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1. Introduction.

Suppose we have data (x, y) whose unconditional distribution is given by f(y|x, θ)g(x),
where f(y|x, θ) is a regression model representing the conditional distribution of y given
x, and g is the unconditional density of x, assumed not to involve θ. The goal is the
estimation of θ.

If the data are sampled from this joint distribution, no difficulties arise: the function
g does not enter the likelihood calculations for the estimation of θ. On the other hand, if
the probability an individual is selected in the sample depends on y (the response-selective
case), then things are not so simple and g must be included in the analysis.

In a series of papers, Scott and Wild (1986, 1997, 2001) and Wild (1991) have devel-
oped a methodology to handle this latter case, in which the function g is treated non-
parametrically. Their method can be applied to a variety of response-selective sampling
methods, including simple and stratified case-control studies. The method also permits the
incorporation of supplementary prospective samples from the joint distribution of (x, y)
or the marginal distribution of x.

In this paper, we present a demonstration that the Scott-Wild method attains full
non-parametric efficiency in all these situations. The efficiency of these methods has been
demonstrated in special cases by several authors. For example, Breslow, Robins and
Wellner (2000) consider case-control sampling, assuming that the data are generated by
Bernoulli sampling, where either a case or control is selected by a randomisation device
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with known selection probabilities, and the covariates of the resulting case or control are
measured. In the case of two-phase outcome-dependent sampling, Breslow, McNeney and
Wellner (2003) apply the missing value theory of Robins, Rotnitzky and Zhao (1994) and
Robins, Hsieh and Newey (1995). Here, individuals in the population are selected at
random and their status (e.g. case or control) is determined. Then with a probability
depending on their status, the covariates are measured or not. The unobserved covariates
are treated as missing data.

In the present paper, we present a unified method that enables us to demonstrate
the efficiency of the Scott-Wild approach in a simple way. We use an adaptation of the
the profile likelihood method due to Newey (1994) to derive a semi-parametric efficiency
bound, and then show that this bound coincides with the asymptotic variance of the
Scott-Wild estimator, hence demonstrating the efficiency of the estimator.

The paper is structured as follows. In Section 2, we describe the Scott-Wild approach
in more detail, discuss some special cases, and discuss the asymptotic variance of the Scott-
Wild estimator. In Section 3, we sketch the theory of semiparametric efficiency that we
require, and present an extension of Newey’s (1994) characterisation of the efficiency bound
in terms of a “expected population profile likelihood” to the case of multiple samples. We
then use this theory to demonstrate the efficiency of the Scott-Wild estimator by showing
that the efficiency bound for this problem coincides with the asymptotic variance. Some
further comments on special cases are made in Section 5, and proofs and other derivations
are in Section 6.

2. The Scott-Wild approach to generalized case-control studies.
In this section we review the Scott-Wild methodology and give an expression for the

asymptotic variance of their estimates.
We assume that the population is divided into K disjoint strata, and that that the

stratum membership is completely determined by an individual’s response and covariate
vector, (although it typically depends on the response and only some, perhaps even none,
of the covariates. )

Data are gathered according to the following two-phase stratified sampling scheme:
In the first phase of sampling, a prospective sample of size N is taken from the whole
population, but only the stratum membership is recorded. Suppose Nk of the N sampled
in this first stage fall in stratum k, for k = 1, . . . ,K. In the second phase, for each stratum
k, a simple random sample of size nk is taken from the Nk individuals sampled in the first
phase, and the covariates and responses are measured. Note that the density of x and y
conditional on being a member of stratum k is

Ik(x, y)f(y|x, θ)g(x)/Qk, k = 1, . . . ,K, (1)

where Qk =
∫ ∫

Ik(x, y)f(y|x, θ)g(x) dx dy, f(y|x, θ) is the conditional density of y given
x, g is the marginal density of x and Ik is a stratum indicator. It is also convenient to
introduce the notation Qk(x, θ) =

∫
Ik(x, y)f(y|x, θ) dy, so that Qk =

∫
Qk(x, θ)g(x) dx.

2



Thus Qk(x, θ) is the probability an individual with covariate vector x will be in stratum
k, and Qk is the unconditional probability that an individual will be in stratum k. In
addition, we assume that these data are supplemented by additional observations taken
prospectively from the joint distribution of (X, Y ), the unconditional distribution of X,
together with futher individuals sampled prospectively with only the stratum observed.

As explained in Scott and Wild (2001), the log-likelihood for this problem is of the
form ∑

A

log f(y|x, θ) +
∑
B

log g(x) +
K∑

k=1

mk log Qk (2)

where A is the set of individuals who contribute a term log f(y|x, θ) to the likelihood
(i.e. those in either a prospective sample from the joint distribution, or in one of the
second-stage samples), B consists of those in either a prospective sample from the joint
distribution, a prospective sample from the conditional distribution, or in one of the
second-stage samples, and mk is a count to which prospectively sampled individuals with
only the stratum observed contribute +1, and second stage individuals contribute −1.

This general formulation covers a variety of special cases. These include

1. The simple case-control study. Separate samples of cases and controls are taken
from the case and control populations respectively. Thus there are two strata (cases
and controls), no first stage sample (or rather the first stage sample is the whole
population) and no supplementary prospective samples.

2. Two-stage case-control study. A first stage random sample is taken, and the sampled
individuals identified as cases and controls. Then for the second stage of the study,
sub-samples are taken from the case and control samples taken at the first stage. No
supplementary prospective sampling is done.

3. Two-stage sampling design. (White, 1982, Zhao and Lipsitz, 1992). A first stage
sample is taken, and divided into a finite number of strata on the basis of the response
and certain of the covariates. At the second stage, separate sub-samples are taken
from each stratum and futher covariates are measured. Again, no supplementary
prospective sampling is done. The two-stage case-control study above is a special
case, with strata defined by cases and controls.

4. Reusing data from case-control studies (Lee, McMurchy and Scott, 1997, Jiang, Scott
and Wild, 2006). A two-stage case control study is performed. Subsequent to the
completion of the study, the data are reanalysed with a discrete covariate measured
at the first stage in the first analysis now being used as a discrete response in the
second analysis.

5. Case-augmented sampling. (Lee, Scott and Wild, 2006). Here a prospective sample
is taken from the joint distribution of (x, y), where y denotes case or control. In
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addition, an additional sample of cases is taken, and the covariates x measured. A
variation is to only measure the covariate in the prospective sample. There is no
first stage sample, as the case control status is assumed known for all individuals in
the population.

6. Family studies.(Whittemore, 1995, Neuhaus, Scott and Wild, 2002). Here the sam-
pling units are families and a binary response is measured on family members. A
first stage sample is taken, and the families are assiged to strata on the basis of the
binary responses. Second stage sub-samples are taken from the seperate strata. No
supplementary prospective samples are taken.

7. Case control study augmented with population data. A one- or two-stage case-control
study can be augmented with additional prospective data, for example from routinely
collected information in hospital records.

8. Missing data problems. (Robins et al. 1995, Lawless, Kalbfleisch and Wild, 1999)
Suppose we have a discrete response variable y and a discrete covariate v. We sample
y, v prospectively, and for each unit sampled, with probability π(y, v) we measure
the value of a more expensive covariate z, which may be continuous or discrete. The
goal is to fit a model representing the conditional distribution of y, given v and z.

9. Analysis of survival and reliability data (Kalbfleisch and Lawless, 1988, Hu and Law-
less, 1996). Here the strata are formed by censored and non-censored observations.
The covariates are available for the all the non-censored observations, but covariate
information is available on only some of the censored observations.

The general sampling scheme considered above is equivalent (in the sense of having
the same likelihood and asymptotics) to taking J = K + 3 independent samples, namely

1. A sample of n1 individuals sampled unconditionally with only the stratum observed,
i.e. from a multinomial distribution with density

p1(x, y, θ, g) = Qz1
1 · · ·QzK

K . (3)

Here the z’s are stratum indicators with zk = Ik(x, y) having value 1 if an observation
is in stratum k, and zero otherwise. Let n

(k)
1 be the number falling into stratum k.

2. A sample of n2 individuals sampled prospectively from the unconditional joint dis-
tribution of (X, Y ), with density p2(x, y, θ, g) = f(y|x, θ)g(x).

3. A sample of n3 individuals sampled prospectively from the unconditional distribution
of X, with density p3(x, y, θ, g) = g(x).

4. For k = 1, . . . ,K we have samples of size n
(k)
4 from the distribution of (X, Y ) condi-

tional on being in stratum k, with densities given by the formula
p4,k(x, y, θ, g) = Ik(x, y)f(y|x, θ)g0(x)/Qk, k = 1, . . . ,K.
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The density g is an infinite-dimensional nuisance parameter. We will also assume that
n1Qk0 ≥ n

(k)
4 , corresponding to the fact that Nn ≥ nk. Note that under this sampling

scheme, we can combine the prospectively sampled individuals for which stratum mem-
bership only is observed and the first stage individuals into one group. In the rest of the
paper we work with this alternative sampling scheme.

Let N = n1 + n2 + n3 +
∑K

k=1 n
(k)
4 , let ρ = (ρ1, . . . , ρK−1)T be an arbitrary vector,

and let Qk(ρ), k = 1, . . . ,K be a set of probabilities defined by
∑K

k=1 Qk(ρ) = 1 and
log(Qk/QK) = ρk, k = 1, . . . ,K − 1.

Scott and Wild (2001) show that the the profile likelihood obtained by maximizing (2)
over g for fixed θ is of the form l∗(θ, ρθ), where

l∗(θ, ρ) =
∑
A

log f(y|x, θ)−
∑
B

log
{ K∑

k=1

µ
(N)
k (ρ)Qk(x, θ)

}
+

K∑
k=1

(n(k)
1 −n

(k)
4 ) log Qk(ρ), (4)

µ
(N)
k (ρ) = N−1{n1 + n2 + n3 − (n(k)

1 − n
(k)
4 )/Qk(ρ)} and ρθ satisfies ∂l∗

∂ρ = 0. It follows

that θ̂, the MLE of θ, is the “θ” part of the solution to the estimating equation

∂l∗

∂φ
= 0, (5)

where φ = (θT , ρT )T . Thus, for the purposes of estimation, we can treat l∗ as if it were
an ordinary log-likelihood.

This also extends to the estimation of standard errors: we can estimate the covariance
matrix of θ̂ by the θθ block of the “pseudo information matrix” (J∗)−1, where

J∗ = − ∂2l∗

∂φ∂φT
.

The consistency of this estimate is demonstrated in the following result:

Theorem 1. Let I∗ = −plimN→∞N−1 ∂2l∗

∂φ∂φT . Partition I∗ as

I∗ =
[

I∗θθ I∗θρ

I∗ρθ I∗ρρ

]
.

Then
lim

N→∞
NVar (θ̂) = (I∗θθ − I∗θρI

∗
ρρ
−1I∗ρθ)

−1. (6)

This result is stated in Scott and Wild (2001) but no proof in this general case seems to
have appeared in the literature. We sketch a proof in Section 6.1.

3. Information bounds via profile likelihood for the multi-sample case.
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In this section, we first give a short account of the theory of semi-parametric efficiency
in the multi-population case and describe how to calculate the efficiency bound. We then
apply this theory to prove the efficiency of the Scott-Wild estimator.
3.1 The efficiency bound - general case Suppose we have J populations. Random
sampling from these populations is supposed to be governed by a set of J densities pj0 =
pj(x, θ0, η0) which are contained in the family of densities

P = {pj(x, θ, η) : j = 1, . . . , J ; θ ∈ B; η ∈ N}

where θ is a k-dimensional parameter belonging to a set B and η is an infinite dimensional
parameter, belonging to a set N . We also assume that we have available a sample of
size nj from population j. All asymptotics are done assuming that nj/n → wj , where
n = n1 + · · ·+ nJ .

Suppose the jth sample is Xij , i = 1, 2, . . . , nj and that θ̂ is a regular1 asymptotically
linear estimate (RAL estimate) of θ based on these J samples, so that there are functions
φj with

√
n(θ̂n − θ0) = n−1/2

J∑
j=1

nj∑
i=1

φj(Xij) + op(1). (7)

The functions φj are called the influence functions of the estimate and the asymptotic
variance of the estimate is

Avar(θ̂) =
J∑

j=1

wjEj(φjφ
T
j ),

where Ej denotes expectation with respect to pj0. Note that the influence functions are
assumed to satisfy Ej [φj ] = 0. The efficiency bound for this family of densities is a matrix
B such that Avar(θ̂) ≥ B for all RAL estimates of θ. The matrix B is found as follows:
Let G be a finite-dimensional set of dimension r say, so that

{pj(x, θ, η(γ)) : j = 1, . . . , J ; θ ∈ B; γ ∈ G}

is a finite-dimensional sub-family of P, assumed to contain the true model pj0. Consider
the vector-valued score functions

l̇j,η =
∂ log pj(x, θ, η(γ))

∂γ
,

whose elements are assumed to be members of L2(Pj0), where Pj0 is the measure cor-
responding to pj(x, θ0, η0). Consider also the space L2k(Pj0), the space of all <k-valued
functions square-integrable with respect to Pj0, and the Cartesian product H of these
spaces, equipped with the norm defined by

||(f1, . . . , Qk)||2H =
J∑

j=1

wj

∫
||Qk||2dPj0.

1See Bickel et al. (1993) p18 for the definition of a regular estimate.
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The subspace of H generated by the score functions (l̇1,η, . . . , l̇J,η) is the set of all vector-
valued functions of the form (Al̇1,η, . . . ,Al̇J,η) where A ranges over all k by r matrices.
Thus, to each finite-dimensional sub-family of P, there corresponds a score function and
subspace of H generated by the score function. The closure in H of the union (over all such
sub-families) of all these subspaces is called the nuisance tangent space and is denoted by
Tη. This space is fundamental to the definition of the efficiency bound.

Now consider the score functions

l̇j,θ =
∂ log pj(x, θ, η)

∂θ
.

Note that l̇θ = (l̇1,θ, . . . , l̇J,θ) is also a member of H. The projection of l̇jθ onto the
orthogonal complement of Tη is called the efficient score, and is denoted by l̇∗j . The
matrix B (the efficiency bound) is given by

B−1 =
J∑

j=1

wjEj [l̇∗j l̇
∗
j
T ]. (8)

The functions B−1 l̇∗j are called the efficient influence functions, and any multi-sample
RAL estimate having these influence functions is asymptotically efficient.

To find the efficient score, we use the following extension of Newey’s 1994 i.i.d. result
characterizing the efficient score in terms of the “population expected log-likelihood”.

Theorem 2. For fixed θ, let η̂(θ) be the maximiser in N of the “population expected
log-likelihood”

J∑
j=1

wjEj [log pj(X, θ, η)]. (9)

Then the efficient scores are

l̇∗j =
∂ log pj(x, θ, η̂(θ))

∂θ

∣∣∣∣
θ=θ0

.

A proof of this theorem is given in Section 6.2.
The distributions pj(x, θ, η̂(θ)) are called the least favourable distributions for the prob-

lem: they are essentially the distributions having finite dimensional parameters for which
the MLE’s have the largest possible variance (and attain the information bound). In the
case of the response-selective sampling schemes we consider in the rest of the paper, it turns
out that the least favorable distributions have a special form that allows the information
bound to be calculated very simply.

3.2 The information bound for generalised response-selective studies.
In this section we apply the theory of Section 3.1 to regression models for data obtained

by the various forms of response-selective sampling described in Section 2. To calculate
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the information bound, we first calculate the expected log-likelihood. Denote expectation
with respect to the unconditional distributions by E and with respect to the distribution
conditional on being in stratum k by Ek, taken at the true values θ0 and g0 of θ and g.
We also assume that nj/N → wj , j = 1, . . . , 3, and n

(k)
4 /N → w

(k)
4 , k = 1. . . . ,K where

N = n1 + n2 + n3 +
∑K

k=1 n
(k)
4 . The expected log-likelihood (9) takes the form

K∑
k=1

w1E[Zk log Qk] + w2E[log{f(Y |X, θ)g(X)}] + w3E[log g(X)]

+
K∑

k=1

w
(k)
4

{
Ek[log Ik(X, Y )f(Y |X, θ)] + Ek[log g(X)]− log Qk

}
,

which up to a term not involving g can be written∫
log g(x)Q∗(x)g0(x) dx +

K∑
k=1

ck log Qk, (10)

where ck = w1Qk0 − w
(k)
4 , Q∗(x) =

∑K
k=1(w2 + w3 + w

(k)
4 /Qk0)Qk(x, θ0) and Qk0 =∫

Qk(x, θ0)g0 dx. We need to maximize (10) over g with θ held fixed.
We first assume that the distribution of X is discrete with finite support {x1, . . . , xL},

putting mass gl at xl. Then we can write (10) as

L∑
l=1

log gl Q
∗(xl)g0(xl) +

K∑
k=1

ck log

{
L∑

l=1

glQk(xl, θ)

}
. (11)

Introduce a Lagrange multiplier λ to take account of the constraint
∑

l gl = 1. Then,
differentiating with respect to gl gives

Q∗(xl)g0(xl)
gl

+
K∑

k=1

ck

{
Qk(xl, θ)∑L

l=1 glQk(xl, θ)

}
+ λ = 0

and multiplying by gl and adding over l gives λ = −(w1 +w2 +w3). Hence the maximizing
g is of the form

gl =
Q∗(xl)g0(xl)∑K
k=1 µkQk(xl, θ)

, (12)

where µk = w1 + w2 + w3 − ck/Qk and Qk =
∑L

l=1 glQk(xl, θ).
This suggests that in the case of a general g0, not having finite support, the least

favourable distribution (i.e. the maximiser of (10)) might be of the form

g(x, θ, ρθ) =
Q∗(x)g0(x)∑

k µk(ρθ)Qk(x, θ)
, (13)
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where µk(ρθ) = w1 + w2 + w3 − ck/Qk(ρθ) and Qk(ρθ) satisfies the equation

Qk(ρθ) =
∫

g(x, θ, ρθ)Qk(xl, θ) dx.

This turns out to be the case. We give a sketch of the proof in Section 6.3.
Our next task is to calculate the efficient scores. Applying Theorem 2, we see that

they are

l̇∗1 =
K∑

k=1

zk
∂ log Qk(ρθ)

∂θ

∣∣∣∣
θ=θ0

, (14)

l̇∗2 =
∂ log{f(x|y, θ)g(x, θ, ρθ)}

∂θ

∣∣∣∣
θ=θ0

, (15)

l̇∗3 =
∂ log g(x, θ, ρθ)

∂θ

∣∣∣∣
θ=θ0

, (16)

l̇∗4,k =
∂ log{f(x|y, θ)g(x, θ, ρθ)} − log Qk(ρθ)

∂θ

∣∣∣∣
θ=θ0

. (17)

Now we can obtain the information bound in terms of the “asymptotic pseudo-information
matrix” I∗ introduced in Section 6.1. From (8) and (15)–(14), the inverse of the informa-
tion bound B is

B−1 = w1E

{ K∑
k=1

Zk
∂ log Qk(ρθ)

∂θ

}{
K∑

k=1

Zk
∂ log Qk(ρθ)

∂θ

}T


+ w2E

[{
∂ log{f(x|y, θ)g(x, θ, ρθ)

∂θ

}{
∂ log{f(x|y, θ)g(x, θ, ρθ)

∂θ

}T
]

+ w3E

[{
∂ log g(x, θ, ρθ)

∂θ

}{
∂ log g(x, θ, ρθ)

∂θ

}T
]

+
K∑

k=1

w
(k)
4 Ek

[{
∂ log{f(x|y, θ)g(x, θ, ρθ)}

∂θ
− ∂ log Qk(ρθ)

∂θ

}
×

{
∂ log{f(x|y, θ)g(x, θ, ρθ)}

∂θ
− ∂ log Qk(ρθ)

∂θ

}T
]

. (18)

Then, using the fact that

Ek

[
∂ log{f(x, θ)g(x, θ, ρθ)}

∂φ

]
=

∂ log Qk(ρθ)
∂φ

and the chain rule, we get

B−1 = I†θθ +
(

∂ρθ

∂θ

)T

I†ρθ + I†θρ

∂ρθ

∂θ
+
(

∂ρθ

∂θ

)T

I†ρρ

(
∂ρθ

∂θ

)
, (19)
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where I† is the matrix

I† = w2E

[
∂ log{f(x, θ)g(x, θ, ρ)}

∂φ

∂ log{f(x, θ)g(x, θ, ρ)}
∂φT

]
+ w3E

[
∂ log g(x, θ, ρ)

∂φ

∂ log g(x, θ, ρ)
∂φT

]
+

K∑
k=1

w
(k)
4 Ek

[
∂ log{f(x, θ)g(x, θ, ρ)}

∂φ

∂ log{f(x, θ)g(x, θ, ρ)}
∂φT

]

+
K∑

k=1

ck
∂ log Qk

∂φ

∂ log Qk

∂φT

introduced in Section 6.1. We show in Section 6.4 that

I†θθ = I∗θθ, (20)

I†θρ = 0, (21)

I†ρρ = −I∗ρρ, (22)

and that
∂ρθ

∂θ
= −(I∗ρρ)

−1I∗ρθ. (23)

Substituting these results into (19) gives

B−1 = I∗θθ − I∗θρ(I
∗
ρρ)

−1I∗ρθ. (24)

Thus, the asymptotic variance of the Scott-Wild estimator coincides with the information
bound, and so the estimator is fully efficient.

5. Discussion. In this section, we reexamine the special cases of our general sampling
scheme and indicate how the general efficiency result applies.

1. The simple case-control study. In this situation our general result applies with K = 2
and w1 = w2 = w3 = 0. The variable y is a binary indicator denoting case or control
and f(1|x, θ) is the conditional probability of being a case, given covariates x.

2. Two-stage case-control study. Here the situation is identical to that in 1, except that
w1 > 0.

3. Two-stage sampling design. Here we have w2 = w3 = 0. The regression function can
be general as long as the number of strata is finite and strata membership depends
only on (x, y).

4. Reusing data from case-control studies. This situation is similar to 2, except that
the regression function is of the form f(y1, y2|x, θ) = f1(y1|y2, x, θ)f2(y2|x, θ) where
y1 is the response for the first analysis, y2 is the response for the second analysis,
and f2(y2|x, θ) is the regression of interest in the second analysis.
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5. Case-augmented sampling. In the first case considered, with a prospective sample
from the joint distribution, our general result applies with w1 = 0, w3 = 0, and
w

(k)
4 = 0 for k > 2. In the second case, with a prospective sample from the marginal

distribution of x, the general result applies with w1 = 0, w2 = 0, and w
(k)
4 = 0 for

k > 2. Extensions to discrete responses with more than two values are immediate.

6. Retrospective family studies. This is similar to 4, with a multiple response in the
regression representing responses on different family members.

7. Case-control study augmented with population data. If the case-control study has
two stages, and the population data is in the form of additional prospective samples
from both the joint and marginal distributions of x and y, the full specification (i.e.
none of the w′s zero) is required.

8. Missing data problems. Provided the covariate v and the response y are discrete, the
log-likelihood for the missing value problem can be written in the form (2) (Lawless
et al., 1991), and hence our results apply.

9. Analysis of survival and reliability data. This falls into the same framework as 8.
(Lawless et al., 1991)

Thus, our general result is sufficient to demonstrate the efficiency of the Scott-Wild esti-
mator in all the situations described above.

6. Proofs and derivations.

6.1 The asymptotic variance and the proof of Theorem 6.1. We begin by
deriving some expressions for the “pseudo information matrix ” I∗ that will be useful in
establishing the asymptotic variance of θ̂. To evaluate I∗, we split the terms of (4) into
separate sums corresponding to the different samples, differentiate, and apply the law of
large numbers to each part. This results in

I∗ = w2E

[
−∂2 log{f(y|x, θ)g(x, θ, ρ)}

∂φ∂φT

]
+ w3E

[
−∂2 log g(x, θ, ρ)

∂φ∂φT

]
+

K∑
k=1

w
(k)
4 Ek

[
−∂2 log{f(y|x, θ)g(x, θ, ρ)}

∂φ∂φT

]
−

K∑
k=1

ck
∂2 log Qk(ρ)

∂φ∂φT
. (25)

where ck = w1Qk0 − w
(k)
4 , and

g(x, θ, ρ) =
Q∗(x)g0(x)∑K

k=1 µk(ρ)Qk(x, θ)
.

In (25), we are using E to denote expectation with respect to the unconditional (prospec-
tive) distributions and Ek to denote expectations conditional on being in stratum k.
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Using the identity

∂2 log h(φ)
∂φ∂φ

=
1
h

∂2 h(φ)
∂φ∂φ

− ∂ log h(φ)
∂φ

∂ log h(φ)
∂φT

and the fact that g(x, θ0, ρ0) = g0(x), we get

I∗ =
{

w2E

[
∂ log{f(x, θ)g(x, θ, ρ)}

∂φ

∂ log{f(x, θ)g(x, θ, ρ)}
∂φT

]
+ w3E

[
∂ log g(x, θ, ρ)

∂φ

∂ log g(x, θ, ρ)
∂φT

]
+

K∑
k=1

w
(k)
4 Ek

[
∂ log{f(x, θ)g(x, θ, ρ)}

∂φ

∂ log{f(x, θ)g(x, θ, ρ)}
∂φT

]

+
K∑

k=1

ck
∂ log Qk

∂φ

∂ log Qk

∂φT

}

−
{

w2E

[
1

fg0

∂2f(y|x, θ)g(x, θ, ρ)
∂φ∂φT

]
+ w3E

[
1
g0

∂2g(x, θ, ρ)
∂φ∂φT

]
+

K∑
k=1

w
(k)
4 Ek

[
1

fg0

∂2f(y|x, θ)g(x, θ, ρ)
∂φ∂φT

]
+

K∑
k=1

ck
1

Qk

∂2Qk

∂φφT

}
.

Denoting the sum in the first set of braces by I†, and collecting the first three terms in
the second set of braces into a single integral, we get

I∗ = I† −
∫

∂2

∂φ∂φT

{ ∑K
k=1 µk0Qk(x, θ)∑K

k=1 µk(ρ)Qk(x, θ)

}
Q∗(x)g0(x) dx−

K∑
k=1

ck
1

Qk

∂2Qk

∂φφT
. (26)

Moreover, for the θρ, ρθ and ρρ blocks of I∗, note that the function f drops out of (25)
and we can write these blocks as

−
∫

∂2 log g(x, θ, ρ)
∂φ∂φT

Q∗(x)g0(x) dx−
K∑

k=1

ck
∂2 log Qk(ρ)

∂φ∂φT
.

Thus, evaluating these derivatives, we get

I∗ρθ =
K∑

k=1

w
(k)
4

∂ log µk(ρ)
∂ρ

ET
kθ (27)

where

Ekθ =
1

w
(k)
4

∫
∂Pk(x, θ, ρ)

∂θ
Q∗(x)g0(x) dx.

12



Similarly,

I∗ρρ =
K∑

k=1

w
(k)
4

∂ log µk(ρ)
∂ρ

(
Ekρ −

∂ log Qk(ρ)
∂ρ

)T

(28)

where
Ekρ =

1

w
(k)
4

∫
∂Pk(x, θ, ρ)

∂ρ
Q∗(x)g0(x) dx− ∂ log µk(ρ)

∂ρ
,

with
Pk(x, θ, ρ) =

µk(ρ)Qk(x, θ)∑K
k=1 µk(ρ)Qk(x, θ)

.

Proof of Theorem 6.1. A complicating factor in the evaluation of the asymptotic
variance is the fact that the quantities µ

(N)
k (ρ) = {n1 + n2 + n3 − (n(k)

1 − n
(k)
4 )/Qk(ρ)}/N

are random, as they depend on the first stage sample. To emphasize this, we define
q̂k = n

(k)
1 /n1 and q̂ = (q̂1, . . . , q̂K)T , and write

µ
(N)
k (ρ, q̂) = {n1 + n2 + n3 − (n1q̂k − n

(k)
4 )/Qk(ρ)}/N

and

`∗(φ, q̂) =
∑
A

log f(y|x, θ)−
∑
B

log
[ K∑

k=1

µ
(N)
k (ρ, q̂)Qk(x, θ)

]
+

K∑
k=1

(n1q̂k − n
(k)
4 ) log Qk(ρ).

Let J∗ = plimN→∞−N−1 ∂2`∗(φ,q̂)
∂ρ∂q̂T , where here and subsequently, all derivatives are eval-

uated at φ = φ0 and q̂ = Q0. By expanding ∂l∗(φ,q̂)
∂φ about (φ0, Q0), and using the

arguments of Wild (1991), we see that the asymptotic variance of φ̂ is (I∗)−1V(I∗)−1,
where V = V1 + V2, with

V1 = lim
N→∞

N−1Var
(

∂l∗(φ, q̂)
∂φ

)
,

and
V2 = NJ∗Var (q̂)(J∗)T .

To obtain more explicit versions of these expressions, we first note that, using arguments
similar to those used for I∗, we get

plimN→∞ −N−1 ∂2`∗(φ, q̂)
∂θ∂q̂k

= −w1Ekθ,

and

plimN→∞ −N−1 ∂2`∗(θ, q̂k)
∂ρ∂q̂k

= −w1Ekρ. (29)

13



Next, we evaluate V1. Using the same partitioning arguments as above, we can write

V1 = w2E

[
∂ log f(y|x, θ)g(x, θ, ρ)

∂φ

∂ log f(y|x, θ)g(x, θ, ρ)
∂φT

]
+ w3E

[
∂ log g(x, θ, ρ)

∂φ

∂ log g(x, θ, ρ)
∂φT

]
+

K∑
k=1

w
(k)
4 Ek

[
∂ log f(y|x, θ)g(x, θ, ρ)

∂φ

∂ log f(y|x, θ)g(x, θ, ρ)
∂φT

]

−
K∑

k=1

w
(k)
4 Ek

[
∂ log f(y|x, θ)g(x, θ, ρ)

∂φ

]
Ek

[
∂ log f(y|x, θ)g(x, θ, ρ)

∂φT

]
. (30)

Using the result (26), this implies that

V1 = I∗ +
∫

∂2

∂φ∂φT

{ ∑K
k=1 µk0Qk(x, θ)∑K

k=1 µk(ρ)Qk(x, θ)

}
Q∗(x)g0(x) dx +

K∑
k=1

ck
1

Qk

∂2Qk

∂φφT

−
K∑

k=1

w
(k)
4 Ek

[
∂ log f(y|x, θ)g(x, θ, ρ)

∂φ

]
Ek

[
∂ log f(y|x, θ)g(x, θ, ρ)

∂φT

]
. (31)

Moreover,

Ek

[
log f(y|x, θ)g(x, θ, ρ)

∂θ

]
= Ekθ

and

Ek

[
log g(x, θ, ρ)

∂ρ

]
= Ekρ.

Now, for the θθ block, the derivative under the integral sign in (31)is zero, so, using the
fact that n1Cov(q̂) → diag(Q0)−Q0Q

T
0 , we see that the θθ block of V = V1 +V2 is given

by

Vθθ = I∗θθ −
K∑

k=1

w
(k)
4 EkθE

T
kθ + w1

K∑
k=1

Qk0EkθE
T
kθ − w1

K∑
k=1

K∑
l=1

Qk0Ql0EkθE
T
lθ

= I∗θθ −
K∑

k=1

K∑
l=1

bklEkθE
T
lθ (32)

where bkl = w1Qk0Ql0 − δklck. We can rewrite (27) as I∗ρθ = AET
θ , where Eθ has columns

E1,θ . . . , Ek,θ, and A has l, k element w
(k)
4

∂µk
∂ρl

. Thus, there is a generalised inverse A−

with ET
θ = A−I∗θθ, so that

Vθθ = I∗θθ − I∗θρ(A
−)TBA−I∗ρθ.
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Also, for the ρθ block, the integral in (31) is equal to

−
K∑

k=1

w
(k)
4

∂ log µk(ρ)
∂ρ

Ekθ

so that

Vρθ = I∗ρθ −
K∑

k=1

w
(k)
4

∂ log µk(ρ)
∂ρT

ET
kθ −

K∑
k=1

K∑
l=1

bklEkρE
T
lθ (33)

Since

K∑
k=1

K∑
l=1

bkl
∂ log Qk(ρ)

∂ρ
ET

kθ

= w1

(
K∑

k=1

Qk0
∂ log Qk(ρ)

∂ρ

)(
K∑

k=1

Qk0E
T
kθ

)T

−
K∑

k=1

ck
∂ log Qk(ρ)

∂ρ
Ekθ

= −
K∑

k=1

w
(k)
4

∂ log µk(ρ)
∂ρ

ET
kθ,

we can write (33) as

Vρθ = I∗ρθ −
K∑

k=1

blk

(
Ekρ −

∂ log Qk(ρ)
∂ρ

)
ET

kθ. (34)

Using (28), we can write

Vρθ = I∗ρθ − I∗ρρ(A
−)TBA−I∗ρθ.

Similarly, we obtain
Vρρ = I∗ρθ − I∗ρρ(A

−)TBA−I∗ρρ

and hence

V = I∗ − I∗
(

0 0
0 (A−)TBA−

)
I∗.

The asymptotic variance is

(I∗)−1V(I∗)−1 = (I∗)−1 −
(

0 0
0 (A−)TBA−

)
so using the partitioned matrix inverse formula, the asymptotic covariance matrix of θ̂ can
be written as

Avar(θ̂) = (I∗θθ − I∗θρ(I
∗
ρρ)

−1I∗ρθ)
−1. (35)
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6.2 Proof of Theorem 2. We first show that(
∂ log p1(x, θ, η̂(θ))

∂θ

∣∣∣∣
θ=θ0

, . . . ,
∂ log pJ(x, θ, η̂(θ))

∂θ

∣∣∣∣
θ=θ0

)
(36)

is orthogonal to the nuisance tangent space Tη, the subspace of H defined in Section 3.1.
Consider a finite-dimensional submodel Q of P of the form

Q = {pj(x, θ, γ(t)), θ ∈ B, t ∈ T ),

where γ(0) = η0, and define

η̂(θ, t) = argmaxη

J∑
j=1

wjEj,t[log pj(X, θ, η)]

where Ej,t denotes expectation with respect to pj(x, θ, γ(t)). Then

J∑
j=1

wjEj [log pj(X, θ, η̂(θ, t))]

is maximized at t = 0, since

J∑
j=1

wjEj [log pj(X, θ, η̂(θ, t))] ≤
J∑

j=1

wjEj [log pj(X, θ, η̂(θ))]

and η̂(θ, 0) = η̂(θ). Hence for every θ,

∂

∂t

J∑
j=1

wjEj [log pj(X, θ, η̂(θ, t))]
∣∣∣
t=0

= 0. (37)

Differentiating (37) with respect to θ gives

J∑
j=1

wj

∫
∂2 log pj(X, θ, η̂(θ, t))

∂θ∂t

∣∣∣∣
t=0

pj(x, θ0, η0) dx = 0. (38)

Also, differentiating both sides of the identity

J∑
j=1

wj

∫
∂ log pj(X, θ, η̂(θ, t))

∂θ

∣∣∣∣
t=0

pj(x, θ0, η̂(θ, t)) dx = 0 (39)
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with respect to t, we get

J∑
j=1

wj

∫
∂2 log pj(X, θ, η̂(θ, t))

∂θ∂t
pj(x, θ0, η̂(θ0, t)) dx

+
J∑

j=1

wj

∫
∂ log pj(X, θ, η̂(θ, t))

∂θ

∂ log pj(X, θ, η̂(θ, t))
∂t

pj(x, θ0, η̂(θ0, t)) dx = 0

Setting θ = θ0, t = 0 and using (38), we get

J∑
j=1

wj

∫
∂ log pj(X, θ, η̂(θ))

∂θ

∣∣∣∣
θ=θ0

∂ log pj(X, θ, η̂(θ, t))
∂t

∣∣∣∣ t=0
θ=θ0

pj(x, θ0, η0) dx = 0 (40)

so that (36) is orthogonal to(
∂ log p1(x, θ0, η̂(θ0, t))

∂t

∣∣∣∣
t=0

, . . . ,
∂ log pJ(x, θ0, η̂(θ0, t))

∂t

∣∣∣∣
t=0

)
. (41)

But η̂(θ0, t) = γ(t) by the Kullback-Leibler information equality, so that (41) is in fact the
score function corresponding to the nuisance parameter γ(t). Thus (36) is in the nuisance
tangent space of Q, and since Q was an arbitrary finite-dimensional subfamily of P, (36)
must lie in the the nuisance tangent space of P.

Now consider the subfamily of P

{pj(x, θ, η̂(θ)), θ ∈ B).

By the chain rule,

∂ log pj(x, θ, η̂(θ))
∂θ

∣∣∣∣
θ=θ0

=
∂ log pj(x, θ, η̂(θ′))

∂θ

∣∣∣∣ θ=θ0
θ′=θ0

+
∂ log pj(x, θ, η̂(θ′))

∂θ′

∣∣∣∣ θ=θ0
θ′=θ0

× ∂θ′

∂θ

∣∣∣∣
θ=θ0

=
∂ log pj(x, θ, η0)

∂θ

∣∣∣∣
θ=θ0

+ hj

= l̇jθ + hj ,

say, where hj is in the nuisance tangent space. Thus

l̇jθ = hj +
∂ log pj(x, θ, η̂(θ))

∂θ

∣∣∣∣
θ=θ0

,

so l̇jθ can be expressed as the sum of an element in the nuisance tangent space plus an
element orthogonal to the nuisance tangent space. It follows that (36) is the projection of
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l̇jθ onto the orthogonal complement of the nuisance tangent space and so is the efficient
score.

6.3 Proof that (13) is the least favourable distribution. As in Section 6.1, define

g(x, θ, ρ) =
Q∗(x)g0(x)∑K

k=1 µk(ρ)Qk(x, θ)
,

where µk(ρ) = w1 +w2 +w3− ck/Qk(ρ). We will show that the function g that maximises
(10) is given by g(x) = g(x, θ, ρθ) where ρθ is the solution to the K − 1 equations

Qk(ρ) =
∫

Qk(x, θ)g(x, θ, ρ) dx, k = 1. . . . ,K − 1. (42)

Note that these equations imply that QK(ρ) =
∫

QK(x, θ)g(x, θ, ρ) dx and that g(x, θ, ρθ)
is a density, at least in a neighbourhood of θ0. Let g̃ be an arbitrary density, and write
Q̃k(θ, g) =

∫
Qk(x, θ)g̃(x) dx. We must show that for all θ and g̃,

∫
log g(x, θ, ρθ)Q∗(x)g0(x) dx +

K∑
k=1

ck log Qk(ρθ)

≥
∫

log g̃(x)Q∗(x)g0(x) dx +
K∑

k=1

ck log Q̃k(θ, g), (43)

or, equivalently, that∫
log
{

g(x, θ, ρθ)
g̃(x)

}
Q∗(x)g0(x) dx ≥

K∑
k=1

ck log

{
Q̃k(θ, g)
Qk(ρθ)

}
. (44)

To prove (44), we set hk(x, θ) = Qk(x, θ)g̃(x)/Q̃k(θ, g), so hk is a density. Also define

Hk(x, θ) = Q∗(x)g0(x)Pk(x, θ, ρθ)/(µk(ρθ)Qk(ρθ)).

The function Hk is also a density for every θ by (42).
The left hand side of (44) can be written as∫

log
{

Q∗(x)g0(x)Pk(x, θ, ρθ)
Q̃k(θ, g)µk(ρθ)hk(x, θ)

}
Q∗(x)g0(x) dx

=
∫

log
{

Hk(x, θ)
hk(x, θ)

}
Q∗(x)g0(x) dx + (1− w1) log

{
Qk(ρθ)
Q̃k(θ, g)

}
≥ µk(ρθ)Qk(ρθ)

∫
log
{

Hk(x, θ)
hk(x)

}
Hk(x, θ) dx + (1− w1) log

{
Qk(ρθ)
Q̃k(θ, g)

}
.

(45)
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The last inequality follows because 1 ≥ P ∗
k (x, θ, ρθ). The integral in (45) is non-negative

by the Kullback-Leibler information inequality, so, for each k, we have∫
log
{

g(x, θ, ρθ)
g̃(x)

}
Q∗(x)g0(x) dx ≥ (1− w1) log

{
Qk(ρθ)
Q̃k(θ, g)

}
.

Also, the fact that 0 < µk(ρθ)Qk(ρθ) in a neigbourhood of θ0 implies that

w
(k)
4 − w1Qk0 + (w1 + w2 + w3)Qk(ρθ) > 0,

so multiplying by {w(k)
4 −w1Qk0 +(w1 +w2 +w3)Qk(ρθ)}/(1−w1) > 0 and summing gives∫
log
{

g(x, θ, ρθ)
g(x)

}
Q∗(x)g0(x) dx

≥
K∑

k=1

{
w

(k)
4 − w1Qk0 + (w1 + w2 + w3)Qk(ρθ)

}
log

Qk(ρθ)
Q̃k(θ, g)

≥
K∑

k=1

(w(k)
4 − w1Qk0) log

Qk(ρθ)
Q̃k(θ, g)

=
K∑

k=1

ck log

{
Q̃k(θ, g)
Qk(ρθ)

}

since

(w1 + w2 + w3)
K∑

k=1

Qk(ρθ) log
Qk(ρθ)
Q̃k(θ, g)

≥ 0

by the Kullback-Leibler inequality. This implies (43).

6.4 Proof of (20)–(23). Evaluating the integral in (26), we get

I†θθ = I∗θθ,

I†ρθ = I∗ρθ −
K∑

k=1

w
(k)
4

∂ log µk(ρ)
∂ρ

ET
kθ,

I†ρρ = I∗ρρ − 2
K∑

k=1

w
(k)
4

∂ log µk(ρ)
∂ρ

(
Ekρ −

∂ log Qk(ρ)
∂ρ

)T

.

These results, together with Equations (27) and (28) imply (20)–(22). For (23), note that
by (42) we have

Qk(ρθ) =
∫

Qk(x, θ)g(x, θ, ρθ) dx.
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Differentiating both sides with respect to θ, and setting θ = θ0 we get, after some algebra,

∂ log Qk(ρ)
∂ρ

∂ρθ

∂θ
= ET

kθ + ET
kρ

∂ρθ

∂θ
.

Multiplying both sides by w
(k)
4

∂ log µk(ρ)
∂ρ and summing gives

I∗ρθ + I∗ρρ

∂ρθ

∂θ
= 0

which proves (23).

References

Bickel, P.J., Klaassen, C.A., Ritov, Y., and Wellner, J.A. (1993). Efficient and
Adaptive Estimation for Semiparametric Models. Johns Hopkins University Press,
Baltimore.

Breslow, N.E., McNeney, B., and Wellner, J.A. (2003). Large sample theory
for semiparametric regression models with two-phase, outcome dependent sampling.
Ann. Statist., 31, 1110 – 1139.

Breslow, N.E., Robins, J.M., and Wellner, J.A. (2000). On the semi-parametric
efficiency of logistic regression under case-control sampling. Bernoulli, 6, 447–455.

Hu, X.J. and Lawless, J.F. (1996). Estimation from truncated lifetime data with
supplementary information on covariates and and censoring times. Biometrika, 83,
747–761.

Jiang, Y., Scott, A.J. and Wild, C.J. (2006). Secondary analyses of case-control
sampled data, Statist. Med., 25, 1323–1339.

Kalbfleisch, J.D. and Lawless, J.F. (1988). Likelihood analysis of multi-state models
for disease incidence and mortality. Statist.Med., 7, 149–160.

Murphy, S.A. and Van der Vaart, A.W. (2000). On profile likelihood. J. Amer.
Statist. Assoc., 95, 449–485.

Lawless, J.F., Kalbfleisch, J.D. and Wild, C.J. (1999). Semiparametric methods
for response-selective and missing data problems. J. Roy. Statist. Soc. B, 61, 413–
438.

Lee, A.J., McMurchy, L. and Scott, A.J. (1997). Re-using data from case-control
studies. Statist. Med., 16, 1377–1389.

Lee, A.J., Scott, A.J. and Wild, C.J. (2006). Fitting binary regression models with
case-augmented samples. Biometrika, 93, 385–397.

Neuhaus, J., Scott, A.J., and Wild, C.J. (2002). The analysis of retrospective family
studies. Biometrika, 89, 23–37.

Newey, W.K. (1994). The asymptotic variance of semiparametric estimators. Econo-
metrica, 62, 1349–1382.

20



Robins, J.M., Hsieh, F., and Newey, W. (1995). Semiparametric efficient estimation
of a conditional density with missing or mismeasured covariates. J. Roy. Statist. Soc.
B, 57, 409–424.

Robins, J.M., Rotnitzky, A., and Zhao, L.P. (1994). Estimation of regression coef-
ficients when some regressors are not always observed. J. Amer. Statist. Assoc., 89,
846–866.

Scott, A.J., and Wild, C.J. (1986). Fitting logistic models under case-control or
choice-based sampling. J. Roy. Statist. Soc. B, 48, 170–182.

Scott, A.J., and Wild, C.J. (1997). Fitting regression models to case-control data by
maximum likelihood. Biometrika, 84, 57–71.

Scott, A.J., and Wild, C.J. (2001). Maximum likelihood for generalised case-control
studies. J. Stat. Plan. Inf., 96, 3-27.

White, J.E. (1982). A two-stage design for the study of the relationship between a rare
exposure and a rare disease. Am. J. Epidem., 115, 119–128.

Whittemore, A.S. (1995). Logistic regression of family data from case-control studies.
Biometrika, 82, 57–67.

Wild, C.J. (1997). Fitting prospective regression models to case-control data. Biometrika,
78, 705–717.

21


