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Abstract

This paper discusses asymptotically distribution free tests for the classical
goodness-of-fit hypothesis of an error distribution in nonparametric regression
models. These tests are based on the same martingale transform of the residual
empirical process as used in the one sample location model. The residuals used
are those obtained from estimating the regression function by the local linear
polynomial method. The results of this paper are made feasible by a recent
result of Müller, Schick and Wefelmeyer that establishes an asymptotic uniform
linearity of the nonparametric residual empirical process at the rate n−1/2.

1 Introduction

Consider a sequence of i.i.d. pairs of random variables {(Xi, Yi)
n
i=1} where Xi are

d-dimensional covariates and Yi are the one dimensional responses. Suppose Yi has

regression in mean on Xi, i.e., there is a regression function m(·) and a sequence of

i.i.d. innovations {ei, 1 ≤ i ≤ n} such that

Yi = m(Xi) + ei, i = 1, . . . , n.

This regression function, as in most applications, is generally unknown and we do

not make assumptions about its possible parametric form, so that we need to use a

non-parametric estimator m̂n(·) of m(·) based on {(Xi, Yi)
n
i=1}.

The problem of interest here is to test the hypothesis that the common distribution

function of ei is a given F . Since m(·) is unknown we can only use residuals

êi = Yi − m̂n(Xi), i = 1, . . . , n,

which, obviously, are not i.i.d. any more. Let Fn and F̂n denote the empirical dis-

tribution functions of the errors ei, 1 ≤ i ≤ n, and the residuals êi, 1 ≤ i ≤ n,

respectively, and let

vn(x) :=
√
n[Fn(x)− F (x)], v̂n(x) :=

√
n[F̂n(x)− F (x)], x ∈ R

1Research of this author partly supported by the NSF grant DMS-O704130.

1



denote empirical and “estimated” empirical processes.

Akritas and Van Keilegom (2001) and Müller, Schick and Wefelmayer (2006) es-

tablished, under the null hypothesis and some assumptions, the following uniform

asymptotic expansion of v̂n:

(1.1) v̂n(x) = vn(x)− f(x)Rn + ξn(x), Rn = Op(1), sup
x
|ξn(x)| = op(1).

Basically, the term Rn is made up by the sum

Rn = n−1/2

n∑
i=1

[m̂n(Xi)−mn(Xi)],

but using special form of the estimator m̂n, Müller, Schick and Wefelmayer (2006)

obtained especially simple form for it:

Rn = n−1/2

n∑
i=1

εi.

In the case of parametric regression where the regression function is of the para-

metric form, m(·) = m(·, θ), and the unknown parameter θ is replaced by its estimator

θ̂n, similar asymptotic expansion have been established in Loyns (1980), Koul (2002),

and Khmaladze and Koul (2004). However, the non-parametric case is more complex

and it is remarkable that the asymptotic expansion (1.1) is still true.

The above expansion (1.1) leads to the central limit theorem for the process v̂n,

and, hence, produces the null limit distribution for test statistics based on this process.

However, the same expansion makes it clear that the statistical inference based on v̂n

is inconvenient in practice and even infeasible: not only does the limit distribution of

v̂n after time transformation t = F (x) still depend on the hypothetical distribution

F , but it depends also on the estimator m̂n, (and, in general, on the regression

function m itself), that is, it is different for different estimators. Since goodness-

of-fit statistics are essentially non-linear functionals of the underlying process with

difficult to calculate limit distributions, it is practically inconvenient to be obliged to

do substantial computational work to evaluate their null distributions every time we

test the hypothesis. Note, in particular, that if we try to use some kind of bootstrap

simulations, we would have to compute the non-parametric estimator m̂n for every

simulated sub-sample, which makes it especially time consuming.

The goal of this paper is to show that this complication can be avoided in the

way, which is technically surprisingly simple. Namely, we present the transformed

process wn, which, after time transformation t = F (x), converges in distribution to a

standard Brownian motion, for any estimator m̂n for which (1.1) is valid. One would
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expect that this is done at the cost of some power. We will see, however, somewhat

unexpectedly, that tests based on this transformed process wn should, typically, have

better power than those based on v̂n.

2 Transformed Process

Let the error d.f. F have finite Fisher information for location, i.e., let ψf = −ḟ/f
denote the score function for location family F (·−θ), θ ∈ R at θ = 0 – we can assume

that θ = 0 without loss of generality. Then∫
ψf (x)

2dF (x) <∞.(2.1)

Consider augmented score function

h(x) =

(
1

ψf (x)

)
,

and augmented incomplete information matrix

ΓF (x) =

∫ ∞

x

h(x)hT (x)dF (x) =

(
1− F (x) f(x)

f(x) σ2
f (x)

)
, x ∈ R,(2.2)

with σ2
f (x) =

∫∞
x
ψ2

f (y)dF (y).

For any signed measure ν for which the following integral is well defined, let

K(x, ν) =

∫ x

−∞
hT (y)Γ−1

F (y)

∫ ∞

y

h(z)dν(z)dF (y), x ∈ R.

Our process wn is defined as

wn(x) =
√
n[F̂n(x)−K(x, F̂n)], x ∈ R.(2.3)

We shall show that wn converges in distribution to the Brownian motion w in time

F , that is, to Gaussian process with mean 0 and covariance function Ew(x)w(x′) =

F (min(x, x′)). In other words, we will show that time transformed process bn(t) =

wn(x) , with t = F (x), converges in distribution to standard Brownian motion on the

interval [0, 1].

To begin with observe that the process wn can be rewritten as

wn(x) =
√
n[v̂n(x)−K(x, v̂n)].(2.4)

Indeed, F (x) is the first coordinate of the vector-function H(x) =
∫ x

−∞ h(y)dF (y) =

(F (x),−f(x))T , and we will see that

HT (x)−K(x,HT ) = 0, ∀x ∈ R.(2.5)
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Subtracting this identity from (2.3) yields (2.4). Using asymptotic expansion (1.1)

we can rewrite

wn(x) = vn(x)−K(x, vn) + ηn(x), ηn(x) = ξn(x)−K(x, ξn),(2.6)

where one expects ηn to be “small” (see Sec. 4), and the main part on the right does

not contain the term f(F−1(t))Rn of that expansion. This is true again because of

(2.5) and the fact that the second coordinate of H(x) is −f(x).

The transformation and the process bn is very similar to the one studied in Khmal-

adze, Koul (2004). However, asymptotic behavior of the empirical distribution func-

tion F̂n here is more complicated. As a result, we have to prove the smallness of

the “residual process” ηn in (2.6) differently - see Sec.4. Besides, here we explicitly

consider the case of possibly degenerate matrix ΓF (x) and show that wn and bn are

still well defined - see Lemma 2.1. Also in this section, we demonstrate that although,

in this transformation, singularity at t = 1 exists, the process bn converges to its weak

limit on the closed interval [0, 1] - see Theorems 2.2 and 4.1, (ii).

Now we shall show that (2.5) holds and the process wn is well defined even if ΓF (x)

is not of full rank and the inverse Γ−1
F (x) is not unique.

If ΓF (x) is of the full rank, then (2.5) is obvious. For most distribution functions

F , the matrix ΓF (x) indeed is not degenerate, that is, the coordinates 1 and ψf of h

are linearly independent functions on tail set {x > x0} for every x0 ∈ R. However,

if for x greater than some x0, the density f has the form f(x) = αe−αx, α > 0, the

function ψf (x) equals the constant α so that 1 and ψf (x) become linearly dependent

for x > x0. In this case

ΓF (x) = (1− F (x))

(
1 α

α α2

)
, x > x0.(2.7)

Conversely, one can prove that if (2.7) holds for some x0 ∈ R, then for some α > 0,

f(x) = αe−αx, x > x0.

The lemma below shows, that although in this case Γ−1
F (x) can not be uniquely

defined, the function hT (x)Γ−1
F (x)

∫∞
x
h(y)dvn(y) is well defined. Here it is more trans-

parent and simple to use also time transformation t = F (x). Accordingly, let

un(t) = vn(F−1(t)), γ(t) := h(F−1(t)), and Γt =
∫ 1

t
γ(s)γ(s)Tds, 0 ≤ t ≤ 1.

Lemma 2.1 If, for some x0, such that 0 < F (x0) < 1, the matrix ΓF (x), for x > x0

degenerates to the form (2.7), then the equalities (2.5) and, therefore, (2.4) are still

valid. Besides,

hT (x)Γ−1
F (x)

∫ ∞

x

h(y)dvn(y) = − vn(x)

1− F (x)
, ∀x ∈ R,
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or

γT (t)Γ−1
t

∫ 1

t

γ(s)dun(s) = −un(t)

1− t
, ∀ 0 ≤ t < 1.

A similar fact holds with vn(un) replaced by v̂n(ûn).

Remark 2.1 The argument that follows is an adaptation of a quite general treatment

of the case of degenerate matrices ΓF (x), given in Nikabadze (1987) and Tsigroshvili

(1998).

Proof. For t > t0 we have γ(t) = (1, α)T , α a positive real number, and

Γt = (1− t)

(
1 α

α α2

)
.

Then its image and kernel, or, rather, image and kernel of the corresponding linear

operator in R2, are

I(Γt) = {b : b = Γta for some a ∈ R2} = {b : b = β(1− t)(1, α)T , β ∈ R}

and

K(Γt) = {a : Γta = 0} = {a : a = c(−α, 1)T , c ∈ R}.

Moreover,
∫ 1

t
γdun and both coordinates of H(t) are in I(Γt) and if b ∈ I(Γt) then

Γtb = (1 − t)(1 + α2)b. Then Γ−1
t is any (matrix of) linear operator on I(Γt) such

that

Γ−1
t b =

1

(1− t)(1 + α2)
b+ a, a ∈ K(Γt).

But γ(t) = (1, α)T is orthogonal to an a ∈ K(Γt) and therefore

γT (t)Γ−1
t b =

1

(1− t)(1 + α2)
γT (t)b(2.8)

does not depend on the choice of a ∈ K(Γt) and, hence, is defined uniquely. For

b =
∫ 1

t
γ(s)dun(s) this gives the equality in the lemma. Besides, for any b ∈ I(Γt),

a ∈ I(Γt),

γT (t)Γ−1
t Γt(b+ a) = γT (t)Γ−1

t Γtb = γT (t)b = γT (t)(b+ a),

which gives (2.5). The rest of the claim is obvious. 2

Now consider the leading term of (2.6) in time t = F (x). It is useful to consider

its function parametric version, defined as

bn(ϕ) = un(ϕ)−Kn(ϕ), ϕ ∈ L2[0, 1],(2.9)

5



where un(ϕ) =
∫ 1

0
ϕ(s)dun(s), and

Kn(ϕ) = K(ϕ, un) =

∫ 1

0

ϕ(t)γT (t)Γ−1
t

∫ 1

t

γ(s)dun(s) dt.

With slight abuse of notation, denote bn(ϕ) when ϕ(·) = I(· ≤ t) by

bn(t) = un(t)−
∫ t

0

γT (τ)Γ−1
u

∫ 1

u

γ(s)dun(s) du.(2.10)

Conditions for weak convergence of un are well known: if Φ ⊂ L2[0, 1] is a class

of functions, such that the sequence un(ϕ), n ≥ 1, is uniformly in n equi-continuous

on Φ, then un →d u in l∞(Φ) where u is standard Brownian bridge, see, e.g., van der

Vaart and Wellner (1996). The conditions for the weak convergence of Kn to great

extent must be simpler, because, unlike un, Kn is continuous linear functional in ϕ

on the whole of L2[0, 1], however, not uniformly in n. We will see, Proposition 2.1

below, that although, for every ε > 0, the provisional limit in distribution of Kn(ϕ),

viz,

K(ϕ) = K(ϕ, u) =

∫ 1

0

ϕ(t)γT (t)Γ−1
t

∫ 1

t

γ(s)du(s) dt

is continuous on L2,ε, the class of functions in L2[0, 1] which are equal 0 on the interval

(1 − ε, 1], it is not continuous on L2[0, 1]. Therefore it is unavoidable to use some

condition on ϕ at t = 1. The condition (2.11) below still allows ϕ(t) → ∞ as t → 1

(see examples below).

Theorem 2.1 (i) Let L2,ε ⊂ L2[0, 1] be the subspace of all square integrable functions

which are equal to 0 on the interval (1 − ε, 1]. Then, Kn →d K, on L2,ε, for any

0 < ε < 1.

(ii) Let, for an arbitrary small but fixed ε > 0 and fixed C and α < 1/2, Φε ⊂ L2[0, 1]

be a class of all square integrable functions satisfying the following right tail condition:

|ϕ(s)| ≤ C[γT (s)Γ−1
s γ(s)]−1/2(1− s)−1/2−α, ∀ s > 1− ε.(2.11)

Then, Kn →d K, on Φε.

Proof. (i) The integral
∫ 1

t
γ dun as process in t, obviously, converges in distribu-

tion to the Gaussian process
∫ 1

t
γ du. Therefore, all finite-dimensional distributions

of γT (t)Γ−1
t

∫ 1

t
γ dun, for t < 1, converge to corresponding finite-dimensional distri-

butions of the Gaussian process γT (t)Γ−1
t

∫ 1

t
γ du. Hence, for any fixed ϕ ∈ L2,ε,
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distribution of Kn(ϕ) converges to that of K(ϕ). So, we only need to show tightness,

or, equivalently, equicontinuity of Kn(ϕ) in ϕ. We have

|Kn(ϕ)| ≤
∫ 1

0

|ϕ(t)||γT (t)Γ−1
t

∫ 1

t

γ(s)dun(s)|dt

≤ sup
t≤1−ε

|γT (t)Γ−1
t

∫ 1

t

γ(s)dun(s)|
∫ 1−ε

0

|ϕ(t)|dt,

while

sup
t≤1−ε

|γT (t)Γ−1
t

∫ 1

t

γ(s)dun(s)| →d sup
t≤1−ε

|γT (t)Γ−1
t

∫ 1

t

γ(s)du(s)| = OP (1).

This proves that Kn(ϕ) is equi-continuous in ϕ ∈ L2,ε and (i) follows.

(ii) To prove (ii), what we need is to show the equi-continuity of Kn(ϕ) on Φε.

But for this we need only to show that for a sufficiently small ε > 0, and uniformly

in n,

sup
ϕ∈Φε

∣∣∣ ∫ 1

1−ε

ϕ(t)γT (t)Γ−1
t

∫ 1

t

γ(s)dun(s)dt
∣∣∣,

is arbitrarily small in probability. Denote the envelope function for ϕ ∈ Φε by Ψ.

Then∫ 1

1−ε

|ϕ(t)||γT (t)Γ−1
t

∫ 1

t

γ(s)dun(s)|dt ≤
∫ 1

1−ε

|Ψ(t)| |γT (t)Γ−1
t

∫ 1

t

γ(s)dun(s)|dt.

However, bearing in mind that

E|γT (t)Γ−1
t

∫ 1

t

γ(s)dun(s)|2 ≤ γT (t)Γ−1
t γ(t), ∀ t ∈ [0, 1],

we obtain that

E

∫ 1

1−ε

|Ψ(t)| |γT (t)Γ−1
t

∫ 1

t

γ(s)dun(s)|dt

=

∫ 1

1−ε

|Ψ(t)|E|γT (t)Γ−1
t

∫ 1

t

γ(s)dun(s)|dt

≤
∫ 1

1−ε

|Ψ(t)||γT (t)Γ−1
t γ(t)|1/2dt

≤
∫ 1

1−ε

1

(1− t)1/2+α
dt.

The last integral can be made arbitrarily small for sufficiently small ε. 2

Consequently, we obtain the following limit theorem for bn. Recall, say from

van der Vaart and Wellner (1996), that the family of Gaussian random variables

b(ϕ), ϕ ∈ L2[0, 1] with covariance function Eb(ϕ)b(ϕ′) =
∫ 1

0
ϕ(t)ϕ′(t)dt is called (func-

tion parametric) standard Brownian motion on Φ if b(ϕ) is continuous on Φ.
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Theorem 2.2 (i) Let Φ be a Donsker class, i.e., let un →d u in l∞(Φ). Then, for

every ε > 0,

bn →d b in l∞(Φ ∩ Φε),

where {b(ϕ), ϕ ∈ Φ} is standard Brownian motion.

(ii) If the envelope function Ψ(t) of (2.11) tends to positive (finite or infinite) limit

at t = 1, then for the process (2.10) we have

bn →d b on [0, 1].

The condition of (ii) is satisfied in all examples below.

Examples. Here we consider four examples of F . In all of them γT (s)Γ−1
s γ(s) is of

order (1−s)−1 and, hence, the upper bound in (2.11) is of the order (1−s)−α, α ≤ 1/2,

as s→ 1.

Consider logistic d.f. F with the scale parameter 1, or equivalently ψf (x) =

2F (x)− 1. Then h(x) = (1, 2F (x)− 1)T or γ(s) = (1, 2s− 1)T and

Γs = (1− s)

(
1 s

s (1− 2s+ 4s2)/3

)
, det(Γs) =

(1− s)4

3
,

Γ−1
s =

3

(1− s)3

(
(1− 2s+ 4s2)/3 −s

−s 1

)
,

so that indeed γT (s)Γ−1
s γ(s) = 4(1− s)−1, for all 0 ≤ s < 1.

Next, suppose F is a normal d.f. with variance 1. Because here ψf (x) = x, one

obtains h(x) = (1, x)T and σ2
f (x) = xf(x)+1−F (x). Denote µ(x) = f(x)/(1−F (x)).

Then

ΓF (x) = (1− F (x))

(
1 µ(x)

µ(x) xµ(x) + 1

)
,

Γ−1
F (x) =

1

(1− F (x))

1

(xµ(x) + 1− µ2(x))

(
xµ(x) + 1 −µ(x)

−µ(x) 1

)
.

Hence

hT (x)Γ−1
F (x)h(x) =

1

(1− F (x))

(1− xµ(x) + x2)

(xµ(x) + 1− µ2(x))
.

However, using asymptotic expansion for the tail of the normal distribution function

(see, e.g., Feller (1966), p.179), for µ(x) we obtain

µ(x) =
x

1− S(x)
, where S(x) =

∞∑
i=1

(−1)i−1(2i− 1)!!

x2i
=

1

x2
− 3

x4
+ . . . .
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From this one can derive that

1− xµ(x) + x2

xµ(x) + 1− µ2(x)
=

1− x2S(x)− S(x)

1− x2S(x)− 2S(x) + S2(x)
(1− S(x)) ∼ 2,

and therefore

hT (x)Γ−1
F (x)h(x) ∼

2

1− F (x)
, x→∞.

Next, consider the Cauchy d.f. In this case, for x→∞,

f(x) =
1

π

1

1 + x2
∼ 1

πx2
and 1− F (x) ∼ 1

πx
,

so that

ψf (x) =
2x

1 + x2
∼ 2

x
, σ2

f (x) ∼
4

3πx3

As a consequence of this we get

ΓF (x) ∼
1

πx3

(
x2 x

x 4/3

)
, Γ−1

F (x) ∼
πx

3

(
4/3 −x
−x x2

)

and

hT (x)Γ−1
F (x)h(x) ∼ 4πx/9 ∼ (4/9)[1− F (x)]−1

as in all previous cases.

Finally, let F be double exponential, or Laplace, d.f. with the density f(x) =

αe−α|x−θ|, α > 0, and put θ = 0. For x > 0 we get h(x) = (1, α)T and γ(s) = (1, α)T ,

and Γs becomes degenerate, equal to (2.7). Therefore again, see (2.8) with vector

b = γ(t), for s > 1/2

γT (s)Γ−1
s γ(s) = (1− s)−1.

Next, in this section we wish to clarify the question of a.s. continuity of Kn and

K as linear functionals and thus justify the presence of tail condition (2.11). For this

purpose it is sufficient to consider particular case, when γ(s) = 1 is one-dimensional

and Γs = 1− s. In this case

Kn(ϕ) = −
∫ 1

0

ϕ(s)
un(s)

1− s
ds, K(ϕ) = −

∫ 1

0

ϕ(s)
u(s)

1− s
ds.

The proposition below is of independent interest.
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Proposition 2.1 (i) Kn(ϕ) is continuous linear functional in ϕ on L2[0, 1] for every

finite n.

(ii) However, the integral ∫ 1

0

u2(s)

(1− s)2
ds

is almost surely infinite. Moreover,

1

− ln(1− s)

∫ s

0

u2(t)

(1− t)2
dt→p 1, as s→ 1.

Therefore, K(ϕ) is not continuous on L2[0, 1].

Remark 2.2 It is easy to see that

E

∫ 1

0

u2(s)

(1− s)2
ds = ∞,

but this would not resolve the question of a.s. behaviour of the integral and, hence,

of K.

Proof. (i) From the Cauchy-Schwarz inequality we obtain

|Kn(ϕ)| ≤
(∫ 1

0

ϕ2(s)ds
)1/2(∫ 1

0

u2
n(s)

(1− s)2
ds
)1/2

and the question reduces to whether the integral
∫ 1

0
[un(s)/(1− s)]2ds is a.s. finite or

not. However, it is, as even sups |un(s)/(1 − s)| is a proper random variable for any

finite n, which proves (i).

(ii) Recall that u(s)/(1−s) is a Brownian motion: if b denotes standard Brownian

motion on [0,∞), then, in distribution,

u(t)

1− t
= b(

t

1− t
), ∀ t ∈ [0, 1].

Hence, in distribution,∫ s

0

u2(t)

(1− t)2
dt =

∫ s

0

b2(
t

1− t
)dt =

∫ τ

0

b2(z)

(1 + z)2
dz, τ = s/(1− s).

Integrating the last integral by parts yields∫ τ

0

b2(z)

(1 + z)2
dz = − b

2(τ)

1 + τ
+ 2

∫ τ

0

b(z)

1 + z
db(z) +

∫ τ

0

1

1 + z
dz(2.12)

= − b
2(τ)

1 + τ
+ 2

∫ τ

0

b(z)

1 + z
db(z) + ln(1 + z).
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Consider the martingale

M(t) =

∫ t

0

b(z)

1 + z
db(z), t ≥ 0.

Its quadratic variation process is

〈M〉t =

∫ t

0

b2(z)

(1 + z)2
dz.

Note that 〈M〉τ equals the term on the left side of (2.12). Divide the equation (2.12)

by ln(1 + τ) to obtain

〈M〉τ
ln(1 + τ)

= − b2(τ)

(1 + τ) ln(1 + τ)
+ 2

M(τ)

ln(1 + τ)
+ 1.

The equalities

EM2(t) = E〈M〉t =

∫ t

0

z

(1 + z)2
dz = ln(1 + t)− 1

1 + t
, Eb2(t) = t,

imply that

b2(τ)

(1 + τ) ln(1 + τ)
= op(1) and

M(τ)

ln(1 + τ)
= oP (1) as τ →∞.

Hence, 〈M〉τ/ ln(1 + τ) →p 1, as τ →∞. 2

3 Power

Consider, for the sake of comparison, the problem of fitting a distribution in the

one sample location model up to an unknown location parameter. More precisely,

consider the problem of testing that X1, · · · , Xn is a random sample from F (· − θ),

for some θ ∈ R, against the class of all contiguous alternatives, i.e. such sequences of

alternative distributions An(· − θ), where(dAn(x)

dF (x)

)1/2

= 1 +
1

2
√
n
g(x) + rn(x),∫

g2(x)dF (x) <∞,

∫
r2
n(x)dF (x) = o(

1

n
).

As is known, and as can intuitively be easily understood, we should be interested

only in the class of functions g ∈ L2(F ) that are orthogonal to ψf :

(3.1)

∫
g(x)ψf (x)dF (x) = 0.

11



Indeed, as g describes a functional “direction” in which the alternative An deviates

from F , if it has a component collinear with ψf ,

g(x) = g⊥(x) + cψf (x),

∫
g⊥(x)ψf (x)dF (x) = 0,

then infinitesimal changes in the direction cψf will be explained by, or attributed

to, the infinitesimal changes in the value of parameter, that is, “within” parametric

family. Hence it can not (and should not) be detected by a test for our parametric

hypothesis. So, we assume that g and ψf are orthogonal.

Since θ remains unspecified, we still need to estimate it. Suppose θ̄ is its MLE

under F and consider empirical process v̄n based on ēi := Xi − θ̄, i = 1, 2, . . . , n:

v̄n(x) =
√
n[F̄n(x)− F (x)], F̄n(x) =

1

n

n∑
i=1

I{ēi≤x}.

If we assume the hypothetical θ known, we would come back to the empirical process

vn.

It is known, see, e.g., Khmaladze (1979), that the asymptotic shift of v̄n and vn

under the sequence of alternatives An with orthogonality condition (3.1) is the same

and equals the function

G(x) =

∫ x

−∞
g(y)dF (y).

However, the process v̄n has asymptotic representation

v̄n(x) = vn(x)− dF

dθ
(x− θ)

∫
ψf (y)dvn(y) + oP (1)

and, the main part on the right is orthogonal projection of vn - see Khmaladze (1979)

for precise statement, see also Tjurin (1974). Heuristically speaking, it implies that

the process v̄n is “smaller” than vn. In particular, V ar v̄n(x) ≤ V ar vn(x) for all x.

Therefore, tests based on omnibus statistics, which typically measure an “overall”

deviation of an empirical distribution function from F , or of empirical process from

0, will have better power if based on v̄n than vn. From a certain point of view this

may seem a paradox, as it implies that, even if we know the parameter θ, it would

still be better to replace it by an estimator, because the power of many goodness of

fit tests will thus increase.

Transformation of the process v̄n asymptotically coincides with the process wn we

study here, and moreover, the relationship between the two processes is one-to-one.

Therefore, any statistic from one is, asymptotically, a statistic from the other, and

the processes yield the same inference.

12



With the process v̂n the situation is different: although it can be shown that

the shift of this process under alternatives An with orthogonality condition (3.1) is

again function G, with general estimator m̂n and, therefore, the general form of Rn,

this process is not a transformation of vn only, and therefore is not its projection.

In other words, it is not as “concentrated” as v̄n. The bias part of Rn brings in

additional randomisation. As a result, one will have less power in tests based on

omnibus statistics from v̂n.

We must add that with the estimator, used by Müller, Schick and Wefelmeyer,

and therefore, with their simple form of Rn, the process v̂n is again asymptotically

a projection, although in general a skew one, of the process vn. As described in

Khmaladze (1979), it is asymptotically in one-to-one relationship with the process

v̄n, and, therefore wn. Hence a statistic from v̂n is, in this case, also a statistic from

each of the other two, and the only difference between this processes is that v̂n and

v̄n are not asymptotically distribution free, while wn is.

4 Weak convergence of wn

In this section we prove weak convergence for the process wn, given by (2.3) and

(2.4). In view of (2.6), (2.9) and the fact that the weak convergence of the first part

in the right hand side of (2.6) was proved in Theorem 2.1, it suffices to show that

the process ηn of (2.6) is asymptotically small. Being the transformation of “small”

process ξn, the smallness of ηn is plausible. However, the transformation K(·, ξn) is

not continuos in ξn in uniform metric. Indeed, although in the integration by parts

formula ∫ 1

t

γ(s)dξn(F−1(s)) = ξn(F−1(s))γ(s)|1s=t −
∫ 1

t

ξn(F−1(s))dγ(s),

we can show, that ξn(F−1(1))γ(1) = 0, the integral on the right side is not necessarily

small if γ(t) is not bounded at t = 1. However, the time transformed score function

ψf (F
−1(t)), the second coordinate of γ(t), is unbounded at t = 1 already for normal

d.f. F . Therefore, one can not prove the smallness of ηn in sufficient generality, using

only uniform smallness of ξn.

If we use, however, quite mild additional assumption on the right tail of ξn, or

rather of v̂n and f , we can get the weak convergence of wn basically iunder the same

conditions as in Theorem 2.2. Namely, assume that for some positive β < 1/2,

sup
y>x

|v̂n(y)|
(1− F (y))β

= oP (1), as x→∞,(4.1)
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uniformly in n. Recall that the same condition for vn is satisfied for all β < 1/2.

Denote tail expected value and variance of ψf by

E[ψf |x] := E[ψf (e1)|e1 > x], V ar[ψf |x] := V ar[ψf (e1)|e1 > x].

Now we formulate two more conditions on F .

a) For any ε > 0 the function ψf (F
−1) is of bounded variation on [ε, 1− ε] and for

some ε > 0 it is monotone on [1− ε, 1].

b) For some δ > 0, ε > 0 and some C <∞,

(ψf (x)− E[ψf |x])2

V ar[ψf |x]
< C(1− F (x))−2δ, ∀x : F (x) > 1− ε.

Note that in terms of the above notation,

γ(t)T Γ−1
t γ(t) =

1

1− F (x)
[1 +

(
ψf (x)− E[ψf |x]

)2

V ar[ψf |x]
], t = F (x).(4.2)

Hence, condition b) is equivalent to

γ(t)T Γ−1
t γ(t) ≤ C(1− t)−1−2δ.

Condition a) implies that ψf (F
−1(t)) and γ(t)T Γ−1

t γ(t) are bounded on [ε, 1−ε]. Both

conditions are easily satisfied in all examples of Sec. 2, the latter – even with δ = 0.

Our last condition is as follows.

c) For some C <∞ and β > 0 as in (4.1)

|
∫ ∞

x

[1− F (y)]βdψf (y)| ≤ C|ψf (x)− E[ψf |x]|.

Condition c) is also easily satisfied in all examples of Sec. 2 for arbitrarily small β.

For example, for logistic distribution, with t = F (x), ψf (x) = 2t− 1 and

|
∫ ∞

x

[1− F (y)]βdψf (y)| = 2

∫ 1

t

(1− s)βds =
2

β + 1
(1− t)β+1

while

|ψf (x)− E[ψf |x]| = (1− t)

and their ratio tends to 0, as t→ 1. For normal distribution,∫ ∞

x

[1− F (y)]βdψf (y) ∼
∫ ∞

x

1

yβ
fβ(y)dy ≤ 1

x

∫ ∞

x

y1−βfβ(y)dy

while

|ψf (x)− E[ψf |x])| = |x− f(x)

1− F (x)
| ∼ x

x2 − 1
, x→∞,
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and the ratio again tends to 0, as x→∞, etc.

Let us recall the notation

K(ϕ, ξn) =

∫ 1

0

ϕ(t)γ(t)T Γ−1
t

∫ 1

t

γ(s)ξn(F−1(ds))dt,

and for a given indexing class Φ of functions from L2[0, 1] let Φ◦F = {ϕ(F (·)), ϕ ∈ Φ}.

Theorem 4.1 (i) Suppose conditions (4.1) and a)-c) are satisfied with β > δ. Then,

on the class Φε as in Theorem 2.1 but with α < β − δ we have

sup
ϕ∈Φε

|K(ϕ, ξn)| = oP (1), n→∞.

Therefore, if Φ is a Donsker class, then, for every ε > 0,

wn →d b in l∞(Φ ∩ Φε ◦ F ),

where {b(ϕ), ϕ ∈ Φ} is standard Brownian motion.

(ii) If, in addition, δ ≤ α, then for the time transformed process wn(F−1(·)) (2.3) we

have

wn(F−1(·)) →d b(·) in D[0, 1].

Proof. Note, that

γ(t)T Γ−1
t (0, a)T =

1

1− F (x)

(
ψf (x)− E[ψf |x]

)
a

V ar[ψf |x]
, t = F (x), ∀ a ∈ R.

Use this equality for a =
∫ 1

t
(1− s)βdψf (F

−1(s)). Then condition c) implies that

|γ(t)T Γ−1
t (0, a)T | ≤ Cγ(t)T Γ−1

t γ(t), ∀ t < 1.(4.3)

Now we prove the first claim.

(i) Use the notation ξ′n(t) = ξn(x) with t = F (x). Since we expect singularities

at t = 0 and, especially, at t = 1 in both integrals in K(ϕ, ξn) we will isolate the

neighbourhood of these points and consider it separately. Mostly we will take care of

the neighbourhood of t = 1. The neighbourhood of t = 0 can be treated more easily

(see below). First assume Γ−1
t non-degenerate for all t < 1. We have∫ 1

0

ϕ(t)γ(t)T Γ−1
t

∫ 1

t

γ(s)ξ′n(ds)dt(4.4)

=

∫ 1−ε

0

ϕ(t)γ(t)T Γ−1
t

∫ 1−ε

t

γ(s)ξ′n(ds)dt

+

∫ 1−ε

0

ϕ(t)γ(t)T Γ−1
t

∫ 1

1−ε

γ(s)ξ′n(ds)dt

+

∫ 1

1−ε

ϕ(t)γ(t)T Γ−1
t

∫ 1

t

γ(s)ξ′n(ds)dt.
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Since γ has bounded variation we can apply to the inner integral integration by

parts. Consider the third summand on the right side. First note that, when proving

that it is small, we can replace ξn by the difference v̂n − vn only: indeed, since

df(F−1(s)) = ψf (x)f(x)dx, according to (2.5) the integral∫ 1

1−ε

ϕ(t)γ(t)T Γ−1
t

∫ 1

t

γ(s)df(F−1(s))dt

is the second coordinate of
∫ 1

1−ε
ϕ(t)γ(t)dt, and is small for ε small anyway. Denote

ûn(t) = v̂n(x) and consider∫ 1

1−ε

ϕ(t)γ(t)T Γ−1
t

∫ 1

t

γ(s)ûn(ds)dt

=

∫ 1

1−ε

ϕ(t)γ(t)T Γ−1
t [−γ(t)ûn(t)−

∫ 1

t

ûn(s)dγ(s)]dt.

Using assumption on ϕ and conditions (4.1) and b), from (4.2) we obtain∣∣∣ ∫ 1

1−ε

ϕ(t)γ(t)T Γ−1
t γ(t)ûn(t)dt

∣∣∣
≤

∫ 1

1−ε

[γ(t)T Γ−1
t γ(t)]1/2 1

(1− t)1/2+α−β
dt sup

t>1−ε

|ûn(t)|
(1− t)β

≤
∫ 1

1−ε

1

(1− t)1+α+δ−β
dt sup

t>1−ε

|ûn(t)|
(1− t)β

,

which is small for small ε as soon as α < β − δ.

Now note that
∫ 1

t
ûn(s)dγ(s) = (0,

∫ 1

t
ûn(s)dψf (F

−1(s)))T . Using monotonicity of

ψf (F
−1) for small enough ε we obtain

|
∫ 1

t

ûn(s)dψf (F
−1(s))| < C|

∫ 1

t

(1− s)βdψf (F
−1(s))| sup

s>1−ε

|ûn(s)|
(1− s)β

(4.5)

Therefore, using (4.3), for the double integral we get∣∣∣ ∫ 1

1−ε

ϕ(t)γ(t)T Γ−1
t

∫ 1

t

ûn(s)dγ(s)dt|

≤ C

∫ 1

1−ε

|ϕ(t)|γ(t)T Γ−1
t γ(t)dt sup

s>1−ε

|ûn(s)|
(1− s)β

,

and the integral on the right side, as we have seen in above, is small as soon as

α < β − δ. The same conclusion is true for ûn replaced by un.

Since (4.5) implies the smallness of
∫ 1

1−ε
ûn(s)dψf (F

−1(s)) and
∫ 1

1−ε
un(s)dψf (F

−1(s)),

to prove that the middle summand on the right side of (4.4) is small one needs only
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finiteness of ψf in each x with 0 < F (x) < 1, which follows from a). This and uniform

in x smallness of ξn proves smallness of the first summand as well.

The smallness of integrals∫ ε

0

ϕ(t)γ(t)T Γ−1
t γ(t)

∫ 1

t

γ(s)ξ′n(ds)dt

follows from Γ−1
t ∼ Γ−1

0 and square integrability of ϕ and γ.

If Γ−1
t becomes degenerate after some t0, for these t we get

γ(t)T Γ−1
t

∫ 1

t

γ(s)ξ′n(ds) =
ξ′n(t)

1− t
,

and the smallness of all tail integrals easily follows for our choice of the indexing

functions ϕ.

(ii) Since for δ ≤ α the envelope function Ψ(t) of (2.11) satisfies inequality

Ψ(t) ≥ (1− t)δ−α,

it has positive finite or infinite lower limit at t = 1. But then it is possible to choose as

an indexing class the class of indicator functions ϕ(t) = I{t≤τ} and the claim follows.

2
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