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1 Introduction

The efficient score function can be defined as the score function for β minus its orthogonal

projection onto the nuisance tangent space (cf. Bickel, Klaassen, Ritov and Wellner (1993)).

An alternative characterization, due to Newey (1994), is to describe the efficient score in terms

of the derivative with respect to β of a “population profile log-likelihood”, which is a population

version of the ordinary sample profile log-likelihood. Since “profiling out” is a familiar method

of dealing with nuisance parameters in likelihood calculations, the Newey characterization is

perhaps a more natural method than projection.

Suppose we consider a semiparametric model of the form

P = {p(x;β, η) : β ∈ Θβ ⊂ Rm, η ∈ Θη}

where β is the m-dimensional parameter of interest, and η is a nuisance parameter, which may

be infinite-dimensional. Let (β0, η0) be the true value of (β, η). We assume Θβ is a compact set

containing an open neighborhood of β0 in Rm, and Θη is a convex set containing η0 in a Banach

space B.

We also assume that, for each β ∈ Θβ, the expected log-likelihood Eβ0,η0 log p(X;β, η) is

uniquely maximized with respect to η ∈ Θη. For each β, define

η̂(β) = argmaxη∈Θη
Eβ0,η0 log p(X;β, η), (1)

then we have η̂(β0) = η0 and the derivative

˙̀∗
β(x, β0) =

∂

∂β

∣∣∣∣
β=β0

log p(x;β, η̂(β))

is the efficient score function (cf. Newey (1994)).

On the other hand, let

η̂n(β) = argmaxη∈Θη

n∑
i=1

log p(Xi;β, η). (2)

The profile log-likelihood function for β is the log-likelihood

`n(β, η̂n(β)) =
n∑

i=1

log p(Xi;β, η̂n(β))

treated as a function of β only. The solution to the profile likelihood estimating equation
∂
∂β `n(β̂n, η̂n(β̂n)) = 0 gives the MLE β̂n.

The purpose of this paper is to investigate the efficiency of the semi-parametric maximum

likelihood estimator based on the profile likelihood. The difficulty in the proof of the efficiency of

the profile-likelihood estimator is that the corresponding estimating equation cannot be treated

using standard M -estimator theory since the estimating functions depend implicitly on the sam-

ple size. Murphy and van der Vaart (2000) proved this efficiency by introducing the approximate
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least favorable submodel to express the upper and lower bounds for the profile log-likelihood.

Since these two bounds have the same expression for the asymptotic expansion, so does the

one for the profile log-likelihood. This method cleverly avoided the implicit dependence on the

sample size n.

The main idea of this paper is the introduction of the new function η̂(β, F ) with an additional

parameter F such that the estimating equations based on the profile likelihood and the least

favorable submodel can be expressed as

n∑
i=1

∂

∂β
log p(Xi;β, η̂(β, Fn)) = 0

and
n∑

i=1

∂

∂β
log p(Xi;β, η̂(β, F0)) = 0,

respectively, where Fn is the empirical cumulative distribution function (cdf) and F0 is the cdf for

the true distribution. This gives an estimating function which is an explicit function of sample

size n, through F . Then, we show that the solutions β̂n to the above estimating equations are

asymptotically equivalent. Since the estimator based on the least favorable submodel is efficient,

this demonstrates that the estimator based on the profile-likelihood is also efficient. Moreover,

the no bias condition, which is one of the assumptions in Murphy and van der Vaart (2000),

follows naturally from our approach.

An outline of this paper is as follows. Section 2 presents the main result, in which, we

prove the efficiency of the estimator based on the profile likelihood by introducing the empirical

cdf as a parameter. In section 3, two-phase, outcome-dependent sampling design is used as an

example. This paper is motivated by the question “Is the method of Scott and Wild (1997,

2001) efficient?” and we give the answer to the question in the discussion.

2 Main result

We denote the set of cdf’s on the sample space X by F . The set F is convex. Let Fn(x) be the

empirical cdf and F0(x) the cdf for the density p(x;β0, η0).

For a map η̂ : Θβ ×F → Θη, define a model (called the induced model) with density

p′(x;β, F ) = p(x;β, η̂(β, F )), β ∈ Θβ, F ∈ F .

The score function in the induced model is denoted by

φ(x, β, F ) =
∂

∂β
log p′(x;β, F ). (3)

(Condition (R1) or (R1)∗ in Section 2.1.2 assume the differentiability of the function p′(x;β, F )

with respect to β.)

We assume that
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(R0) η̂ satisfies η̂(β0, F0) = η0 and the function

˙̀∗
β(x, β0) = φ(x, β0, F0)

is the efficient score function.

We present the main results of this paper.

Theorem 1.[The main theorem] Suppose sets of assumptions {(R0), (R1), (R2), (R3)} or

{(R0), (R1)∗, (R2), (R3)} given in Section 2.1.2, then, for any random sequence β̃n
P→ β0 and

the empirical cdf Fn, we have

√
nEβ0,η0φ(X,β0, Fn) = oP (1) (No bias contion) (4)

and
n∑

i=1

log p′(Xi; β̃n, Fn) =
n∑

i=1

log p′(Xi;β0, Fn) + (β̃n − β0)T
n∑

i=1

φ(Xi, β0, F0)

+
1
2
n(β̃n − β0)T I∗β(β̃n − β0) + oPβ0,η0

(
√
n‖β̃n − β0‖+ 1)2 (5)

where I∗β = Eβ0,η0( ˙̀∗
β

˙̀∗T
β ) is the efficient information matrix. �

The proof is given in the next section.

By Corollary 1.1 in Murphy and van der Vaart (2000), we have the following result.

Corollary 1. A consistent solution β̂n to the estimating equation

n∑
i=1

φ(Xi, β̂n, Fn) = 0 (6)

is an asymptotically linear estimator for β0 with the efficient influence function

˜̀∗
β(x, β0) = (I∗β)−1 ˙̀∗

β(x, β0)

so that
√
n(β̂n − β0) =

1√
n

n∑
i=1

˜̀∗
β(Xi, β0) + oP (1)

and
√
n(β̂n − β0)

d−→ N
(
0, (I∗β)−1

)
.

�

This demonstrates that the profile likelihood MLE β̂n is efficient.

2.1 Assumptions and proof

2.1.1 Path-wise differentiability

A path in a convex subset C of a Banach space B is a continuously differentiable map η(t) : Θt → C
where Θt is a closed interval in R. The derivative of a path η(t) is denoted by η̇(t). A map
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f(η) : C → Rm is path-wise differentiable with respect to η if there exists a bounded linear

operator dηf(η), called the derivative of f(η), such that, for each path η(t) and t ∈ Θt,

∂

∂t
f(η(t)) = dηf(η(t))η̇(t).

A norm of the derivative dηf(η) at η0 is defined by

‖dηf(η0)‖ = sup
{
‖dηf(η0)η̇(0)‖

‖η̇(0)‖
: η(t) path with η(0) = η0 and η̇(0) 6= 0

}
.

A map f(η) is continuously path-wise differentiable with respect to η if the derivative dηf(η) is

continuous function of η.

Derivative with convex combination: Let η0 and η be two points in the convex set C. Then

the map t → η0 + t(η − η0), t ∈ [0, 1] is a path in C. If a function f : C → R is path-wise

differentiable, then, for all t ∈ [0, 1],

∂

∂t
f(η0 + t(η − η0)) = dηf(η0 + t(η − η0))(η − η0).

2.1.2 Assumptions

On the set of cdf functions F , we use the sup-norm, i.e., for F, F0 ∈ F ,

‖F − F0‖ = sup
x
|F (x)− F0(x)|.

For ρ > 0, let

Cρ = {F ∈ F : ‖F − F0‖ < ρ}.

We assume that:

(R1) The
√
n-consistency of Fn,

√
n‖Fn − F0‖ = OP (1), and, for each (β, F ) ∈ Θβ × F , the

log-likelihood function log p′(x;β, F ) is twice continuously differentiable with respect to β

and continuously path-wise differentiable with respect to F for all x.

(R1)∗ The empirical process Fn satisfies n1/4‖Fn − F0‖ = oP (1) and for each (β, F ) ∈ Θβ × F ,

the log-likelihood function log p′(x;β, F ) is twice continuously differentiable with respect

to β and twice continuously path-wise differentiable with respect to F for all x.

(Derivatives are denoted by φ(x, β, F ) = ∂
∂β log p′(x;β, F ), ∂

∂βφ(x, β, F ), dFφ(x, β, F ), and

d2
Fφ(x, β, F ).)

(R2) The efficient information matrix I∗β = Eβ0,η0
˙̀∗
β

˙̀∗T
β = Eβ0,η0φφ

T (X,β0, F0) is invertible.

(R3) There exist a ρ > 0 and a neighborhood Θβ of β0 such that the class of functions

{φ(x, β, F ) : (β, F ) ∈ Θβ×Cρ} is Pβ0,η0-Donsker with square integrable envelope function,

and such that the class of functions { ∂
∂βφ(x, β, F ) : (β, F ) ∈ Θβ × Cρ} is Pβ0,η0-Glivenko-

Cantelli with integrable envelope function.
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2.1.3 Proof

Suppose {(R0), (R1), (R2), (R3)} or {(R0), (R1)∗, (R2), (R3)}.
First, we prove Equation (4). Since (i) the induced model p′(x;β, F ) is a probability model,

(ii) the range of the score operator ˙̀
F (X,β0, F0) = dF log p′(x;β0, F0) = dF log p(x;β0, η̂(β0, F0))

for F is in the nuisance tangent space (the tangent space for η), and (iii) the function φ(X,β0, F0)

is the efficient score function, we have

Eβ0,η0dFφ(X,β0, F0) = −Eβ0,η0φ
˙̀
F (X,β0, F0) = 0 (the zero operator). (7)

For Fn and F0 in F , consider a path F ∗
n(t) = F0+t(Fn−F0), t ∈ [0, 1]. Then F ∗

n(0) = F0 and

F ∗
n(1) = Fn. Under assumptions

√
n‖Fn − F0‖ = OP (1) (condition (R1)) or n1/4‖Fn − F0‖ =

oP (1) (condition (R1)∗), we have that supt∈[0,1] |F ∗
n(t)− F0| = oP (1).

Suppose condition (R1). By the mean value theorem for vector valued function (cf. Hall

and Newell (1979)),

‖
√
nEβ0,η0φ(X,β0, Fn)‖

= ‖
√
nEβ0,η0φ(X,β0, F

∗
n(1))−

√
nEβ0,η0φ(X,β0, F

∗
n(0))‖

≤ sup
t∈[0,1]

‖Eβ0,η0dFφ(X,β0, F
∗
n(t))‖

√
n‖Fn − F0‖

= ‖Eβ0,η0dFφ(X,β0, F0) + op(1)‖
√
n‖Fn − F0‖ (since supt∈[0,1] |F ∗

n(t)− F0| = oP (1))

= op(1)
√
n‖Fn − F0‖ (by Equation (7))

= oP (1) (since
√
n‖Fn − F0‖ = OP (1)).

Alternatively, suppose condition (R1)∗. We modify the proof of the mean value theorem for

vector valued function in Hall and Newell (1979). Let fn(t) =
√
nEβ0,η0φ(X,β0, F

∗
n(t)) and

Φn(t) =
〈fn(1)− fn(0), fn(t)− fn(0)〉

‖fn(1)− fn(0)‖

where 〈u, v〉 = uT v for u, v ∈ Rm. Then

‖
√
nEβ0,η0φ(X,β0, Fn)‖

= ‖
√
nEβ0,η0φ(X,β0, F

∗
n(1))−

√
nEβ0,η0φ(X,β0, F

∗
n(0))‖

= Φn(1)− Φn(0)

=
∂

∂t
Φn(0) +

∂2

∂t2
Φn(t∗n) (for some t∗n ∈ [0, 1], by Taylor’s expansion)

=
〈fn(1)− fn(0), ∂

∂tfn(0) + ∂2

∂t2
fn(t∗n)〉

‖fn(1)− fn(0)‖

≤ sup
t∈[0,1]

∥∥∥∥√nEβ0,η0

∂

∂t
φ(X,β0, F

∗
n(0)) +

√
nEβ0,η0

∂2

∂t2
φ(X,β0, F

∗
n(t))

∥∥∥∥
(by the Cauchy-Schwrz inequality)

= sup
t∈[0,1]

‖Eβ0,η0dFφ(X,β0, F0)
√
n(Fn − F0) + Eβ0,η0d

2
Fφ(X,β0, F

∗
n(t))

√
n(Fn − F0)2‖
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(by the definition of path-wise differentiability)

= sup
t∈[0,1]

‖Eβ0,η0d
2
Fφ(X,β0, F

∗
n(t))

√
n(Fn − F0)2‖ (by Equation (7))

≤ ‖Eβ0,η0d
2
Fφ(X,β0, F0) + op(1)‖

√
n‖Fn − F0‖2

= oP (1) (since
√
n‖Fn − F0‖2 = oP (1)).

Thus under assumptions (R1) or (R1)∗, we have proved Equation (4).

The rest of the proof is similar to the one for Murphy and van der Vaart (2000).

Since the functions φ(x, β, F ) and ∂
∂βφ(x, β, F ) are continuous at (β0, F0), and they are dom-

inated by the square integrable function and the integrable function, respectively, by dominated

convergence theorem, for every (β∗n, F
∗
n) P→ (β0, F0), we have

Eβ0,η0‖φ(X,β∗n, F
∗
n)− φ(X,β0, F0)‖2 P→ 0.

and

Eβ0,η0‖
∂

∂β
φ(X,β∗n, F

∗
n)− ∂

∂β
φ(X,β0, F0)‖

P→ 0.

Since p′(x;β, F ) is a probability model,

Eβ0,η0

∂

∂β
φ(X,β0, F0) = −Eβ0,η0φφ

T (X,β0, F0).

Together with condition (R3), this implies that, for every random sequence (β∗n, F
∗
n) P→

(β0, F0),

1√
n

n∑
i=1

{φ(Xi, β
∗
n, F

∗
n)− φ(Xi, β0, F0)} =

√
nEβ0,η0 {φ(X,β∗n, F

∗
n)− φ(X,β0, F0)}+ oP (1), (8)

1√
n

n∑
i=1

∂

∂β
φ(Xi, β

∗
n, F

∗
n) P→ −Eβ0,η0φφ

T (X,β0, F0). (9)

By combining Equation (4) and (8), we get

1√
n

n∑
i=1

φ(Xi, β0, Fn) =
1√
n

n∑
i=1

φ(Xi, β0, F0) + oP (1). (10)

Finally, by Taylor’s expansion with respect to β, for some β∗n with ‖β∗n − β0‖ ≤ ‖β̃n − β0‖,
n∑

i=1

log p′(Xi; β̃n, Fn)−
n∑

i=1

log p(Xi;β0, Fn)

=
√
n(β̃n − β0)T 1√

n

n∑
i=1

φ(Xi, β0, Fn) +
1
2
n(β̃n − β0)T 1

n

n∑
i=1

∂

∂β
φ(Xi, β

∗
n, Fn)(β̃n − β0)

=
√
n(β̃n − β0)T

{
1√
n

n∑
i=1

φ(Xi, β0, F0) + oP (1)

}
(by Equation (10))

+
1
2
n(β̃n − β0)T

{
−Eβ0,η0φφ

T (X,β0, F0) + oP (1)
}

(β̃n − β0) (by Equation (9))

=
√
n(β̃n − β0)T 1√

n

n∑
i=1

φ(Xi, β0, F0)−
1
2
n(β̃n − β0)TEβ0,η0(φφ

T )(β̃n − β0)

+oP (
√
n‖β̃n − β0)‖+ 1)2.
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This proves Equation (5).

2.2 Useful theorem to identify the efficient score function

To verify Condition (R0), the following theorem may be useful. This is a modification of the

proof in Breslow, McNeney and Wellner (2000) which originally adapted from Newey (1994).

Theorem 2. Suppose η(t) is an arbitrary path such that η(0) = η0 and let α(t) = η(t)− η0. If

η̂(β0, F0) = η0 (11)

and, for each β ∈ Θβ,

∂

∂t

∣∣∣∣
t=0

Eβ0,η0 [log p(x;β, η̂(β, F0) + α(t))] = 0, (12)

then the function φ(x, β0, F0) = ∂
∂β |β=β0

log p(x;β, η̂(β, F0)) is the efficient score function.

Proof. Condition (12) implies that

0 =
∂

∂β

∣∣∣∣
β=β0

∂

∂t

∣∣∣∣
t=0

Eβ0,η0 [log p(x;β, η̂(β, F0) + α(t))]

=
∂

∂t

∣∣∣∣
t=0

Eβ0,η0

[
∂

∂β

∣∣∣∣
β=β0

log p(x;β, η̂(β, F0) + α(t))

]
. (13)

By differentiating the identity∫ (
∂

∂β
log p(x;β, η̂(β, F0) + α(t))

)
p(x;β, η̂(β, F0) + α(t))dx = 0

with respect to t at t = 0 and β = β0, we get

0 =
∂

∂t

∣∣∣∣
t=0,β=β0

∫ (
∂

∂β
log p(x;β, η̂(β, F0) + α(t))

)
p(x;β, η̂(β, F0) + α(t))dx

= Eβ0,η0

[
φ(x, β0, F0)

(
∂

∂t

∣∣∣∣
t=0

log p(x;β0, η(t))
)]

( by (11))

+
∂

∂t

∣∣∣∣
t=0

Eβ0,η0

[
∂

∂β

∣∣∣∣
β=β0

log p(x;β, η̂(β, F0) + α(t))

]

= Eβ0,η0

[
φ(x, β0, F0)

(
∂

∂t

∣∣∣∣
t=0

log p(x;β0, η(t))
)]

( by (13)). (14)

Let c ∈ Rm be arbitrary. Then, it follows from Equation (14) that the product c′φ(x, β0, F0) is

orthogonal to the nuisance tangent space Ṗη which is the closed linear span of score functions

of the form ∂
∂t |t=0 log p(x;β0, η(t)). Using Condition (11), we have

φ(x, β0, F0) =
∂

∂β

∣∣∣∣
β=β0

log p(x;β, η0) +
∂

∂β

∣∣∣∣
β=β0

log p(x;β0, η̂(β, F0))

= ˙̀
β(x;β0, η0)− ψ(x;β0, η0),
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where ˙̀
β(x;β0, η0) = ∂

∂β |β=β0
log p(x;β, η0) and ψ(x;β0, η0) = − ∂

∂β |β=β0
log p(x;β0, η̂(β, F0)).

Finally, c′φ(x, β0, F0) = c′ ˙̀β(x;β0, η0)−c′ψ(x;β0, η0) is orthogonal to the nuisance tangent space

Ṗη and c′ψ(x;β0, η0) ∈ Ṗη implies that c′ψ(x;β0, η0) is the orthogonal projection of c′ ˙̀β(x;β0, η0)

onto the nuisance tangent space Ṗη. Since c ∈ Rm is arbitrary, φ(x, β0, F0) is the efficient score

function. �

2.3 Comments on the MLE

The MLE is obtained when the function η̂(β, F ) is given by

η̂(β, F ) = argmaxη∈Θη

∫
log p(x;β, η)dF (15)

If, for each β ∈ Θβ, the function η̂(β, F0) uniquely maximizes the expected log-likelihood

Eβ0,η0 log p(X;β, η) =
∫

log p(x;β, η)dF0,

then Conditions (11) and (12) in Theorem 2 hold, provided the function p(x;β, η) satisfies

sufficient differentiability conditions.. It follows, by Theorem 2, that the efficient score function

is given by φ(x, β0, F0) = ∂
∂β |β=β0

log p(x;β, η̂(β, F0)).

We assumed the parameter η is in a Banach space. Suppose the function Φ(β, η, F ) =∫
log p(x;β, η)dF is Fréchet differentiable with respect to η so that the maximizer η̂(β, F ) in

Equation (15) is the solution to the operator equation

dηΦ(β, η, F ) = 0

where dηΦ(β, η, F ) is the derivative of Φ(β, η, F ) with respect to η. Note that dηΦ(β0, η0, F0) = 0.

If dηΦ(β, η, F ) is Fréchet differentiable with respect to η and the second derivative

d2
ηΦ(β0, η0, F0)

is invertible, then by the implicit function theorem (cf. Appendix C), there exist r > 0 and

ρ > 0 such that, for each (β, F ) with ‖β− β0‖ < ρ and ‖F −F0‖ ≡ supx |F (x)−F0(x)| < ρ, the

solution η̂(β, F ) with

‖η̂(β, F )− η0‖ < r

exists. Moreover, if the operator dηΦ(β, η, F ) is k-times continuously Fréchet-differentiable with

respect to (β, η, F ), then the solution η̂(β, F ) is k-times continuously Fréchet differentiable with

respect to (β, F ). Therefore, according to the implicit function theorem, the function Φ(β, η, F )

must be at least 2-times continuously Fréchet differentiable with respect to the parameter η to

assure the existence of the continuously Fréchet-differentiable function η̂(β, F ). However, we

have seen that the path-wise differentiability is sufficient to prove Theorem 1. Since we do not

know the conclusions of the implicit function theorem hold when the Fréchet-differentiability is

replaced with the path-wise differentiability, there is no guarantee that the maximizer η̂(β, F )

exists and is differentiable under Conditions (R0)− (R3).
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2.4 Comments on Murphy and van der Vaart (2000)

Murphy and van der Vaart (2000) proved the efficiency of the profile likelihood by introducing

an approximately least favorable submodel which we describe below: They assume that, for each

(β′, η′) ∈ Θβ ×Θη, there is a function

β → η̂(β, β′, η′) (16)

such that

(P1) the function `(x, β, β′, η′) = log p(x;β, η̂(β, β′, η′)) is twice continuously differentiable with

respect to β and continuous with respect to (β′, η′) (Denote ˙̀∗
β(x, β, β′, η′) = ∂

∂β `(x, β, β
′, η′)

and ῭∗
β(x, β, β′, η′) = ∂2

∂β2 `(x, β, β′, η′));

(P2) η̂(β, β, η) = η for all (β, η) ∈ Θβ ×Θη.

(P3) The efficient score function is given by ˙̀∗
β(x, β0, β0, η0).

Let η̂n(β) be the function defined by Equation (2). They also assume that, for any β∗n
P→ β0:

(P4) η̂n(β∗n) P→ η0;

(P5) Eβ0,η0
˙̀∗
β(x, β0, β

∗
n, η̂n(β∗n)) = oP (‖β∗n − β0‖+ 1/

√
n) (the no-bias condition);

(P6) the functions ˙̀∗
β(x, β, β′, η′) and ῭∗

β(x, β, β′, η′) are continuous with respect to (β, β′, η′) at

(β0, β0, η0);

(P7) the class of functions { ˙̀∗
β(x, β, β′, η′) : (β, β′, η′) ∈ Θβ ×Θβ ×Θη} is Donsker with square

integrable envelope function;

(P8) the class of functions {῭∗β(x, β, β′, η′) : (β, β′, η′) ∈ Θβ × Θβ × Θη} is Glivenko-Cantelli

with integrable envelope function.

Under conditions (P1)–(P8), Murphy and van der Vaart (2000) show that the asymptotic

expansion of the profile log-likelihood, for any β∗n
P→ β0, is

n∑
i=1

log p(Xi;β∗n, η̂n(β∗n)) =
n∑

i=1

log p(Xi;β0, η̂n(β0)) + (β∗n − β0)T
n∑

i=1

˙̀∗
β(Xi, β0, β0, η0)

+
n

2
(β∗n − β0)T

[
Eβ0,η0( ˙̀∗

β
˙̀∗T
β )
]
(β∗n − β0)

+ oP (
√
n‖β∗n − β0‖+ 1)2.

This equation leads to the asymptotic linearity of the estimator β̂n with the efficient influence

function.

In their proof, the function η̂(β, β′, η′) is used to create the upper and lower bounds for the

expansion of the profile likelihood which is a function of η̂n(β). They conclude that since the two

bounds converge to the same expression, the expansion of the profile likelihood must converge

to the same limit. Thus, they do not have to treat the function η̂n(β), directly.
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3 Example: Two-phase outcome-dependent sampling

In this section, we demonstrate that the estimator constructed by the method of Scott and

Wild (1997, 2001) is efficient. We apply the method to the two-phase outcome-dependent

sampling design of Lawless, Kalbfleish and Wild (1999). Breslow, McNeney and Wellner (2003)

used the approach in Murphy and van der Vaart (2000) to demonstrate the efficiency of the

estimator based on the profile likelihood in a variation of this example. On the contrary, we

apply Theorem 1 to show the same result.

Remark 3.1: In Theorem 1, we proved the no bias condition (P5) in general context. There-

fore, when we apply Theorem 1, verification of (P5) is no longer needed. See Breslow, McNeney

and Wellner (2003) for the verification of (P5) in the case of two-phase outcome-dependent sam-

pling.

Two-phase outcome-dependent sampling: We assume that the underlying data generating

process on the sample space Y × X is a model

Q = {p(y, x; θ) = f(y|x; θ)g(x) : θ ∈ Θ, g ∈ G}.

Here f(y|x; θ) is a conditional density of Y given X which depends on a finite dimensional

parameter θ, g(x) is an unspecified density of X which is an infinite-dimensional nuisance pa-

rameter. We assume the set Θ is a compact set containing a neighborhood of the true value θ0
and G is the set of all densities of x. The variable Y may be discrete or continuous variable.

For a partition of the sample space Y × X = ∪S
s=1Ss, let

Qs(θ, g) = P{(Y,X) ∈ Ss} =
∫
f(y|x; θ) g(x) 1(y,x)∈Ss

dy dx

and

Qs|X(x; θ) = P{(Y, x) ∈ Ss|x} =
∫
f(y|x; θ)1(y,x)∈Ss

dy.

In each stratum s = 1, . . . , s, let ms be the number of fully observed units, ns −ms be the

number of subjects whose only information retained is the identity of the stratum. Lawless,

Kalbfleish and Wild (1999) discussed variations of the two-phase, outcome-dependent sampling

design (the variable probability sampling (VPS1,VPS2), the basic stratified sampling (BSS)).

For all sampling schemes (VPS1,VPS2, and BSS), the resulting likelihoods are equal to

L(θ, g) =
S∏

s=1

{
ms∏
i=1

f(ysi|xsi; θ)g(xsi)

}
Qs(θ, g)ns−ms =

S∏
s=1

{
ms∏
i=1

f(ysi|xsi; θ)g(xsi)
Qs(θ, g)

}
Qs(θ, g)ns .

(17)

The likelihood motivates us to interpret the observed data as an i.i.d. sample from the

mixture of models

Ps =
{
ps(y, x; θ, g) =

f(y|x; θ)g(x)1(y,x)∈Ss

Qs(θ, g)
: θ ∈ Θ, g ∈ G

}
, s = 1, . . . , S,

11



and

PS+1 = {pS+1(j; θ, g) = Qj(θ, g) : θ ∈ Θ, g ∈ G},

where j ∈ {1, . . . , S} indicates the stratum. We denote the corresponding mixture probability

density function as

p(s, z; θ, g) = 1s∈{1,...,S}wsps(y, x; θ, g) + 1s=S+1wS+1pS+1(j; θ, g)

where (s, z) = (s, 1s∈{1,...,S}(y, x)+1s=S+1j) and ws > 0, s = 1, . . . , S, S+1, with
∑S+1

s=1 ws = 1.

Let Fs0 and Fsn be the cdf for the true distribution and the empirical cdf in the model Ps,

respectively, s = 1, . . . , S + 1. Then the cdf for the true distribution and the empirical cdf in

the mixture model are, respectively,

F0(s, z) = wsFs0(z)

and

Fn(s, z) = 1s∈{1,...,S}
ms

nT
Fsn + 1s=S+1

n

nT
F(S+1)n

where n =
∑S

s=1 ns and nT = n+
∑S

s=1ms. We assume that (m1
nT
, . . . , mS

nT
, n

nT
) → (w1, . . . , wS , wS+1),

and the
√
n- or n1/4-consistency of the empirical cdf, i.e.,

√
n‖Fn(s, z)− F0(s, z)‖ = OP (1),

or

n1/4‖Fn(s, z)− F0(s, z)‖ = oP (1),

where ‖Fn(s, z)− F0(s, z)‖ = sups,z |Fn(s, z)− F0(s, z)|.
Remark 3.2: It is possible to interpret the likelihood (Equation 17) as the one for an i.i.d.

sample from the density

p(s, z; θ, g) = {w1f(y|x; θ)g(x)}1s=1 {w2Qj(θ, g)}1s=2 .

where (s, z) = (s, 1s=1(y, x) + 1s=2j), w1, w2 > 0 and w1 + w2 = 1.

3.1 The efficient score function

Let Fs (s = 1, . . . , S, S + 1) be a cdf function in the model Ps and as > 0 be such that∑S+1
s=1 as = 1. For a mixture cdf F (s, z) = asFs(z), the integral of the log-likelihood is∫

log p(s, z; θ, g)dF (s, z)

=
S∑

s=1

{
as

∫
(log f(y|x; θ) + log g(x)) dFs + (aS+1dFS+1(s)− as) logQs(θ, g)

}
. (18)

Then, the expected log-likelihood and the averaged log-likelihood are∫
log p(s, z; θ, g)dF0(s, z)

=
S∑

s=1

{wS+1Qs(θ0, g0) logQs(θ, g) + wsEs,θ0,g0 [log f(Y |X; θ) + log g(X)− logQs(θ, g)]}

12



and

1
nT

`n(θ, g) =
∫

log p(s, z; θ, g)dFn(s, z)

=
S∑

s=1

{
n

nT

ns

n
logQs(θ, g) +

1
nT

ms∑
i=1

[log f(Ysi|Xsi; θ) + log g(Xsi)− logQs(θ, g)]

}
.

Theorem A.[The efficient score function] Let

ĝ(x, θ, F ) =
f∗(x, F )∑S

s=1 a
∗
s(θ, F )Qs|X(x;θ)

Q̂s(θ,F )

, (19)

where

f∗(x, F ) =
S∑

s=1

as

∫
dFs

d(y, x)
dy,

a∗s(θ, F ) = aS+1[Q̂s(θ, F )− dFS+1(s)] + as,

and

Q̂s(θ, F ) =
∫
Qs|X(x; θ)ĝ(x, θ, F )dx. (20)

Then the efficient score function is given by

φ(s, z, θ0, F0) =
∂

∂θ

∣∣∣∣
θ=θ0

log p(s, z; θ, ĝ(x, θ, F0)). (21)

The proof of Theorem A is given in Appendix A.

Remark 3.3: Recall that, for each s = 1, . . . , S + 1, Fs,0 is the cdf for the true distribution

in the model Ps. In particular, when s = S + 1, the function F(S+1)0 is the cdf for the true

distribution on the sample space {1, . . . , S}, i.e., dF(S+1)0(i) = Qi(θ0, g0), i = 1, . . . , S. Note

that

f∗(x, F0) =
S∑

s=1

ws

∫
dFs,0

d(y, x)
dy

=
S∑

s=1

ws

∫
f(y|x; θ)1(y,x)∈Ss

g0(x)
Qs(θ0, g0)

dy =
S∑

s=1

ws

Qs|X(x; θ0)
Qs(θ0, g0)

g0(x).

Therefore, if Q̂s(θ0, F0) = Qs(θ0, g0) then

1 > a∗s(θ0, F0) = wS+1[Q̂s(θ0, F0)−Qs(θ0, g0)] + ws = ws > 0 (22)

and

ĝ(x, θ0, F0) =
f∗(x, F0)∑S

s=1ws
Qs|X(x;θ0)

Q̂s(θ0,F0)

= g0(x).

On the other hand, if ĝ(x, θ0, F0) = g0(x) then

1 > Q̂s(θ0, F0) =
∫
Qs|X(x; θ0)g0(x)dx = Qs(θ0, g0) > 0. (23)

13



Remark 3.4: The function ĝ(x, θ, F ) given by Equation (19) induces a version of the approxi-

mate least favorable submodel in Murphy and van der Vaart (2000). For s = 1, . . . , S + 1, let

Fs(z; θ′, g′) be the cdf for the density ps(z; θ′, g′) in the model Ps. Let F (θ′, g′) = wsFs(z; θ′, g′).

Then a version of the approximate least favorable submodel is given by

ĝ(x, θ, F (θ′, g′)) =
f∗(x, F (θ′, g′))∑S

s=1 a
∗
s(θ, F (θ′, g′)) Qs|X(x;θ)

Q̂s(θ,F (θ′,g′))

where

f∗(x, F (θ′, g′)) =
S∑

s=1

ws

∫
f(y|x; θ′)1(y,x)∈Ss

g′(x)
Qs(θ′, g′)

dy =
S∑

s=1

ws

Qs|X(x; θ′)
Qs(θ′, g′)

g′(x),

a∗s(θ, F (θ′, g′)) = wS+1[Q̂s(θ, F (θ′, g′))−Qs(θ′, g′)] + ws

and

Q̂s(θ, F (θ′, g′)) =
∫
Qs|X(x; θ)ĝ(x, θ, F (θ′, g′))dx.

Remark 3.5: Let F be the set of cdf’s on the sample space and, for ρ > 0, let

Cρ = {F ∈ F : sup
s,z

|F (s, z)− F (s, z)| < ρ}.

By Equations (22) and (23) and continuity of the functions with respect to (θ, F ) (continuity

will be verified in the next section), the following assumption should hold:

(T1) there are ρ > 0 and compact set Θ containing a neighborhood of θ0 such that, for s =

1, . . . , S and for all (θ, F ) ∈ Θ× Cρ,

1 > a∗s(θ, F ) ≥ δ > 0

and

1 > Q̂s(θ, F ) ≥ δ > 0.

This condition will be used to verify Condition (R3) in Theorem 1.

3.2 Asymptotic normality

We assume the
√
n-consistency of the empirical cdf

√
n‖Fn(s, z)− F0(s, z)‖ = OP (1),

and we verify conditions (R0), (R1), (R2), and (R3) so that we can apply Theorem 1 to show

the efficiency of the MLE based on the profile likelihood in this example.

Remark 3.6: In this example, we could assume the n1/4-consistency of the empirical cdf,

n1/4‖Fn(s, z)− F0(s, z)‖ = oP (1),

and verify conditions (R0), (R1)∗, (R2), and (R3) to apply Theorem 1. Since the vitrification

of both cases are similar, we present only one of them.

Condition (R0): This condition is verified by Theorem A.

Condition (R1): We assume that

14



(T2) for all θ ∈ Θ, the function f(y|x; θ) is twice continuously differentiable with respect to θ.

For any path g(t) = g(x, t), the densities

ps(y, x; θ, g(t)) =
f(y|x; θ)g(x, t)1(y,x)∈Ss∫

f(y|x; θ)g(x, t)1(y,x)∈Ss
dydx

and

pS+1(i; θ, g(t)) = Qi(θ, g) =
∫
f(y|x; θ)g(x, t)1(y,x)∈Si

dydx

are twice continuously differentiable with respect to θ and continuously differentiable with re-

spect to t. Therefore to verify condition (R1), all we need is the differentiability of the function

ĝ(x, θ, F ).

Because Equation (19) and Equation (20) form a system of equations, the differentiabil-

ity of these equations depends on the differentiability of the other. The function f∗(x, F ) =∑S
s=1 as

∫
dFs

d(y,x)dy is linear with respect to F . This implies that it is continuously path-wise

differentiable with respect to F . The function a∗s(θ, F ) = aS+1[Q̂s(θ, F )−dFS+1(s)]+as is twice

continuously differentiable with respect to θ and continuously path-wise differentiable with re-

spect to F if Q̂s(θ, F ) is. By assumption (T2), Qs|X(x; θ) =
∫
f(y|x; θ)1(y,x)∈Ss

dy is twice

continuously differentiable with respect to θ. By Equation (19) and Equation (20), these differ-

entiabilities imply that the maximizer ĝ(x, θ, F ) is twice continuously differentiable with respect

to θ and continuously path-wise differentiable with respect to F if Q̂s(θ, F ) is. Conversely, if

the function ĝ(x, θ, F ) is twice continuously differentiable with respect to θ and continuously

path-wise differentiable with respect to F , then so is the function Q̂s(θ, F ).

Derivatives of log-likelihood: The log-likelihood function for one observation is

log p(s, z; θ, ĝ(x, θ, F )) = {1s=S+11i∈{1,...,S} − 1s∈{1,...,S}1i=s} log Q̂i(θ, F )

+1s∈{1,...,S} {log f(y|x; θ) + log ĝ(x, θ, F )} . (24)

The induced score function is

φ(s, z, θ, F ) =
∂

∂θ
log p(s, z; θ, ĝ(x, θ, F ))

= {1s=S+11i∈{1,...,S} − 1s∈{1,...,S}1i=s}
˙̂
Qi,θ

Q̂i

(θ, F )

+1s∈{1,...,S}

{
ḟ

f
(y|x; θ) +

˙̂gθ

ĝ
(x, θ, F )

}
(25)

where ḟ = ∂
∂θf , ˙̂

Qi,θ = ∂
∂θ Q̂i and ˙̂gθ = ∂

∂θ ĝ. The derivatives of the induced score function with

respect to θ is

∂

∂θ
φ(s, z, θ, F ) = {1s=S+11i∈{1,...,S} − 1s∈{1,...,S}1i=s}


¨̂
Qi,θ

Q̂i

−

 ˙̂
Qi,θ

Q̂i

2
+1s∈{1,...,S}

 f̈f −
(
ḟ

f

)2

+
¨̂gθ

ĝ
−

(
˙̂gθ

ĝ

)2
 . (26)
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where f̈ = ∂2

∂θ2 f , ¨̂
Qi,θ = ∂2

∂θ2 Q̂i, and ¨̂gθ = ∂2

∂θ2 ĝ.

Condition (R2): We assume that

(T3) There is no a ∈ Rm such that aT ḟ
f (y|x; θ) is constant in y for almost all x.

The term Q̇i,θ

Qi
(θ0, F0) is a nonrandom vector and

˙̂gθ
ĝ (x, θ0, F0) is a function of x. Therefore, by

Equation (25) and assumption (T3), there is no a ∈ Rm such that aTφ(s, z, θ0, F0) is constant

in y for almost all x. By Theorem 1.4 in Seber and Lee (2003),
∑S

s=1wsEs,β0,F0(φφ
T ) is

nonsingular with the bounded inverse.

Conditions (R3): We assume that

(T4) envelope functions

sup
θ∈Θ

∥∥∥ḟ(y|x; θ)
∥∥∥ , sup

θ∈Θ

∥∥∥f̈(y|x; θ)
∥∥∥ , sup

θ∈Θ

∥∥∥∥∥ ḟf (y|x; θ)

∥∥∥∥∥ ,
sup
θ∈Θ

(∫ ∥∥∥ḟ(y|x; θ)
∥∥∥ dy)2

, sup
θ∈Θ

(∫ ∥∥∥∥∥ ḟf (y|x; θ)

∥∥∥∥∥ dy
)(∫ ∥∥∥ḟ(y|x; θ)

∥∥∥ dy)
are integrable;

(T5) non-random functions ‖ ˙̂
Qi,θ‖ and ‖ ¨̂

Qi,θ‖ are bounded by some positive constant L on the

set Θ× Cρ which we defined in (T1);

(T6) the classes{
ḟ

f
(y|x; θ) : θ ∈ Θ

}
,
{
Qs|X(x; θ) : θ ∈ Θ

}
,

{
Q̇s|X(x; θ) =

∂

∂θ
Qs|X(x; θ) : θ ∈ Θ

}
are Pθ0,g0-Donsker classes of functions.

Function ∂
∂θφ(s, z, θ, F ) is continuous in the parameters (θ, F ), the set Θ is compact, and

the set Cρ in condition (T1) is a Pθ0,g0-Donsker class (cf. van der Vaart (1998), page 273). By

Theorem 3 in van der Vaart and Wellner (2000), the class{
∂

∂θ
φ(s, z, θ, F ) : (θ, F ) ∈ Θ× Cρ

}
is Pθ0,g0-Glivenko-Cantelli if it has an integrable envelope function. In Appendix B, we show

that the class has integrable envelope function.

Also, in Appendix B, we show that the class of function

{φ(s, z, θ, F ) : (θ, F ) ∈ Θ× Cρ}

is Pθ0,g0-Donsker with square integrable envelope function.

Remark 3.7: Conditions (T2), (T3), (T4) and (T6) are satisfied by the logistic regression

model

f(y|x; θ) =
ey(θT x)

1 + eθT x

where y ∈ {0, 1}, x ∈ Rm, θ ∈ Rm.
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4 Discussion

We have shown the efficiency of the estimator based on the profile likelihood in general semi-

parametric model. But this does not answer the question that “Is the estimator based on

the profile likelihood by the method of Lagrange multipliers in Scott and Wild (1997, 2001)

efficient?”

In the example of the two-phase, outcome-dependent sampling design, the method in Scott

and Wild (1997, 2001) gives us a candidate function ĝ(x, θ, F ). In Theorem A, we showed that

the corresponding induced score function (Equation (21)) gives the efficient score function in

the example. Then Theorem 1 and its Corollary can be applied to showed that the estimator

is an asymptotically linear estimator with the efficient influence function. Thus the estimator is

efficient in this example. However, for general case, Theorem 1 can not be applied, since we

do not know that the candidate function ĝ(x, θ, F ) given by the method gives the efficient score

function.

Future work remains to prove or disprove the efficiency of the estimator based on the profile

likelihood by the method of Lagrange multipliers.

Appendix A: Proof of Theorem A

In Step 1, we find a function ĝ(θ, F ) = ĝ(x, θ, F ) by using the method of Scott and Wild (1997,

2001). In Step 2, we show that
∫

log p(s, z; θ, ĝ(θ, F0))dF0(s, z) satisfies Conditions (11) and (12)

in Theorem 2 so that the claim follows form this theorem.

Step 1: First, we find a function ĝ(x, θ, F ) under the assumption that the support of the

distribution of X is finite: i.e. supp(X) = {v1, . . . , vK}. Let (g1, . . . , gK) = (g(v1), . . . , g(vK)),

then log g(x) and Qs(θ, g) can be expressed as log g(x) =
∑K

k=1 1x=vk
log gk and Qs(θ, g) =∫

Qs|X(x; θ)g(x)dx =
∑K

k=1Qs|X(vk; θ)gk.

To find the maximizer (g1, . . . , gK) of∫
log p(θ, g)dF =

S∑
s=1

{
as

∫
(log f(y|x; θ) + log g(X)) dFs + (aS+1dFS+1(s)− as) logQs(θ, g)

}
at θ, differentiate

∫
log p(θ, g)dF with respect to gk,

∂

∂gk

∫
log p(θ, g)dF =

S∑
s=1

{
as

∫
1X=vk

dFs

gk
+ (aS+1dFS+1(s)− as)

Qs|X(vk; θ)
Qs(θ, g)

}
.

Let η be a Lagrange multiplier to account for
∑

k gk = 1. Set ∂
∂gk

∫
log p(θ, g)dF + η = 0.

Multiply by gk and sum over k = 1, . . . ,K. Then
∑S

s=1{as + (aS+1dFS+1(s)− as)}+ η = 0 or

η = −aS+1
∑S

s=1 dFS+1(s) = −aS+1. Therefore ∂
∂gk

∫
log p(θ, g)dF − aS+1 = 0 or

ĝ(vk, θ, F ) = gk =
∑S

s=1 as

∫
1X=vk

dFs

aS+1 −
∑S

s=1(aS+1dFS+1(s)− as)
Qs|X(vk;θ)

Qs(θ,g)

.
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This function is of the form in Equation (19).

Step 2: Condition (11) is verified in Remark 3.3. Now, we verify Condition (12). Let

g(x, t) be a path in the space of density functions with g(x, 0) = g0(x). Define α(t) = α(x, t) =

g(x, t)− g0(t) and write α′(x, 0) = ∂
∂t |t=0 α(x, t). Then

∂

∂t

∣∣∣∣
t=0

∫
log p(s, z; θ, ĝ(θ, F0) + α(t))dF0(s, z)

=
∂

∂t

∣∣∣∣
t=0

S∑
s=1

{
ws

∫
log(ĝ(x, θ, F0) + α(t))dFs,0 + (wS+1Qs(θ0, g0)− ws) logQs(θ, ĝ(θ, F0) + α(t))

}
=

∂

∂t

∣∣∣∣
t=0

∫
log(ĝ(x, θ, F0) + α(t))f∗(x, F0)dx

+
∂

∂t

∣∣∣∣
t=0

S∑
s=1

(wS+1Qs(θ0, g0)− ws) logQs(θ, ĝ(θ, F0) + α(t))

=
∫

α′(x, 0)
ĝ(x, θ, F0)

f∗(x, F0)dx+
S∑

s=1

(wS+1Qs(θ0, g0)− ws)

∫
Qs|X(x; θ)α′(x, 0)dx

Q̂s(θ, F0)

=
S∑

s=1

a∗s(θ, F0)

∫
Qs|X(x; θ)α′(x, 0)dx

Q̂s(θ, F0)
+

S∑
s=1

(wS+1Qs(θ0, g0)− ws)

∫
Qs|X(x; θ)α′(x, 0)dx

Q̂s(θ, F0)

=
S∑

s=1

{a∗s(θ, F0) + (wS+1Qs(θ0, g0)− ws)}
∫
Qs|X(x; θ)α′(x, 0)dx

Q̂s(θ, F0)

= wS+1

S∑
s=1

Q̂s(θ, F0)

∫
Qs|X(x; θ)α′(x, 0)dx

Q̂s(θ, F0)
= wS+1

S∑
s=1

∫
Qs|X(x; θ)α′(x, 0)dx

= wS+1

∫
α′(x, 0)dx = wS+1

∂

∂t

∣∣∣∣
t=0

∫
g(x, t)dx = 0.

where we used

a∗s(θ, F0) + (wS+1Qs(θ0, g0)− ws) = wS+1[Q̂s(θ, F0)−Qs(θ0, g0)] + ws + (wS+1Qs(θ0, g0)− ws)

= wS+1Q̂s(θ, F0).

Appendix B: Verification of conditions (R3) continued

The function B(x, θ, F ) and its derivatives: Let

B(x, θ, F ) =
S∑

s=1

a∗s(θ, F )
Qs|X(x; θ)

Q̂s(θ, F )
.

Then the maximizer (Equation (19)) is ĝ(x, θ, F ) = f∗(x,F )
B(x,θ,F ) .

Note that, since 1 > a∗s(θ, F ) ≥ δ > 0 and 1 > Q̂s(θ, F ) ≥ δ > 0 (assumption (T1)), for all

(θ, F ) ∈ Θ× Cρ,

δ = δ

S∑
s=1

Qs|X(x; θ) ≤ B(x, θ, F ) ≤ 1
δ

S∑
s=1

Qs|X(x; θ) =
1
δ
. (27)
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The first and second derivatives of B(x, θ, F ) with respect to θ are

Ḃθ(x, θ, F ) =
∂

∂θ
B(x, θ, F ) =

S∑
s=1

ȧ∗s,θQs|X

Q̂s

+ a∗s
Q̇s|XQ̂s −Qs|X

˙̂
Qs,θ

Q̂2
s

 (28)

and

B̈θ(x, θ, F ) =
∂2

∂θ2
B(x, θ, F )

=
S∑

s=1

ä∗s,θQs|X

Q̂s

+ 2ȧ∗s,θ
Q̇s|XQ̂s −Qs|X

˙̂
Qs,θ

Q̂2
s

+a∗s
Q̈s|XQ̂

2
s − 2Q̇s|X

˙̂
Qs,θQ̂s −Qs|X

¨̂
Qs,θQ̂s + 2Qs|X

˙̂
Q

2

s,θ

Q̂3
s

 .

Verifying the class {φ(s, z, θ, F ) : (θ, F ) ∈ Θ× Cρ} is Donsker:

By assumptions (T1) and (T6), the classes

{B(x, θ, F ) : (θ, F ) ∈ Θ× Cρ} and {Ḃθ(x, θ, F ) : (θ, F ) ∈ Θ× Cρ}

are uniformly bounded Pθ0,g0-Donsker classes. By Equation (27) and Example 2.10.9, page 192,

van der Vaart and Wellner (1996), the class{
1

B(x, θ, F )
: (θ, F ) ∈ Θ× Cρ

}
is a uniformly bounded Pθ0,g0-Donsker class. By Example 2.10.8, page 192, van der Vaart and

Wellner (1996), it follows that the class{
˙̂gθ

ĝ
(x, θ, F ) = −Ḃθ

B
(x, θ, F ) : (θ, F ) ∈ Θ× Cρ

}

is a uniformly bounded Pθ0,g0-Donsker class.

Finally, since the class
{

ḟ
f (y|x; θ) : θ ∈ Θ

}
is Pθ0,g0-Donsker (assumption (T6)) and bounded

in L1(Pθ0,g0) (assumption (T4)), and the functions
˙̂
Qi,θ

Q̂i
(θ, F ), i = 1, . . . , S, are bounded nonran-

dom continuous functions on the set θ×Cρ (see (a) below), by Equation (25) and Example 2.10.7,

page 192, van der Vaart and Wellner (1996), we have the class {φ(s, z, θ, F ) : (θ, F ) ∈ Θ× Cρ}
is Pθ0,g0-Donsker.

Verifying the classes have integrable and square integrable envelope functions:

We show that the class {φ(s, z, θ, F ) : (θ, F ) ∈ Θ× Cρ} has square integrable function and

the class
{

∂
∂θφ(s, z, θ, F ) : (θ, F ) ∈ Θ× Cρ

}
has integrable function.

By Equation (25) and Equation (26), it is enough to show that

(a)
∥∥∥ Q̇i,θ

Qi

∥∥∥, ∥∥∥ Q̈i,θ

Qi

∥∥∥, ∥∥∥ Q̇i,θ

Qi

∥∥∥× ∥∥∥ Q̇j,θ

Qj

∥∥∥, i, j = 1, . . . , S, are bounded by some constant;
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(b) the classes
{

˙̂gθ
ĝ (x, θ, F ) : (θ, F ) ∈ Θ× Cρ

}
,
{

¨̂gθ
ĝ (x, θ, F ) : (θ, F ) ∈ Θ× Cρ

}
,{(

˙̂gθ
ĝ (x, θ, F )

)2
: (θ, F ) ∈ Θ× Cρ

}
,
{(

ḟ
f (y|x; θ)

)T ˙̂gθ
ĝ (x, θ, F ) : (θ, F ) ∈ Θ× Cρ

}
have an

integrable envelope function.

Derivatives of Qs(θ, F ): Derivatives ˙̂
Qi,θ = ∂

∂θ Q̂i and ¨̂
Qi,θ = ∂2

∂θ2 Q̂i are non-random functions

of (θ, F ) on a compact set Θ×Cρ. By assumption (T1), Q̂s(θ, F ) ≥ δ > 0 for all (θ, F ) ∈ Θ×Cρ.

This and (T5) imply
∥∥∥ Q̇i,θ

Qi

∥∥∥ ≤ L
δ ,
∥∥∥ Q̈i,θ

Qi

∥∥∥ ≤ L
δ ,
∥∥∥ Q̇i,θ

Qi

∥∥∥× ∥∥∥ Q̇j,θ

Qj

∥∥∥ ≤ L2

δ2 . Therefore we have (a).

Envelope functions for derivatives:

Since 0 < as < 1 (s = 1, . . . , S, S + 1), with assumption (T5), we have

‖ȧ∗s,θ(θ, F )‖ ≤ ‖ ˙̂
Qs,θ(θ, F )‖ ≤ L. (29)

Combine assumption (T1), (T5), Equation (28), (29) and
∑S

s=1Qs|X(x; θ) = 1 to get

‖Ḃθ(x, θ, F )‖ ≤
S∑

s=1

‖ȧ∗s,θ‖Qs|X

Q̂s

+ a∗s
‖Q̇s|X‖Q̂s +Qs|X‖

˙̂
Qs,θ‖

Q̂2
s


≤

S∑
s=1

{
L
Qs|X

δ
+ 1 ·

‖Q̇s|X‖ · 1 +Qs|XL

δ2

}

≤ L

δ
+
∫
‖ḟ(y|x; θ)‖dy + L

δ2

= c1

∫
‖ḟ(y|x; θ)‖dy + c2 (30)

where c1 = 1
δ2 > 0 and c2 = L

δ + L
δ2 > 0.

Similarly, for some positive constants c1, c2, c3,

‖B̈θ(x, θ, F )‖ ≤ c1

∫
‖f̈(y|x; θ)‖dy + c2

∫
‖ḟ(y|x; θ)‖dy + c3. (31)

Since B(x, θ, F ) ≥ δ > 0, Equations (30) and (31) imply that, for some positive constants

c1, c2, c3, c4, ∥∥∥∥∥ ˙̂gθ

ĝ
(x, θ, F )

∥∥∥∥∥ =

∥∥∥∥∥−Ḃθ

B
(x, θ, F )

∥∥∥∥∥ ≤ c1

∫
‖ḟ(y|x; θ)‖dy + c2,

∥∥∥∥∥ ˙̂gθ

ĝ
(x, θ, F )

∥∥∥∥∥
2

≤ c1

(∫
‖ḟ(y|x; θ)‖dy

)2

+ c2

∫
‖ḟ(y|x; θ)‖dy + c3,

∥∥∥∥∥ ¨̂gθ

ĝ
(x, θ, F )

∥∥∥∥∥ =

∥∥∥∥∥∥−B̈θ

B
+ 2

(
Ḃθ

B

)2
∥∥∥∥∥∥

≤ c1

∫
‖f̈(y|x; θ)‖dy + c2

(∫
‖ḟ(y|x; θ)‖dy

)2

+ c3

∫
‖ḟ(y|x; θ)‖dy + c4,

and∥∥∥∥∥∥
(
ḟ

f
(y|x; θ)

)T ˙̂gθ

ĝ
(x, θ, F )

∥∥∥∥∥∥ =

∥∥∥∥∥∥
(
ḟ

f
(y|x; θ)

)T
Ḃθ

B
(x, θ, F )

∥∥∥∥∥∥ ≤
∥∥∥∥∥ ḟf (y|x; θ)

∥∥∥∥∥
(
c1

∫
‖ḟ(y|x; θ)‖dy + c2

)
(by the Cauchy-Schwarz inequality). By assumption (T4), we have condition (b).
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Appendix C: Implicit function theorem

This version of the implicit function theorem is taken from Theorem 4E, Zielder, 1995, page

250. Let X, Y , and Z be Banach spaces, and let F (u, v) is an n-times continuously Fréchet

differentiable map from an open neighborhood U(u0, v0) ⊂ X × Y of (u0, v0) to Z such that

F (u0, v0) = 0

and

Fv(u0, v0) : Y → Z is bijective.

Then there exist r > and ρ > 0 such that, for each given u ∈ X with ‖u−u0‖ < ρ, the equation

F (u, v) = 0

has a solution v, denoted by v(u), such that

‖v − v0‖ < r.

Moreover, the function u→ v(u) is n-times continuously Fréchet differentiable.
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