information gave

evidence of heterogeneity of capture, which would invalidate the temporary emi-

gration models.

The closed population model Mt is also used in the development of a permutation

test for the time scale of the temporary emigration behaviour, as detailed in the

next section.

10 Testing the Time Scale of Temporary Emigra-

tion

The time scale of retreat-emergence behaviour was unknown. If individuals tend

to spend a few days or longer underground before re-emergence, the temporary

emigration models are appropriate. However the models are not sensible if the

cycle is short, for example with alternate nights above and below ground. This

would invalidate the temporary emigration model, which assumes the emigration

lasts for the whole trip. We devised a permutation test to check whether short

cycles were occurring.

In the case of short cycles, on pairs successive nights (within trips), there will be an

excess of (0,1) or (1,0) values in the capture history for the individual, exceeding the

number which are expected to occur with random retreat and emergence. Fewer

changes than random would suggest a longer cycle time than random. We used

a test statistic C = total number of changes between capture and non-capture on

successive nights, totalled over the observed animals and all the trips.

We use permutations to generate the null distribution of C. If within one trip there

is no drive towards a cycle which is shorter than random, the observed individuals

could have their sequence of captures and non-captures in any order. Hence a
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permutation of the columns of the within-trip capture matrix would give the total

number of changes (0,1) or (1,0) in the absence of short-term cyclic behaviour. This

permutation preserves the number of frogs seen, and the number of captures per

frog - all that has occurred is a disruption of any time patterns.

Algorithm

For a test of H0: no short-term cyclic behaviour, versus HA: there is short-term

cycling, this algorithm is used:

1. Calculate C, the total number of changes between capture and non-capture

on successive nights, for the data. Call this value Cdata.

2. Choose a large R, number of replications.

3. For each replication:

(a) Within each trip, do a new random permutation of the columns of the

capture matrix.

(b) Calculate the new total number of changes on successive nights (over all

animals and all trips in the pseudo-data set).

(c) Save the number in a vector of R values of C, called (say) Cpseudo.

4. Find where Cdata lies on the empirical distribution of pseudo-C values. The

proportion of Cpseudo values which are less than Cdata is the p-value for the

test.

See Manly (1997) for the general theory of permutation (randomization) tests.

11 Impact of Toe-clipping on Return Rate

The possible impact of toe-clipping on survival is of concern, and is difficult to

evaluate directly when this has been the only method of marking available.

In this study, the numbers of toes clipped tended to increase over the course of the

study as toe combinations involving fewer toes were used up. In retrospect, a mix-

ture of numbers of toes clipped every year of the study might have been advisable,

to avoid confounding with long-term survival.

In our analysis, we allowed for the frogs with more toes clipped having fewer

opportunities for recapture by controlling for release cohort (trip when first cap-

tured). We used logistic regressions (generalized linear models with binomial data)

to model return rate (probability of at least one recapture) with four covariates:
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1. Release cohort (RC), to allow for the possible confounding of number of toes

clipped with time remaining for opportunity for recapture (related to long-

term survival estimates).

2. Location on the sampling site (LOC), whether central or peripheral (a factor

at two levels). This allows for the lower recapture probability for peripheral

animals, whose home ranges may be mainly off the grid.

3. The number of digits clipped (DIGITS), a discrete covariate, where we wish

to test for a trend of decreased return rate with more digits clipped.

4. Snout-vent length in mm (SVL), a continuous covariate, included because re-

turn rates may vary by the size of frog.

In (3), two alternative toe-clip covariates were also appraised - number of feet with

at least one toe removed (FEET), and number of digits clipped on the front feet

alone (FRONT), since prey handling may be important for survival.

We used sequential analysis of deviance tables to evaluate the different predictors

via χ2 tests. One-sided Wald t-tests were used for the hypotheses of lower return

rates with more toe-clips, with frogs located peripherally on the sites, and with

smaller (younger) frogs more likely to disperse (pers. obs.).

12 Summary

The statistical methods in this report are all used in an article by Bell and Pledger

(2008), in review. They provide a comprehensive analysis of a very large data set.

We note that the length of the study, over 25 years, has been invaluable in provid-

ing enough information to appraise and estimate the many effects on demographic

parameters for these populations. With such a long-lived species, shorter stud-

ies could not provide these estimates. Long-term funding is essential for effective

studies of such populations.
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