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SUMMARY

The cumulative logit or the proportional odds regression model is one of the popular
choices to study covariate effects on ordinal responses. This paper provides some graphi-
cal and numerical methods for checking the adequacy of the proportional odds regression
model. The methods focus on evaluating functional misspecification for specific covari-
ate effects, but misspecification of the link function can also be dealt under the same
framework. For the logistic regression model with binary responses, Arbogast and Lin
[1] developed similar graphical and numerical methods for assessing the adequacy of the
model using the cumulative sums of residuals. The paper generalizes their methods to
ordinal responses and illustrates them using an example from the VA Normative Aging
Study. Simulation studies comparing the performance of the different diagnostic meth-
ods indicate that some of the graphical methods are more powerful in detecting model
misspecification than the Hosmer-Lemeshow type goodness-of-fit statistics for the class of
models studied.

Keywords: Cumulative residuals, Fasting blood glucose, Gaussian Process, Goodness-
of-fit, Hosmer-Lemeshow statistic, Normative Aging Study, Ordinal data.
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1 Introduction

Categorical responses with an ordinal scale often occur in many applications. For exam-

ple, migraine severity or degree of pain is often recorded on a scale of ”none”, ”mild”,

”moderate” and ”severe”. Often there are clinical reasons for recording certain continu-

ous measurements in an ordinal scale, for example, fasting blood glucose is often recorded

in three categories, clinically defined as normal level, impaired level, and diabetic level.

One may want to study the effect of a biomarker or a treatment or other covariates like

age, ethnicity on such ordinal responses through a generalized linear model with linear

predictors. For ordinal responses, the proportional odds model [2] is currently the most

popular model that uses logits of cumulative probabilities. For a c-category ordinal re-

sponse variable Y and a set of predictors X with corresponding effect parameters β, the

model has the form

logit[P (Y ≤ j | X)] = αj − βTX, j = 1, ..., c − 1. (1)

(The minus sign in the predictor term makes the sign of each component of β have the

usual interpretation in terms of whether the effect is positive or negative.) The parameters

{αj}, called cut points, are usually nuisance parameters of little interest. This model

applies simultaneously to all c − 1 cumulative probabilities, and it assumes an identical

effect of the predictors for each cumulative probability. By collapsing the response into

the binary outcome categories (≤ j, > j), for a fixed j, the proportional odds model

reduces to a standard logistic regression model. Model (1) implies that each of the c − 1

logistic regression models holds with the same set of coefficients β.

Although there exists many models to analyze ordinal data (see Reference [3], Ch.

7), a major advantage of using the proportional odds model is that to fit this model,

it is unnecessary to assign scores to the response categories. So, when the model fits

well, different studies using different scales for the response variable should give similar

conclusions. Liu and Agresti [4] gave the detailed motivations of using proportional odds
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models. Agresti [3] discusses model fitting for the proportional odds model. Agresti [3]

also describes other possible alternatives for modeling ordinal responses like the adjacent

category logit model or the continuation-ratio logits model.

A common method used to test model fit for categorical responses is to compare ob-

served frequencies and estimated expected frequencies under the assumed model, via a

chi-squared type goodness of fit statistics. These goodness of fit statistics [5] use the

grouping strategy based on the values of estimated probabilities, and compare the ob-

served and the expected responses in these groups. Lipsitz et al. [6] generalized the

popular Hosmer–Lemeshow statistic proposed for a logistic regression model with binary

data to the situation when one has ordinal responses. Toledano and Gatsonis [7] gave

a generalization of a receiver operating characteristic (ROC) curve that plots sensitivity

against (1 - specificity) for all possible collapsing of c categories. Kim [8] proposed a

graphical method for assessing the proportional odds assumption. All of the above meth-

ods check the overall adequacy of the proportional odds model. They do not give a close

view of model misspecification for the functional form of specific covariates.

Lin et al. [9] and Arbogast and Lin [1] developed graphical and numerical methods for

assessing the adequacy of the functional form of a covariate in the logistic regression model

using the cumulative sums of residuals. In standard linear regression models, the plot of

residuals against the explanatory variable X is often viewed as a diagnostic tool to examine

model misspecification in X. The residuals for a binary logistic model are typically

defined as the difference between observed response, and the estimated probability of the

response, conditional on the covariates. The plot of the residuals vs X is hard to interpret

in such cases and Arbogast and Lin [1] recommend using cumulative sums of the residuals

over the covariate of interest to check for functional misspecification in X. They prove

that when the model is correctly specified, the cumulative residual process converges

weakly to a zero-mean Gaussian process. Then, they proceed to compare the observed

cumulative residuals pattern with the simulated realization based on the limiting Gaussian

3



process under the null hypothesis that the model is correctly specified. When c = 2, the

proportional odds model is the logistic regression model. The current paper generalizes

the methods proposed by Arbogast and Lin [1] for checking model misspecification to the

proportional odds model with c > 2 using two different routes.

One approach considers the proportional odds model as c−1 logistic regression models,

where the response categories are collapsed into the binary outcome (≤ j, > j), j =

1, . . . , c − 1. The cumulative sums of residuals have the same form as the ones given by

Arbogast and Lin [1] for each of the collapsed logistic models and thus convergence to the

limiting Gaussian process follows. In the second approach, the proportional odds model

(1) is viewed as a member of the class of multivariate generalized linear models (MGLM,

see Reference [10] for a detailed definition). The response variable for subject i in a MGLM

is a vector of indicator responses Yi = (Yi1, Yi2, . . . , Yi,c−1)
T , where Yij = 1 if subject i

falls in category j and is 0 otherwise. Consequently, the residual, which is the difference

between the observed value of the response and the predicted probability of the response

for the ith subject is a (c−1)×1 vector. We then consider a vector of Gaussian processes for

the limiting distribution (process) corresponding to the multivariate cumulative residuals

and proceed to assess model misspecification.

The remainder of the paper is organized as follows. Sections 2 and 3 discuss the

two approaches respectively. Section 4 gives an example of a recent dataset from the

Normative Aging Study [11] which studies the effect of two markers of oxidative stress

namely, white blood cell count and C-reactive protein on fasting blood glucose (FBG)

measurement in men in the age group of 48 to 94 years. FBG is measured into three

clinically defined ordinal categories. In Section 5, we evaluate the performance of these

approaches through a small-scale simulation study. The last section contains concluding

remarks.
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2 Binary Approach

Let Yi = (Yi1, Yi2, . . . , Yi,c−1)
T be the response for subject i, where i = 1, . . . , n. If the

subject responds as level j, then Yij = 1 and Yih = 0 for all h 6= j = 1, . . . , c − 1. If the

response is at baseline level c, then Yi = (0, 0, . . . , 0)T .

In the binary approach, we first define the collapsed responses as Y ∗

ij =
∑j

h=1 Yih,

where j = 1, . . . , c − 1. That is, Y ∗

ij is a binary response variable having values 1, or 0.

It can be considered as a binary outcome when we collapse the response categories into

(≤ j, > j), j = 1, . . . , c − 1. If the response category is ≤ j, then Y ∗

ij = 1. Otherwise,

Y ∗

ij = 0. For the jth collapsing, the residual is defined as,

r∗ij = Y ∗

ij − P (Y ≤ j | Xi), (2)

where Xi is the covariate vector for the ith subject and P (Y ≤ j | Xi) satisfies the

proportional odds model (1), which is simply a logistic regression model for a fixed j.

Therefore, this approach is equivalent to the method used for the logistic regression model

given by Arbogast and Lin [1] for each specific collapsing. Let δT = (α1, α2, . . . , αc−1, β
T )

and let δT
j = (αj , β

T ), which represents the parameters for the jth collapsed model (1).

Consider the following stochastic process

W
(j)
k (t; δ̂) = n−1/2

n∑

i=1

r̂∗ijI(Xik ≤ t),

where Xik is the kth component of Xi and r̂∗ij = Y ∗

ij − P̂ (Y ≤ j | Xi). The form W
(j)
k (t; δ̂)

uses a cumulative sum of the residuals r̂∗ij over the values of Xik. Following Arbogast

and Lin’s argument, under the null hypothesis H0 that model (1) is correct, W
(j)
k (t; δ̂)

converges weakly to a zero-mean Gaussian process. The distribution of the Gaussian

process can be approximated by that of

Ŵ
(j)
k (t; δ̂) = n−1/2

n∑

i=1

{
I(Xik ≤ t) + η̂T (t, δ̂j)

[
n−1I(δ̂j)

]
−1

[
1
Xi

]}
Zi r̂

∗

ij , (3)
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where

η̂(t, δ̂j) = n−1/2∂W
(j)
k (t; δ)/∂δj |ˆδj

= −n−1

n∑

i=1

P̂ (Y ≤ j | Xi)
[
1 − P̂ (Y ≤ j | Xi)

]
I(Xik ≤ t)

[
1
Xi

]
,

and, where I(δ̂j) is the information matrix, and {Zi, i = 1, . . . , n} are independent stan-

dard normal random variables. The proof of this result was given in Arbogast and Lin

[1].

To check model misspecification for covariate Xik, we plot the observed cumulative

residuals along with a large number of simulated realizations based on the Gaussian

process (3) to compare their relative patterns. Arbogast and Lin [1] used the Kolmogorov-

type supremum statistic GWk
:= supt∈R

|Wk(t; δ̂)|, where R denotes the real line and Wk

stands for W
(j)
k , j = 1, . . . , c − 1 in our case. Let gWk

denote the observed value of

the supremum statistic GWk
. We cannot compute the p-value P(GWk

≥ gWk
) of the

test directly, but P(GWk
≥ gWk

) can be approximated by P(GcWk
≥ gWk

), where GcWk
=

supt∈R
|Ŵk(t; δ̂)|. The P(GcWk

≥ gWk
) is estimated by generating a large number (≥ 1000)

of realizations Ŵk(t; δ̂). That is, the p-value of the test is obtained by computing the

proportion of the simulated realizations greater than the largest value of |W
(j)
k (t; δ̂)| over

t, because the extreme values of W
(j)
k (t; δ̂) would suggest that functional misspecification

exists for covariate Xik. For each collapsed response, it results in a single plot and a

single p-value. In total, there are c− 1 plots denoted by B1, . . ., Bc−1. One might use the

Bonferroni method to adjust for the significance level while combining inference from all

these plots, so that the overall Type I error rate is less than or equal to the sum of the

individual error rates for all c−1 plots. The Bonferroni adjusted significance level is thus

the significance level divided by c − 1. Later, we refer to it as Bonf(B).

Remark: The same method for assessing model misspecification in terms of covariates

can be used to judge adequacy of the proportional odds link function where the cumulative

residuals are summed over the linear predictor
[
1, XT

i

]
δj instead of the covariate Xik.
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Graphical tools can be constructed exactly as in the same way as above by checking

whether the observed realization is a random happenstance under the null model or an

occurrence beyond chance.

3 Multivariate Approach

For the multivariate approach, we assume that Yi = (Yi1, Yi2, . . . , Yi,c−1)
T is a multi-

nomially distributed random variable with parameter πi = (πi1, πi2, . . . , πi,c−1)
T , where

πij = P (Y = j | Xi). For the proportional odds model (1), πij = P (Y ≤ j | Xi)−P (Y ≤

j − 1 | Xi). The multivariate residuals can be written as a vector

ri = Yi − πi .

We consider a vector of stochastic processes

Wm
k (t; δ̂) = n−1/2

n∑

i=1

I(Xik ≤ t)r̂i .

If the model holds, Wm
k (t; δ̂) converges weakly to a vector of zero-mean Gaussian pro-

cesses. The distribution of the processes can be approximated by

Ŵm
k (t; δ̂) = n−1/2

n∑

i=1

[
I(Xik ≤ t)r̂i + η̂T (t, δ̂)Ω̂

−1
Ûi

]
Zi

where Zi are independent standard normal random variables, η(t, δ) = n−1/2∂Wm
k /∂δ =

−n−1
∑

i I(Xik ≤ t)∂πi

∂δ
, Ω = n−1× the scaled Information Matrix, and Ui is the score

function for subject i. The proof of this result is furnished in the appendix.

Instead of using the multivariate residuals r, we can use the multivariate cumulative

residuals r∗ defined by

r∗i = Y∗

i − π∗

i ,

where r∗i = (r∗i1, r∗i2, . . . , r∗i(c−1))
T , Y∗

i = (Y ∗

i1, Y ∗

i2, . . . , Y ∗

i(c−1))
T , and π∗

i = (P (Y ≤

1|Xi), P (Y ≤ 2|Xi), . . . , P (Y ≤ c − 1|Xi))
T . Section 2 defined the notations r∗ij and
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Y ∗

ij in (2). We consider a vector of stochastic processes

W∗

k(t; δ̂) = n−1/2
n∑

i=1

I(Xik ≤ t)r̂∗i .

Similarly, if the model holds, W∗

k(t; δ̂) converges weakly to a vector of zero-mean Gaussian

processes. The distribution of the processes can be approximated by Ŵ∗

k(t; δ̂), which has

the same form as Ŵm
k (t; δ̂) but replacing r̂i with r̂∗i and in η replacing π̂i with π̂∗

i .

Unlike the binary approach, we can not plot the observed multivariate residuals di-

rectly, because both Wm
k (t; δ̂) and W∗

k(t; δ̂) are vectors. We consider a continuous func-

tion f(·)

f : R
c−1 → R ,

where R
c−1 denotes the (c − 1)−dimensional real plane. Applying function f(·) to the

above stochastic processes, the continuous mapping theorem implies that f(Wk) and

f(Ŵk) converge to the same functional applied to the limiting stochastic process (not

necessarily Gaussian), where Wk stands for either Wm
k or W∗

k. Define the Kolmogorov-

Smirnov type supremum statistic as Gf(Wk) := supt∈R
|f(Wk(t; δ̂))|. Let gf(Wk) denote the

observed value of Gf(Wk). Similar to the GWk
in the binary approach, we cannot compute

the exact p-value P(Gf(Wk) ≥ gf(Wk)) of the test directly, but P(Gf(Wk) ≥ gf(Wk)) can be

approximated by P(Gf(cWk) ≥ gf(Wk)), where Gf(cWk) = supt∈R
|f(Ŵk(t; δ̂))|. The p-value

P(Gf(cWk) ≥ gf(Wk)) is estimated by generating a large number (≥ 1000) of realizations

Ŵk(t; δ̂) and by computing the proportion of the Gf(cWk) greater than the largest value of

|f(Wk(t; δ̂))| over t. The function f(·) needs to satisfy that f(0) = 0 and a monotonicity

condition of the form, for every |a| < |b|, |f(a)| < |f(b)|. For multivariate comparisons

“<” stands for the product order: (a1, . . . , ac−1) = a < b = (b1, . . . , bc−1) iff a1 <

b1, . . . , ac−1 < bc−1, similarly |a| stands for (|a1|, . . . , |ac−1|). Details of the proof for the

asymptotical equivalence of f(Wk) and f(Ŵk) is relegated to the appendix. We also

show the proof of consistency of the supremum tests against any departures from Model

(1).
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There are several options available for the choice of function f(·). This article suggests

the following simple choices:

sum(W) := f(W) =
∑c−1

j=1(W )j

max(W) := f(W) = max|W|

prod(W) := f(W) =
∏c−1

j=1(W )j

where (W )j is the jth component in the vector W.

In addition, the p-value of the test can be calculated in the same way as in the binary

approach using a Bonferroni adjustment. We plot the observed multivariate residuals r

(or r∗) with the simulated realizations separated by rows to create c − 1 plots, denoted

by (Wm)1, . . ., (Wm)c−1 (or (W∗)1, . . ., (W∗)c−1). If the model is correct, the null

hypothesis is accepted for each of the plots. We can adjust the significance level so that

the overall Type I error rate is less than or equal to the sum of the individual error rates

for all c − 1 plots. It leads to another two diagnostic method denoted by Bonf(Wm) and

Bonf(W∗). Table 1 gives a summary of all graphical diagnostic methods corresponding

to the two approaches. Details of the simulation process and proofs are relegated to the

appendix.

The multivariate generalization of the diagnostic approach proposed by Arbogast and

Lin [1] and the associated results are new contributions of this article. The extension

of the results to MGLM has not previously been developed in the literature. In the

following, we discuss an example and conduct a simulation study illustrating the different

diagnostics proposed in Sections 2 and 3.

4 Example

The Normative Aging Study (NAS) is a multidisciplinary longitudinal study of aging in

men established by the Veteran’s Administration in 1963. NAS subjects have reported

for medical examination every 3 to 5 years. Though the study records data on a wide

spectrum of variables, including several health related measures, dietary and behavioral

exposures, exposure to metals, and, psychosocial events, our analysis focuses on exploring
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the relationship of fasting blood glucose (FBG) with two markers of systemic inflamma-

tion, namely, white blood cell count (wbc) and blood levels of C-reactive protein (crp)

after controlling for age and smoking status. The measurements were taken during Jan-

uary, 2000 to December, 2004 and we consider only the last complete observation available

on the subject in case multiple measurements were available on the same subject. The

current dataset contains observations on 682 men in the age range of 48 to 93 years. FBG

was categorized into three categories according to clinical definition of diabetes [12], with

FBG < 110mg/dl termed as normal (category 1), between 110 and 126 mg/dl termed as

impaired fasting glucose (category 2) and ≥ 126mg/dl termed as diabetes (category 3). It

has been suggested in the literature that oxidative stress-induced inflammatory response

increases insulin resistance, resulting in hyperglycemia or elevated levels of FBG which in

turn causes oxidative stress again [13]. Inflammation is known to be a risk factor for dia-

betes [14]. White blood cell count and C-reactive protein can be viewed as biomarkers of

systemic inflammation and thus could potentially be associated with FBG levels, leading

to this analysis.

We first try to fit a simple model that includes linear terms of the covariates wbc, crp,

age and smoking. In this analysis the effect of wbc on FBG turns out to be marginally

significant with p-value 0.0857 with fitted estimate of β as 0.041, crp is not significant

with p-value 0.27 and fitted estimate of β as 0.094 (see Table 4). The interpretation of

the fitted model, for example, in terms of the wbc effect is that given fixed values of all

other covariates in the model, the odds of having fasting blood glucose towards higher end

of the FBG scale with one unit increase in WBC are estimated to be e0.041 or 1.04 times

higher than having values on the lower end of the FBG scale. Neither age, nor smoking

status was found to be associated with FBG levels. So there appears to be a positive

association between FBG and wbc and crp, but none of them are statistically significant.

We used different diagnostic tools to check the model misspecification for age, smoking,

wbc and crp. Table 2 shows the p-value corresponding to each of the graphical methods.
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Figure 1 gives the plot using the method (Wm)1 for wbc while Figure 2 gives the same

for crp. The dark black dashed line indicates the observed process and the fine solid

lines indicate the simulated realizations. We calculate the p-value using 1000 simulated

realizations, while the figure only show 100 of them due to the capacity of the image

file. The p-value for testing that the model has a correct functional form in wbc is 0.055

whereas the p-value corresponding to right model specification in terms of crp is given by

0.108. The results suggest that there is certain degree of model misspecification for the

proportional odds model with the covariate wbc and crp but not with the covariates age

and smoking. The raw scatter plots of actual FBG measurements on a continuous scale

(not included in the text) also indicated a non-linear relationship between FBG and wbc

and crp. Since the correlation between wbc and crp in the original dataset were very weak

(0.10) we treat the model specification issue in each predictor separately, which may not

be optimal in every situation. We discuss joint multivariate extensions of the proposed

method in our concluding discussion.

We re-fit the proportional odds model including a quadratic and cubic term of wbc and

a quadratic term in crp in Table 4. The linear and quadratic terms are significant in wbc

with the cubic term marginally significant. The linear term in crp is also significant in the

new model. The results corresponding to age and smoking remain almost unchanged in

the second model, with both being non-significant. Table 3 shows the p-value of each of

the graphical diagnostic for the model including higher order powers of wbc and crp. The

graphic diagnostics do not show model misspecification for the new model. Figure 3 shows

the plot using the method (Wm)1 for the new model for wbc and Figure 4 shows the same

for crp . The p-values are 0.51 and 0.761 respectively, indicating that the functional terms

chosen in the final model is satisfactory. In terms of the actual FBG data on a continuous

scale, it appears that there is a positive association between FBG and crp and wbc values

for lower values of crp and wbc, below a certain threshold, but the relationship actually

reverses or becomes less pronounced for higher extreme levels of these biomarkers, thus

11



overall showing a non-linear pattern. There appears to be a non-linear threshold effect

in the association between FBP with both crp and wbc when we analyzed the continuous

FBG data as well.

5 Simulations

In the previous section, the article proposes two approaches including 9 graphical diag-

nostic methods to detect model inadequacy in the proportional odds model. To compare

the performances of these methods, in this section we undertake a small-scale simulation

study for investigating the power under a fixed alternative H1 and the Type I error rate

under H0. We investigate two forms of functional misspecification in a single covariate

X. We consider discrete X in one scenario and continuous in the other. For each situa-

tion, the empirical Type I error rate and powers are estimated based on the proportion

of rejected null hypotheses in 10,000 simulated datasets.

Scenario 1: Let c = 3. We consider the true model as follows:

logit[P (Y ≤ j | X)] = αj − β1 X − β2X
2, j = 1, 2. (4)

We first generate grouped categorical X observations with values ranging from -5 to +5

with equal probability, representing a discrete uniform distribution. Conditional on the X-

values Y values are generated from Model (4) by choosing α1 = −2, α2 = −1, β1 = +0.25

and β2 = 0.0,−0.05,−0.1, and then simulating multinomial random variables with three

categories. We generate 110 observations in each dataset, rendering approximately 10

occurrences for each distinct X-value on an average.

We try to fit a simple model with just the linear term to the simulated data with X2

omitted, namely,

logit[P (Y ≤ j | X)] = αj − β1 X, j = 1, 2. (5)

When β2 = 0.0, the model is correctly specified and we can estimate the rejection rate
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under this H0 and compare this estimate of Type I error rate with the significance level

(α) which was always set at 0.05. When β2 = −0.05, or −0.1, we evaluate the performance

of the different graphical diagnostic methods by their power to detect departures from

the correct model. Table 5 shows the results for this scenario in the first 3 columns.

Among all the methods compared, the naive binary collapsing approach exhibits the worst

performance. It fails to maintain the nominal Type I error level and the estimated Type

I error rate is about twice the desired level of significance α (= 0.05). The multivariate

approaches based on the residuals and the cumulative residuals produce better results.

Both of the multivariate residuals (r) and multivariate cumulative residuals (r∗) maintain

the correct level of significance under a correctly specified model with β2 = 0. The power

for the multivariate methods based on the functionals sum(Wm) and sum (W∗) appear

to be the best.

Scenario 2 The second scenario represents a situation where the cumulative logit prob-

abilities associated with the response are related in a non-linear manner with X, but has

a linear form in cos(X). The correct model is as follows:

logit(Pr(Y ≤ j | X)) = αj − β cos X, j = 1, 2. (6)

with α1 = −1, α2 = 1 and β = 0,−1,−3. We simulated X from a standard normal

distribution and conditional on X simulated Y from the multinomial distribution with

probabilities defined via (6). Again we fit each simulated dataset using the model (5)

with a linear term of X. Table 5 shows the results in the last 3 columns. Similar to

the first scenario, the binary collapsing approach gives a overly liberal result that rejects

the null hypothesis more often than we expect and consequently has high power values.

Among the methods in the multivariate approach, the sum(W∗) has the best performance

in terms of maintaining Type I error and attaining high power values.

A goodness-of-fit statistics as proposed in Lipsitz et al. [6] based on the mean score are

also included in the simulation study for comparison purposes. According to percentiles
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of the predicted mean score, subjects are partitioned into G regions as defined in Lipsitz

et al. [6]. Given the partition of the data, the following model is fitted

logit[Pr(Y ≤ j | X)] = αj − βTX +
G−1∑

g=1

Iigγg (7)

where Iig are group indicators with Iig = 1, if sT π̂i is in region g and Iig = 0 otherwise for

some score s. If model (5) is correct, then γ1 = γ2 = · · · = γG−1 = 0 independently of the

chosen regions and scores. We simply test H0 : γ1 = γ2 = · · · = γG−1 = 0 and compute

a likelihood-ratio (LR), Wald and a score statistic. We refer to this statistic as Hosmer-

Lemeshow (HL)-type statistic, because the idea stems from the HL statistic developed

for logistic regression as extended to ordinal responses. The LR test, the Wald-test and

the score test in this case are asymptotically equivalent and showed quite similar power

values, hence, Table 5 only lists the result of the HL-type score tests.

For the first scenario, Table 5 also gives the Wald test on the null hypothesis H0:

β2 = 0. If we do know that the correct model includes the X2 term, this test is optimal

as one would expect, but the Wald test is not applicable when the true functional form is

unknown. Thus in situation 2, we cannot formulate an appropriate Wald test to compare

the two models in terms of a single parameter.

Summary of Simulation Results: In general, the graphical diagnostic methods based

on sum(W) and prod(W) have good power properties. We do expect the graphical diag-

nostic methods to provide a lower power compared to the Wald test when the true model

contains the term X2 as in Scenario 1. Unlike the Wald test, the graphical diagnostic

methods do not focus on any specific term. It checks model misspecification for a wide

range of the misspecification in a non-parametric manner (e. g., the functional form could

be anything like X2, logX, X3, cos X etc). Arbogast and Lin [1] also pointed out that

the Wald test cannot be used to check whether the chosen functional term is satisfactory,

which can be achieved in our graphical approach. Remarkably, some of the graphical

diagnostic methods are very comparable with the optimal Wald test in terms of power for
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Scenario 1, when one is testing for the missing term in the true model, with a true model

known. For example, the sum(W∗) gives the power of 0.947 when the true coefficient of

X2 is −0.10. The Wald test gives a power of 0.994 in comparison. On the other hand, the

graphical methods of “Bonf”, “sum” and “prod” using the cumulative residuals (r∗) in

the multivariate approach have higher power than the overall Hosmer-Lemeshow test in

scenario 1. The methods with “sum” and “prod” using the cumulative residuals (r∗) still

give higher power than the overall Hosmer-Lemeshow test in Scenario 2. The diagnostic

based on sum(W∗) appear to be the best choice based on our limited simulation settings.

6 Discussion

This article proposes graphical diagnostic methods based on two approaches to test model

misspecification for the proportional odds regression models. In the naive binary ap-

proach, we treat the proportional odds model as c − 1 collapsed logistic regression mod-

els. Using the cumulative sums of residuals, the graphical diagnostic method extends

previously introduced techniques by Arbogast and Lin [1]. However, according to the

simulations, it is more appropriate to treat the residuals in a multivariate format as in

the second approach and then consider a vector of stochastic processes to represent the

limiting behavior of the residuals. In this way, the asymptotic Gaussian processes (Ŵk)

take the correlation between the ordinal responses into account which is ignored in the

binary approach.

In the multivariate approach, both the multivariate residuals (r) and the cumulative

residuals (r∗) perform better than the binary approach but cumulative residuals outper-

form the multivariate residuals in our simulation study. For instance, in both simulation

scenarios, the methods based on r∗ are better in terms of power than the ones based on r,

while maintaining nominal error levels. Furthermore, among the different choices for the

functions to combine the components of a vector, f(·), the “sum” tends to be the best

among the ones we considered, in most of our simulations.
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Lin et al. [9] noted that the tests are slightly more powerful when the process has the

form

W
(j)
k (t; δ̂) = n−1/2

n∑

i=1

r̂∗ijI(t − b < Xik ≤ t),

where b covers the lower half-plane of the covariates. In our large amount of simulations

that there is not space to report, including b doesn’t give consistently higher power. In

general, we suggest taking b = ∞.

Following Lin et al. [9], we can extend our method and consider a vector-valued

stochastic process to check the functional form of a set of multivariate covariates

Wm
o (t; δ̂) = n−1/2

n∑

i=1

I(Xi ≤ t)r̂i,

where I(Xi ≤ t) is a diagonal matrix with I(Xij ≤ t) as the jth entry on the diagonal. The

Wm
o (t; δ̂) converges weakly to a vector of zero-mean Gaussian processes. The distribution

of the processes can be approximated by Ŵm
o (t; δ̂), which has the same form as Ŵm

k (t; δ̂)

by replacing I(Xik ≤ t) with I(Xi ≤ t). Similarly, we can consider W∗

o(t; δ̂) as well.

For a broad range of applications, we can use Ŵk(t; δ̂) to a general multivariate gener-

alized linear model and then use a function to combine the components of the multivariate

residuals (or processes). These methods provide a good alternative to check the model fit

and whether the chosen functional term is satisfactory. Simulation studies indicate they

have power advantages compared to standard Hosmer-Lemeshow type partition-based

statistic.

To conclude, in clinical investigations, as in the Normative Aging Study example,

investigators are often misled about the true nature of association between a predictor

and a response due to fitting an incorrect model. For categorical responses, the task is

even more daunting as there is no clear mandate about a single goodness of fit statistic.

These simple graphical tools may provide us better insight into the inadequacies of the

fitted model in such situations. The pattern in these plots may suggest alternative func-

tional terms to include. How to extend these tools to correlated ordinal responses is an
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interesting avenue for possible research [19].

The appendix describes the computational details for simulating observations from

the limiting Gaussian Processes. R-Codes for creating the diagnostic plots and simulation

study is available at http://www.sph.umich.edu/bhramar/public html/research.
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APPENDIX

A1. Proof of Asymptotical Equivalence of f(Wk) and f(Ŵk):

In the Appendix, the notation Wk might either stand for Wm
k or W∗

k and used as

a generic representation for both. Let us define the univariate process Wk := sum(Wk)

and also the estimated process. Ŵk := sum(Ŵk). The method of generalized estimation

equations (GEE) is commonly used for marginal models with dependent observations.

Lin et al. [9] showed that Wk(t; δ̂) converges under the marginal model for dependent

observations to a zero mean Gaussian process and is asymptotically equivalent to Ŵk(t; δ̂).

In the proportional odds model (1), the Yij is the response on level j for the ith subject. We

can re-consider Yij as the response at the jth occasion for the ith subject in a longitudinal

setting and then use the result given by Lin et al. [9] to prove the asymptotical equivalence

of f(Wk) and f(Ŵk).

According to Lin et al. [9], first, we know that Wk(t; δ̂) converges under model (1) to a
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zero mean Gaussian process and is asymptotically equivalent to Ŵk(t; δ̂). Note the process

Wk can be expressed in terms of the multivariate process Wk by Wk(t; δ) = 1T
c−1Wk(t; δ),

where 1c−1 is a vector of ones of length c− 1. Similarly we have Ŵk(t; δ) = 1T
c−1Ŵk(t; δ)

We want to show that Wk converges to a zero mean Gaussian process under model

(1) and that Ŵk is asymptotically equivalent to Wk. According to the proposition in

Andrews [15] on page 2251, we need to show: (i) for every finite set of indices {t1, . . . , tm}

:
(
Wk(t1; δ̂), . . . ,Wk(tm; δ̂)

)
(also for Ŵk) converges to a zero mean multivariate normal

distribution, and (ii) Wk is equicontinuous. Let λ = (λ1, . . . , λc−1) be arbitrary but fixed

with ‖λ‖2 = 1, where ‖ · ‖2 is the Euclidean norm. Now let the univariate process Wk

be defined in terms of Ỹi := Diag(λ) · Yi and not in terms of Yi. In other words, the

underlying random variable of Wk is scaled according to λ, but the underlying variable

of Wk stays unscaled. Previously (without scaling) we had Wk(t; δ) = 1T
KWk(t; δ) and

Ŵk(t; δ) = 1T
KŴk(t; δ), whereas now we can show

Wk(t; δ) ≡ λTWk(t; δ) and Ŵk(t; δ) ≡ λTŴk(t; δ) (8)

for fixed λ.

Thus Wk(t; δ̂) and Ŵk(t; δ̂) converge to a zero mean Gaussian process [9] and from

the aforementioned proposition (see Reference [15], p. 2251) it follows that Wk(t; δ̂) ≡

λTWk and Ŵk(t; δ̂) ≡ λTŴk are equicontinuous and for all finite sets {t1, . . . , tm} :
(
Wk(t1; δ̂), . . . , Wk(tm; δ̂)

)
≡

(
λT Wk(t1; δ̂), . . . , λTWk(tm; δ̂)

)
(also for Ŵk) converges

to a zero mean multivariate normal distribution. Now we apply the Cramer-Wald theorem

(if for fixed λ the random variable λTWk(tj; δ̂) converges in distribution to λTW, then

Wk(tj ; δ̂) converges in distribution to W) and it immediately follows (i). One can show:

if λTWk and λTŴk are equicontinuous, then also Wk and Ŵk are equicontinuous, that is

(ii). From (i) and (ii), the asymptotic equivalence of Wk and Ŵk with (8) follows that the

multivariate processes Wk and Ŵk converge to the same zero mean multivariate Gaussian

process. Applying a continuous function f(·) to these processes, f(Wk) and f(Ŵk)

converge to the same stochastic process (not necessarily Gaussian) by the continuous
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mapping theorem.

A2. Proof of Consistency of the Supremum Tests:

The consistency of similar supremum tests was shown/mentioned in several papers [16,

17, 9, 18, 1]. It was shown that under certain sufficient conditions n−1/2Wk(t0; δ̂) →p c 6= 0

for at least some t0, hence, n−1/2GWk
converges to a nonzero constant.

We want to show now the consistency of Gf(Wk). First, we show that n−1/2(Wk)j

converges to a non-zero constant cj . As before we use (8) and set λ := ej , where ej is the

jth unit vector. We now have Wk ≡ eT
j Wk = (Wk)j . From the above, we can conclude

that n−1/2Wk →p cj 6= 0, or equivalently n−1/2(Wk)j →p cj 6= 0.

To show that the test Gf(Wk) is consistent, it is sufficient to show n−1/2f(Wk) con-

verges to a nonzero vector for some t0 (then n−1/2Gf(Wk) converges to a nonzero constant).

We just established that n−1/2Wk →p c with c being nonzero in all components. Thus,

n−1/2f(Wk) →p f(c). We have 0 < |c| and it follows from the monotonicity condition

0 = |f(0)| < |f(c)|, which was to be shown. �

A3. Simulating observations from the Gaussian Processes: Computational Details

Given the parameter estimates obtained from the dataset after fitting the proportional

odds model, the computation of the Wk’s is relatively easy. The vector of residuals

r = (r1, . . . , rn)
T is a byproduct of the fitting process and the computation of the Wk

only requires the computation of the unknown indicator functions I(Xik ≤ t). We do

not need to compute I(Xik ≤ t) for infinitely many t’s, but only for the number m ≤ n

of different values t1, . . . , tm corresponding to the kth covariate. We can store all these

I(Xik ≤ t) in a n × m matrix I(Xk). For given r and I(Xk), the computation of Wk

simply requires matrix operations.

The computation of the Ŵk’s is much more intensive, because we need to resample a

large number M ≥ 1000 of realizations from the Ŵk’s. Again, as a byproduct from the

fitting algorithm we obtain Ω, U = (U1,U2, . . . ,Un)T and ∂π
∂δ

= (∂π1

∂δ
, . . . , ∂πn

∂δ
). With

19



I(Xk) and ∂π
∂δ

we can then compute η(t1), . . . , η(tm). In the definition of the Ŵk’s, which

have the form
∑n

i=1[. . . ]iZi, the quantities in the bracket terms [. . . ]i can be computed by

matrix operations and can be stored in a n×(c−1)×m array B. Now we generate M times

the n realizations Z1, . . . , Zn from N(0, 1) and then store in the M ×n matrix Z. Finally,

we can compute the Ŵk’s from Z and B by matrix multiplication and to avoid any loops

by a tensor product. Also note, that W∗

k = AWm
k with simple pre multiplication by a

given matrix A and similarly Ŵ∗

k = AŴm
k . In fact, for the multivariate approach, we

only need to compute Wm and the Ŵm’s and the analogues with the cumulative residuals

are obtained easily. Given these processes, all other quantities involved in our diagnostic

methods can be computed easily.
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7 Tables

Table 1: Notations used for graphical diagnostic methods

Notation Approach Description
Bj Binary Collapse the response categories into (≤ j, > j)
Bonf(B) Binary Bonferroni adjustment: compare the p-value with α/(c − 1)
(Wm)j Multivariate (r) Using the jth component of residual r

Bonf(Wm) Multivariate (r) Bonferroni adjustment: compare the p-value with α/(c − 1)

sum(Wm) Multivariate (r) Using function sum(Wm) :=
∑c−1

j=1(W
m)j

prod(Wm) Multivariate (r) Using function prod(Wm) :=
∏c−1

j=1(W
m)j

max(Wm) Multivariate (r) Using function max(Wm) := max|Wm|
(W∗)j Multivariate (r∗) Using the jth component of residual r∗

Bonf(W∗) Multivariate (r∗) Bonferroni adjustment: compare the p-value with α/(c − 1)

sum(W∗) Multivariate (r∗) Using function sum(W∗) :=
∑c−1

j=1(W
∗)j

prod(W∗) Multivariate (r∗) Using function prod(W∗) :=
∏c−1

j=1(W
∗)j

max(W∗) Multivariate (r∗) Using function max(W∗) := max|W∗|
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Table 2: The p-values of testing model misspecification based on graphical diagnostics for
model “age+smk+wbc+crp”

Tests age smk wbc crp α (Bonferroni adjustment)
B1 0.139 0.864 0.056 0.096 0.05 (0.025)
B2 0.145 0.191 0.838 0.643 0.05 (0.025)
(Wm)1 0.175 0.981 0.055 0.108 0.05 (0.025)
(Wm)2 0.545 0.766 0.133 0.298 0.05 (0.025)
(W∗)1 0.175 0.981 0.055 0.108 0.05 (0.025)
(W∗)2 0.352 0.735 0.821 0.791 0.05 (0.025)
sum(Wm) 0.352 0.735 0.821 0.791 0.05
max(Wm) 0.299 0.799 0.069 0.188 0.05
prod(Wm) 0.233 0.898 0.047 0.122 0.05
sum(W∗) 0.332 0.866 0.193 0.209 0.05
max(W∗) 0.235 0.829 0.059 0.156 0.05
prod(W∗) 0.304 0.887 0.323 0.308 0.05

Table 3: The p-values of testing model misspecification based on graphical diagnostics for
model “age+smk+wbc+wbc2+wbc3+crp+crp2”

Tests age smk wbc crp α (Bonferroni adjustment)
B1 0.262 0.774 0.497 0.662 0.05 (0.025)
B2 0.249 0.148 0.125 0.071 0.05 (0.025)
(Wm)1 0.114 0.961 0.510 0.761 0.05 (0.025)
(Wm)2 0.543 0.875 0.532 0.678 0.05 (0.025)
(W∗)1 0.114 0.961 0.510 0.760 0.05 (0.025)
(W∗)2 0.334 0.712 0.347 0.231 0.05 (0.025)
sum(Wm) 0.334 0.712 0.347 0.231 0.05
max(Wm) 0.235 0.914 0.696 0.811 0.05
prod(Wm) 0.196 0.943 0.679 0.699 0.05
sum(W∗) 0.344 0.745 0.255 0.267 0.05
max(W∗) 0.169 0.818 0.581 0.376 0.05
prod(W∗) 0.428 0.940 0.225 0.299 0.05
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Table 4: Parameter estimates and p-values for the fitted proportional odds
model using covariates “age+smk+wbc+crp” (Model 1) followed by the model
“age+smk+wbc+wbc2+wbc3+crp+crp2” (Model 2) in the Normative Aging Study Ex-
ample.

Model Predictor Coef S.E. Wald Z P -value
Model 1 age -0.00747 0.01255 -0.60 0.5516

smk 0.03331 0.06186 0.54 0.5902
wbc 0.04134 0.02406 1.72 0.0857
crp 0.09408 0.08572 1.10 0.2724

Model 2 age -0.0080846 0.0126358 -0.64 0.5223
smk 0.0442334 0.0624535 0.71 0.4788
wbc 0.5628662 0.2464199 2.28 0.0224
wbc2 -0.0376317 0.0192671 -1.95 0.0508
wbc3 0.0005244 0.0002956 1.77 0.0760
crp 0.3960383 0.1821148 2.17 0.0297
crp2 -0.0297128 0.0198322 -1.50 0.1341

Table 5: Simulation results

The functional form of βTX in the true model
0.25X + βX2 β cos(X)

Methods β = 0.00 β = −0.05 β = −0.10 β = 0.0 β = −1.0 β = −3.0
B1 0.148 0.435 0.934 0.168 0.393 0.981
B2 0.097 0.482 0.959 0.155 0.407 0.822
Bonf(B) 0.126 0.491 0.964 0.180 0.433 0.969
Bonf(Wm) 0.042 0.220 0.811 0.046 0.129 0.879
sum(Wm) 0.051 0.285 0.855 0.052 0.179 0.591
prod(Wm) 0.054 0.113 0.386 0.058 0.112 0.704
max(Wm) 0.035 0.102 0.543 0.056 0.086 0.836
Bonf(W∗) 0.043 0.292 0.895 0.049 0.191 0.906
sum(W∗) 0.048 0.357 0.947 0.049 0.344 0.974
prod(W∗) 0.047 0.340 0.941 0.049 0.270 0.958
max(W∗) 0.041 0.266 0.874 0.051 0.203 0.939
Wald-β = 0 0.050 0.568 0.994 - - -
HL (G=5) 0.049 0.278 0.894 0.046 0.255 0.949

24



Figure 1: Plot of residuals against wbc using the method (Wm)1 to check the model mis-
specification for wbc in the model of “age+smk+wbc+crp”. The dark black line indicates
the observed process and the fine lines indicate the simulated realizations.
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Figure 2: Plot of residuals against crp using the method (Wm)1 to check the model mis-
specification for crp in the model of “age+smk+wbc+crp”. The dark black line indicates
the observed process and the fine lines indicate the simulated realizations.
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Figure 3: Plot of residuals against wbc using the method (Wm)1 to check the model
misspecification for wbc in the model of “age+smk+wbc+wbc2+wbc3+crp+crp2”. The
dark black line indicates the observed process and the fine lines indicate the simulated
realizations.
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Figure 4: Plot of residuals against crp using the method (Wm)1 to check the model
misspecification for crp in the model of “age+smk+wbc+wbc2+wbc3+crp+crp2”. The
dark black line indicates the observed process and the fine lines indicate the simulated
realizations.
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