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1 Introduction

Suppose we have s-populations and, for each population i = 1, . . . , s, we take random samples

of size ni. The resulting data, called multi-sample data, is independent but not identically

distributed observations.

This type of data arises in many important situations in Epidemiology and Econometrics.

For example, epidemiologists study the association between rare diseases and risk factors using

a case-control study which is a response-selective sampling design. In such a case-control study,

we collect two independent samples of predetermined sizes from the case and control popula-

tions. The risk factors or covariates are then measured for the sampled individuals. This type

of response-selective sampling is more efficient for the study of rare outcomes than the more

commonly used prospective sampling such as cohort or cross-sectional designs.

Many authors (e.g., Breslow and Chatterjee (1999), Breslow, Robins and Wellner (2000),

Breslow, McNeney and Wellner (2003)) have used the single-sample version of large sample

theory to establish asymptotic properties of the estimator in variations of case-control sampling

which are multi-sample in nature. It is important to develop a multi-sample version of large

sample theory for the further development of estimation in response-selective sampling.

McNeney and Wellner (2000) discussed the asymptotic theory of non-i.i.d. data. They

used convolution theorems to establish the differentiability of the parameter of interest in semi-

parametric models. Their approach is very general and the theory includes many cases which

we will not cover. In discussion, they concluded that the sufficient conditions for efficiency of

M -estimators remains to be established.

The idea of multi-sample models which generate multi-sample data was introduced by

Lee (2004). Lee, also, used convolution theorems to establish the efficiency bounds for es-

timators that are regular and asymptotic linear (RAL) in semiparametric multi-sample models.

This paper aims to present the conditions for asymtotic linearity of M -estimators in semi-

parametric models which generate multi-sample data. Under the conditions, we give a simple

proof of asymptotic lower bounds for the variance of M -estimators in multi-sample models.

The structure of this paper is as follows. In section 2, we introduce a semiparametric model

which generates multi-sample data. Examples of semiparametric models are given here. In

section 3, we present conditions for an estimating function for the parameter of interest in multi-

sample models. Then, we prove the asymptotic linearity of the M -estimator that corresponds

to an estimating function. In section 4, we prove the asymptotic efficiency of the MLE among

the class of M -estimators in multi-sample data. In Appendix B, we show that, for each multi-

sample model, there is a corresponding i.i.d. model which shares important features relating

to M -estimation: they share the log-likelihood function, the score function, the tangent space,

estimating functions and influence functions.
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2 Multi-sample models

The idea of multi-sample data is familiar from elementary statistics, for example, the well known

two-sample t-test and one-way ANOVA for comparing several means involve multiple samples.

These examples are familiar and the calculations involve similar reasoning and justification to

the theory of multi-sample M -estimators which we will present in this paper.

Now, we define a multi-sample model. We consider an s-vector of semi-parametric models

(P1, . . . ,Ps) where, for each i = 1, . . . , s,

Pi = {pi(x;β, η) : β ∈ Θβ ⊂ IRm, η ∈ Θη}

is a probability model on the sample space Xi with an m-dimensional parameter of interest β

and nuisance parameter η, which may be an infinite-dimensional parameter. Let (β0, η0) be the

true value of (β, η). We assume Θβ is a compact set containing an open neighborhood of β0 in

IRm, and Θη is a convex set containing η0 in a Banach space B.

We observe s independent samples

Xi1, . . . , Xini , i = 1, . . . , s,

where Xi1, . . . , Xini are independent and identically distributed (i.i.d.) according to the model

Pi. Let n =
∑s

i=1 ni. We assume the sample size proportions (n1
n , . . . ,

ns
n ) converge to weight

probabilities (λ1, . . . , λs):

(
n1

n
, . . . ,

ns

n
) → (λ1, . . . , λs) (1)

where λi > 0 and
∑s

i=1 λi = 1.

The data Xi1, . . . , Xini , i = 1, . . . , s are called multi-sample data, and the s-vector of models

and the s-vector of weight probabilities ((P1, . . . ,Ps), (λ1, . . . , λs)) are called a multi-sample

model. For ease of notation, we often omit an indication of the weight probabilities (λ1, . . . , λs).

The expectation of a function f(i, x) in the model Pi is denoted by

Ei,β,ηf(i,X) =
∫
f(i, x) pi(x;β, η)dx, i = 1, . . . , s.

2.1 Examples

Example 1. (Biased sampling model) Vardi (1985) developed the method of estimation in

the s-sample biased sampling model with known selection bias weight functions. The following

setup and notation are from Gill, Vardi and Wellner (1988).

Suppose that nonnegative weight functions w1(x), . . . , ws(x) are given and let G(x) be an

unknown distribution function on a sample space X . Define the corresponding biased sampling

model by

pi(x;G) =
wi(x)g(x)
Wi(G)

i = 1, . . . , s
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where g(x) = dG(x)/dµ with respect to Lebesgue measure µ and Wi(G) =
∫
X wi(x)dG(x). The

s-sample biased sampling model generates s independent samples

Xi1, . . . , Xini iid pi(x;G), i = 1, . . . , s.

Gilbert, Lele, and Vardi (1999) considered an extension of this model which allows the

weight function to depend on an unknown finite-dimensional parameter θ.

Suppose a set of nonnegative weight functions w1(x, θ), . . . , ws(x, θ) depend on θ. The semi-

parametric biased sampling model is defined by

pi(x; θ,G) =
wi(x, θ)g(x)
Wi(θ,G)

i = 1, . . . , s

where Wi(θ,G) =
∫
X wi(x, θ)dG(x). Gilbert (2000) provides a large sample theory of this

example.

The following examples are semi-parametric multi-sample models which all have the same

underlying data generating process on the sample space Y × X , called the full data model,

Q = {p(y, x; θ,G) = f(y|x; θ)g(x) : θ ∈ Θ, G ∈ G}

where f(y|x; θ) is a conditional density of Y given X which depends on a finite dimensional

parameter θ, G(x) is an unspecified distribution function of X which is an infinite-dimensional

nuisance parameter (g(x) is the density of G(x)). We assume the set Θ is a compact set

containing a neighborhood of the true value θ0 and G is the set of all distribution functions of

x. Unless stated otherwise Y may be a discrete or continuous variable.

Example 2. (Case-control study) We assume that Y takes values in {1, . . . , s}. In a case-

control study, due to the design, we do not observe a random sample from the full data model

Q. Instead, for each i = 1, . . . , s, we observe ni-samples from the conditional distribution

P (X|Y = i). By Bayes theorem, the density of P (X|Y = i) is

f(i|x; θ)g(x)∫
f(i|x; θ)dG(x)

.

The case-control study is a special case of the semiparametic biased sampling model of Example

1 with weight functions wi(x, θ) = f(i|x; θ), i = 1, . . . , s.

Example 3. (Missing data) Instead of observing full data (Y,X) from the full data model Q
for all individuals, we observe (Y,X) for n0-samples and observe Y for n1-samples. The result

is the multi-sample data

(x01, y01), . . . , (x0n0 , y0n0), y11, . . . , y1n1

from a multi-sample model with

p0(y, x; θ, g) = f(y|x; θ)g(x)
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and

p1(y; θ, g) =
∫
f(y|x; θ)g(x)dx.

This example is not a special case of Example 1.

Example 4. (Standard stratified sampling and two-phase, outcome-dependent sam-

pling) For a partition of the sample space Y × X = ∪s
i=1Si, let

Qi(θ,G) =
∫
f(y|x; θ) 1(y,x)∈Si

dy dG(x)

be the probability of (Y,X) belonging to stratum Si.

In standard stratified sampling, for each i = 1, . . . , s, a random sample of size ni is taken

from the conditional distribution

pi(y, x; θ,G) =
f(y|x; θ)g(x)1(y,x)∈Si

Qi(θ,G)

of (X,Y ) given stratum Si. This is a slightly general version of the semiparametic biased

sampling model of Example 1 with weight functions wi(y, x, θ) = f(y|x; θ)1(y,x)∈Si
, i = 1, . . . , s.

Lawless, Kalbfleish and Wild (1999) discussed variations of the two-phase, outcome-dependent

sampling design (the variable probability sampling designs (VPS1,VPS2), the basic stratified

sampling design (BSS)). For all sampling schemes (VPS1,VPS2, and BSS), we have mi fully

observed units and ni −mi subjects where the only information retained is the identity of the

stratum, i = 1, . . . , s. The corresponding likelihood is

L(θ,G) =


s∏

i=1

mi∏
j=1

f(yij |xij ; θ)g(xij)


{

s∏
i=1

Qi(θ,G)ni−mi

}
(2)

We interpret the observed data from two-phase, outcome-dependent sampling as data from

multi-sample model with densities

p1(y, x; θ,G) = f(y|x; θ)g(x)

and

p2(i; θ,G) = Qi(θ,G).

This example is, also, not a special case of Example 1.

3 Estimating functions

Motivation: The method of maximum likelihood estimation motivates defining a general esti-

mating function in a multi-sample model.

Given multi-sample data Xi1, . . . , Xini , i = 1, . . . , s, the maximum likelihood estimator β̂n

is the maximizer of the likelihood
s∏

i=1

ni∏
j=1

pi(Xij ;β, η0)
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where we assume the nuisance parameter η = η0 is known. The log-likelihood for the multi-

sample data is

`n(β, η) =
s∑

i=1

ni∑
j=1

log pi(Xij ;β, η).

We algebraically define the log-likelihood function for a single observation in the multi-sample

model as

`(i, x, β, η) = log pi(x;β, η). (3)

Usually, the maximum likelihood estimator is obtained by solving the maximum likelihood

equation
s∑

i=1

ni∑
j=1

∂

∂β
`(i,Xij , β, η0) = 0.

In this case, the function

ψ(i, x, β, η0) =
∂

∂β
`(i, x, β, η0)

is an estimating function that corresponds to the maximum likelihood estimator.

Motivated by this example, in the following, we give the definition of an estimating function

in multi-sample models.

Path-wise differentiability: A path in a convex subset C of a Banach space B is a continuously

differentiable map η(t) : Θt → C where Θt is a closed interval in R. The derivative of a path

η(t) is denoted by η̇(t). A map f(η) : C → Rm is path-wise differentiable with respect to η if

there exists a bounded linear operator dηf(η), called the derivative of f(η), such that, for each

path η(t) and t ∈ Θt,
∂

∂t
f(η(t)) = dηf(η(t))η̇(t).

A norm of the derivative dηf(η) at η0 is defined by

‖dηf(η0)‖ = sup
{
‖dηf(η0)η̇(0)‖

‖η̇(0)‖
: η(t) path with η(0) = η0 and η̇(0) 6= 0

}
.

A map f(η) is continuously path-wise differentiable with respect to η if the derivative dηf(η) is

a continuous function of η.

Estimating function: A function ψ : {1, . . . , s}×X ×Θβ×Θη → IRm is an estimating function

for β0 in the presence of the nuisance parameter η in the multi-sample model (P1, . . . ,Ps) if:

(E1) ψ(i, x, β, η) is continuously differentiable with respect to β for all β ∈ Θβ and continuously

path-wise differentiable with respect to η for all η ∈ Θη;

(E2)
∑s

i=1 λiEi,β,η[ψ(i,X, β, η)] = 0 for all (β, η) ∈ Θβ ×Θη;

(E3) for i = 1, . . . , s, Ei,β0,η0 [ψ(i,X, β0, η0)] = 0;

(E4)
∑s

i=1 λiEi,β0,η0 [ψ
Tψ(i,X, β0, η0)] <∞;

(E5)
∑s

i=1 λiEi,β0,η0 [
∂
∂βψ(i,X, β0, η0)] is nonsingular with bounded inverse;
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(E6) there is a compact and convex subset C ⊂ Θη containing η0 such that, for each i = 1, . . . , s,

the class of functions {ψ(i, x, β, η) : (β, η) ∈ Θβ × C} is Pi,β0η0-Donsker with square

integrable function and the class of functions { ∂
∂βψ(i, x, β, η) : (β, η) ∈ Θβ ×C} is Pi,β0,η0-

Glivenko-Cantelli with integrable envelope function;

(E7) ψ and ˙̀
η are uncorrelated at (β0, η0):

s∑
i=1

λiEi,β0,η0ψ
˙̀
η(i,X, β0, η0) = 0

where ˙̀
η(i, x, β, η) = dη`(i, x, β, η) is the derivative of Equation 3.

Remark 3.1: Suppose a function ψ(i, x, β, η) satisfies conditions (E1)–(E7) except condition

(E3). When
√
n(ni

n − λi) = OP (1) (i.e. ni
n is a

√
n-consistent estimator of λi), i = 1, . . . , s, then

the function ψc(i, x, β, η) = ψ(i, x, β, η) − Ei,β0,η0ψ(i, x, β0, η0) satisfies condition (E3) and can

be used for an estimating function.

In the next theorem, we prove the asymptotic linearity of an M -estimator.

Theorem 3.1.[An M -estimator is asymptotically linear] Suppose ψ(s, x, β, η) satisfies condi-

tions (E1)–(E7). Then, for any
√
n-consistent estimator η̂n of η0 (i.e.

√
n(η̂n − η0) = OP (1)),

a consistent solution β̂n to the estimating equation

1√
n

s∑
i=1

ni∑
j=1

ψ(i,Xij , β̂n, η̂n) = oP (1)

is an asymptotically linear estimator with influence function

ψ̃(i, x, β, η) =

[
−

s∑
i=1

λiEi,β0,η0

(
∂

∂β
ψ

)]−1

ψ(i, x, β, η),

so that
√
n(β̂n − β0) =

1√
n

s∑
i=1

ni∑
j=1

ψ̃(i,Xij , β0, η0) + oP (1)

and
√
n(β̂n − β0)

d−→ N

(
0,

s∑
i=1

λiEi,β0,η0(ψ̃ψ̃
T )

)
.

Proof.

By conditions (E2) and (E7), we have

s∑
i=1

λiEi,β0,η0dηψ(i,X, β0, η0) = −
s∑

i=1

λiEi,β0,η0ψ
˙̀
η(i,X, β0, η0) = 0 (zero operator).

Then, by the mean value theorem for vector valued function (cf. Hall and Newell (1979)) and

Equation (1), for any
√
n-consistent estimator η̂n of η0,∥∥∥∥∥√n

s∑
i=1

ni

n
Ei,β0,η0ψ(i,X, β0, η̂n)

∥∥∥∥∥
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≤ sup
t∈[0,1]

∥∥∥∥∥
s∑

i=1

ni

n
Ei,β0,η0dηψ(i,X, β0, η0 + t(η̂n − η0))

∥∥∥∥∥√n‖η̂n − η0‖

= oP (1)OP (1) = oP (1). (4)

Suppose (β∗n, η
∗
n) P→ (β0, η0). Since the functions ψ(i, x, β, η) and ∂

∂βψ(i, x, β, η) are contin-

uous at (β0, η0), and they are dominated by the square integrable function and the integrable

function, respectively, by the dominated convergence theorem, we have, for i = 1, . . . , s,

Ei,β0,η0‖ψ(i,X, β∗n, η
∗
n)− ψ(i,X, β0, η0)‖2 P→ 0

and

Ei,β0,η0

∥∥∥∥ ∂∂βψ(i,X, β∗n, η
∗
n)− ∂

∂β
ψ(i,X, β0, η0)

∥∥∥∥ P→ 0.

Together with condition (E6), these imply that

1
√
ni

ni∑
j=1

{ψ(i,Xij , β
∗
n, η

∗
n)− ψ(i,Xij , β0, η0)}

=
√
niEi,β0,η0 {ψ(i,X, β∗n, η

∗
n)− ψ(i,X, β0, η0)}+ oP (1), (5)

1
ni

ni∑
j=1

∂

∂β
φ(i,Xij , β

∗
n, η

∗
n) P→ Ei,β0,η0

(
∂

∂β
ψ(i,X, β0, η0)

)
. (6)

By combining Equations (5), (4) and condition (E3), we get

1√
n

s∑
i=1

ni∑
j=1

ψ(i,Xij , β
∗
n, η

∗
n) =

1√
n

s∑
i=1

ni∑
j=1

ψ(i,Xij , β0, η0) + oP (1) (7)

Equations (1) and (6) imply

1
n

s∑
i=1

ni∑
j=1

∂

∂β
φ(i,Xij , β

∗
n, η

∗
n) P→

s∑
i=1

λiEi,β0,η0

(
∂

∂β
ψ(i,X, β0, η0)

)
. (8)

By the central limit theorem (CLT) in the model Pi, 1√
ni

∑ni
j=1 ψ(i,Xij , β0, η0)

d−→ Φi ∼
N(0, Ei,β0,η0(ψψ

T )). By Equation (1) and by independence of samples, we have a multi-sample

version of the CLT

1√
n

s∑
i=1

ni∑
j=1

ψ(i,Xij , β0, η0) =
s∑

i=1

√
ni√
n

1
√
ni

ni∑
j=1

ψ(i,Xij , β0, η0)

d−→
s∑

i=1

√
λiΦi ∼ N

(
0,

s∑
i=1

λiEi,β0,η0(ψψ
T )

)
.

This implies

1√
n

s∑
i=1

ni∑
j=1

ψ(i,Xij , β0, η0) = OP (1). (9)
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For k = 1, . . . ,m, let ψk be the kth coordinate function of ψ = (ψ1, . . . , ψm)T . By the usual

mean value theorem and Equations (7) and (8), for some β∗n with ‖β∗n − β0‖ ≤ ‖β̂n − β0‖
P→ 0,

oP (1) =
1√
n

s∑
i=1

ni∑
j=1

ψk(i,Xij , β̂n, η̂n)

=
1√
n

s∑
i=1

ni∑
j=1

ψk(i,Xij , β0, η̂n) +
1
n

s∑
i=1

ni∑
j=1

∂

∂β
ψk(i,Xij , β

∗
n, η̂n)

√
n(β̂n − β0)

=

 1√
n

s∑
i=1

ni∑
j=1

ψk(i,Xij , β0, η0) + oP (1)


+

{
s∑

i=1

λiEi,β0,η0

(
∂

∂β
ψk(i,X, β0, η0)

)
+ oP (1)

}
√
n(β̂n − β0), k = 1, . . . ,m.

By condition (E5), these equations implies

√
n(β̂n − β0) =

{
s∑

i=1

λiEi,β0,η0

(
∂

∂β
ψ(i,X, β0, η0)

)}−1
1√
n

s∑
i=1

ni∑
j=1

ψ(i,Xij , β0, η0)

+oP (1){1 +
√
n(β̂n − β0)}. (10)

Equations (9) and (10) imply that

√
n(β̂n − β0) = OP (1) + oP (1){1 +

√
n(β̂n − β0)}.

By rearranging this equation we have a
√
n-consistency:

√
n(β̂n − β0) = OP (1). Finally, Equa-

tion (10) gives the result. �

4 Efficiency and the geometry of influence functions

By adapting a geometric argument of the space of influence functions in Chapter 3, Tsi-

atis (2006), we prove the efficiency of the MLE for a semiparametric multi-sample model.

The efficiency of the best linear unbiased estimator (BLUE) in the linear model can be proved

using the same geometric argument (cf. Theorem 3.2 in Seber and Lee (2003)).

4.1 The efficient score function ˙̀∗
β

Here, we give the definition of the efficient score function by using an uncorrelated projection.

We assume the log-likelihood function for a single observation `(i, x, β, η) (defined by Equa-

tion 3) is twice continuously differentiable with respect to β for all β ∈ Θβ and continuously

path-wise differentiable with respect to η for all η ∈ Θη. The score function ˙̀
β(i, x, β, η) for

β and the score operator ˙̀
η(i, x, β, η) for η in the multi-sample model are the derivative of the

log-likelihood function with respect to β and η, respectively, i.e., ˙̀
β(i, x, β, η) = ∂

∂β `(i, x, β, η)

and ˙̀
η(i, x, β, η) = dη`(i, x, β, η).
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The tangent space Ṗη for η is defined by the closed linear span of the set of derivatives⋃{
∂

∂t

∣∣∣∣
t=0

`(i, x, β0, η(t))
}

where the union is taken over all paths η(t) with η(0) = η0. The product tangent space Ṗm
η for

η in the estimation of m-dimensional parameter β0 is the m-Cartesian product of the tangent

space Ṗη, i.e., Ṗm
η = Ṗη × . . . × Ṗη. Similarly, the tangent space Ṗβ for β is a closed linear

span of the score function ˙̀
β(i, x, β, η) at (β0, η0), i.e., Ṗβ = [ ˙̀β] = {aT ˙̀

β : a ∈ IRm}. The

product tangent space Ṗm
β for β is the m-Cartesian product of the tangent space Ṗβ for β, i.e.,

Ṗm
β = {A ˙̀

β : A ∈ IRm×m}.
The uncorrelated complement of the score function ˙̀

β with respect to Ṗm
η ,

˙̀∗
β = ˙̀

β −Π( ˙̀
β|Ṗm

η )

is called the efficient score function in the multi-sample model (P1, . . . ,PS) (cf. see Appendix A

for the definition of uncorrelated projection). We assume the efficient score function ˙̀∗
β satisfies

conditions (E1)–(E7). By Theorem 3.1, for any
√
n-consistent estimator η̂n of η0, if the solution

β̂n to the estimating equation

1√
n

s∑
i=1

ni∑
j=1

˙̀∗
β(i,Xij , β̂n, η̂n) = oP (1)

is consistent, then it is an asymptotically linear estimator with the influence function

˜̀∗
β =

[
−

s∑
i=1

λiEi,β0,η0

(
∂

∂β
˙̀∗
β

)]−1

˙̀∗
β =

[
s∑

i=1

λiEi,β0,η0( ˙̀∗
β

˙̀∗T
β )

]−1

˙̀∗
β

(called the efficient influence function) with its variance

s∑
i=1

λiEi,β0,η0(˜̀
∗
β
˜̀∗T
β ) =

[
s∑

i=1

λiEi,β0,η0( ˙̀∗
β

˙̀∗T
β )

]−1

(called the efficient information bound).

4.2 Efficiency in the multi-sample semi-parametric model

We establish the efficient information bound in the multi-sample model.

Let Ψβ be the set of all estimating functions for β0 which satisfy conditions E(1)–E(7) in

Section 3. Then, as a consequence of Theorem 3.1, the set of influence functions corresponding

to the set of estimating functions is

Ψ̃β =

ψ̃(i, x, β0, η0) =

[
−

s∑
i=1

λiEi,β0,η0

(
∂

∂β
ψ

)]−1

ψ(i, x, β0, η0) : ψ ∈ Ψβ

 .

We show that ˜̀∗
β is the element with the smallest variance in the set Ψ̃β of influence functions.

This demonstrates that the corresponding M -estimator (MLE) is the most efficient with the
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asymptotic variance
∑s

i=1 λiEi,β0,η0( ˙̀∗
β

˙̀∗T
β )−1 called the efficient information bound for β0 in

the multi-sample model.

Proof : Suppose ψ(i, x, β, η) is an estimating function which satisfies conditions (E1)–(E7)

and

ψ̃(i, x, β0, η0) =

[
−

s∑
i=1

λiEi,β0,η0

(
∂ψ

∂β

)]−1

ψ(i, x, β0, η0)

is the corresponding influence function.

By differentiating the equation in condition (E2) with respect to β,

0 =
∂

∂β

s∑
i=1

λiEi,β,η[ψ(i,X, β, η)]

=
∂

∂β

s∑
i=1

λi

∫
ψ(i, x, β, η)pi(x;β, η)dx

=
s∑

i=1

λiEi,β,η

(
∂ψ

∂β

)
+

s∑
i=1

λiEi,β,η(ψ ˙̀T
β ).

This implies, at (β0, η0),

s∑
i=1

λiEi,β0,η0(ψ ˙̀T
β ) = −

s∑
i=1

λiEi,β0,η0

(
∂ψ

∂β

)
.

As a result,

s∑
i=1

λiEi,β0,η0(ψ̃ ˙̀T
β ) =

[
−

s∑
i=1

λiEi,β0,η0

(
∂ψ

∂β

)]−1 s∑
i=1

λiEi,β0,η0(ψ ˙̀T
β )

=

[
−

s∑
i=1

λiEi,β0,η0

(
∂ψ

∂β

)]−1 [
−

s∑
i=1

λiEi,β0,η0

(
∂ψ

∂β

)]
= Im×m (m×m identity matrix).

Similarly, since we assumed the efficient score function ˙̀∗
β satisfies conditions (E1)–(E7), we

have
s∑

i=1

λiEi,β0,η0(˜̀
∗
β

˙̀T
β ) = Im×m.

Therefore,
∑s

s=1 λiEi,β0,η0(ψ̃ ˙̀T
β ) =

∑s
i=1 λiEi,β0,η0(˜̀

∗
β

˙̀T
β ). This implies

0 =
s∑

i=1

λiEi,β0,η0([ψ̃ − ˜̀∗
β] ˙̀Tβ )

=
s∑

i=1

λiEi,β0,η0([ψ̃ − ˜̀∗
β][ ˙̀∗β + Π( ˙̀

β|Ṗm
η )]T )

=
s∑

i=1

λiEi,β0,η0([ψ̃ − ˜̀∗
β] ˙̀∗Tβ ) ( by condition (E7))

=
s∑

i=1

λiEi,β0,η0([ψ̃ − ˜̀∗
β]˜̀∗Tβ ).

11



Then, for all ψ̃,

s∑
i=1

λiEi,β0,η0(ψ̃ψ̃
T ) =

s∑
i=1

λiEi,β0,η0({˜̀∗β + [ψ̃ − ˜̀∗
β]}{˜̀∗β + [ψ̃ − ˜̀∗

β]}T )

=
s∑

i=1

λiEi,β0,η0( ˙̀∗
β

˙̀∗T
β ) +

s∑
i=1

λiEi,β0,η0([ψ̃ − ˜̀∗
β][ψ̃ − ˜̀∗

β]T )

≥
s∑

i=1

λiEi,β0,η0( ˙̀∗
β

˙̀∗T
β )

since
∑s

i=1 λiEi,β0,η0 [ψ̃ − ˜̀∗
β][ψ̃ − ˜̀∗

β]T is a positive definite matrix (for m ×m matrices A and

B, B ≥ A if and only if B −A is a nonnegative definite matrix).

5 Conclusion

We have presented conditions for asymptotic linearity of M -estimators in semiparametric multi-

sample models and proved asymptotic efficiency bound for M -estimators under these conditions.

This is a natural extension of the theory of M -estimators for i.i.d. models and is a special case

of the situation in McNeney and Wellner (2000). It remains to establish efficiency theory for

M -estimators in the general situation of McNeney and Wellner (2000).

Appendix A: Product Hilbert space and uncorrelated projection

In Appendix A, we define the product Hilbert space, covariance operators and an uncorrelated

projection.

Product Hilbert space and covariance operator

Let H be the Hilbert space of measurable functions with zero mean and finite variance:

H =

{
f(i, x) : Ei,β0,η0f = 0, i = 1, . . . , s,

s∑
i=1

λiEi,β0,η0f
2 <∞

}
.

The inner-product of f, g ∈ H is defined by 〈f, g〉 =
∑s

i=1 λiEi,β0,η0(fg). The product Hilbert

space for the m-dimensional parameter β0 is an m-Cartesian product of the Hilbert space H of

measurable functions, i.e., Hm = H× · · · × H. The product Hilbert space can be considered as

a space of all estimating functions ψ(i, x, β0, η0) for β0 at the true value (β0, η0).

For an arbitrary Banach space B, let B∗ be its dual. Let A : B → H be a bounded linear

operator and h ∈ H. The adjoint operator AT : H → B∗ of A : B → H is defined by the map

(ATh)a = 〈Aa, h〉 =
s∑

i=1

λiEi,β0,η0((Aa)h), a ∈ B.

Let A and B be two arbitrary Banach spaces. For two bounded linear operators A : A → H and

B : B → H, the covariance operator Cov(A,B) : A → B∗ is the map defined by Cov(A,B) =

12



BTA,i.e.,

Cov(A,B)ab = (BTAa)(b) = 〈Aa,Bb〉, a ∈ A, b ∈ B.

Two operators A and B are uncorrelated, denoted by A ⊥ B, if Cov(A,B) = 0. Two sets F ,G
of bounded linear operators are uncorrelated, denoted by F ⊥ G, if A ⊥ B for all A ∈ F and

all B ∈ G. Let F be a closed subspace of Hm. The uncorrelated compliment of F , denoted

by F⊥, in the space Hm is the smallest closed subspace of Hm containing all elements that are

uncorrelated with F .

The uncorrelated projection

Let A : B → H be a bounded linear operator from an arbitrary Banach space B to the Hilbert

space H. The closure A(B) of the range of A is a closed subspace in H. The closed subspace of

Hm generated by A, denoted by [A]m, is an m-Cartesian product of the closed subspace A(B)

of H, i.e., [A]m = A(B) × · · · × A(B). The uncorrelated projection of ψ ∈ Hm onto [A]m is the

element π(ψ|[A]m) ∈ Hm such that

π(ψ|[A]m) ∈ [A]m and ψ − π(ψ|[A]m) ∈ [A]m⊥

where [A]m⊥ is the uncorrelated compliment of [A]m in the space Hm. Suppose that (ATA)−1

exists and let h ∈ H. By the the projection theorem for an operator equation,

A(ATA)−1ATh

is a projection of h onto the closure A(B) of range of A. This implies that, for f = (f1, . . . , fm)T ∈
Hm, the uncorrelated projection of f onto the closed subspace [A]m generated by A is given by

Π(f |[A]m) = A(ATA)−1AT f =


A(ATA)−1AT f1

...

A(ATA)−1AT fm

 . (11)

Appendix B: The weighted sampling model

In this Appendix, we establish that there is an i.i.d. model which is equivalent to a multi-sample

model in the sense that their M -estimators have the same limiting distribution, corresponding

estimating function and influence function.

[Weighted sampling model] For a multi-sample model (P1, . . . ,Ps) with weight probabilities

(λ1, . . . , λs), define a corresponding model λP by

λP = {p(i, x;β, η) = λipi(x;β, η) : β ∈ Θβ, η ∈ Θη}.

Then λP is a probability model on the space {1, . . . , s}×X . The model λP is called the weighted

sampling model corresponding to the multi-sample model (P1, . . . ,Ps).
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Since the weighted sampling model λP is an i.i.d. model, ordinary definitions of the score

function and the expectation of a function can be applied. The score function for β and η are

˙̀
β(i, x, β, η) =

∂

∂β
log pi(x;β, η) and ˙̀

η(i, x, β, η) = dη log pi(x;β, η),

the expectation for a function f(i, x) is

Eβ,η(a(I,X)) =
s∑

i=1

λiEi,β,η(a(i,X)). (12)

The score functions for β and η and the expectation in the weighted sampling model λP are

equal to the ones in the multi-sample model (P1, . . . ,Ps).

Theorem 3.1 with Equation 12 imply that, for an estimating function ψ(i, x, β, η) for β0 and

a
√
n-consistent estimator η̂n of η0, the solution β̂1 to an estimating equation in the multi-sample

model
1√
n

s∑
i=1

ni∑
j=1

ψ(i,Xij , β̂1, η̂n) = oP (1)

and the solution β̂2 to an estimating equation in the weighted sampling model

1√
n

n∑
j=1

ψ(Ij , Xj , β̂2, η̂n) = oP (1)

have the same influence function

ψ̃(i, x, β0, η0) =

[
−

s∑
i=1

λiEi,β0,η0

(
∂

∂β
ψ

)]−1

ψ(i, x, β0, η0)

so that the estimator β̂1 and β̂2 have the same limiting distribution: i.e.

√
n(β̂k − β0)

d−→ N

(
0,

s∑
i=1

λiEi,β0,η0(ψ̃ψ̃
T )

)
, k = 1, 2.

As a consequence, the spaces of influence functions in both models are the same.

Moreover, since the score functions ˙̀
β and ˙̀

η are the same in both models, so are the

efficient score function ˙̀∗
β, the efficient influence function ˜̀∗

β, and the product tangent spaces

Pm
β and Pm

η . The same logic can be used to show the MLE β̂n, whose influence function is the

efficient influence function ˜̀∗
β, is the most efficient among multi-sample M -estimators (in the

multi-sample model) and M -estimators (in the corresponding weighted sampling model) with

the same efficient information bound. This establishes the equivalence of two models in terms

of M -estimation.
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