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SUMMARY

Surveys often contain qualitative variables for which respondents may select any number
of the outcome categories. For instance, for the question “What type of contraception have
you used?” with possible responses (oral, condom, lubricated condom, spermicide, and di-
aphragm), respondents would be instructed to select as many of the outcomes that apply.
This situation is known as multiple responses. When the data includes stratification variables,
we discuss two approaches: (1) the model-based approach which uses logit models directly
applying the generalized estimating equations (GEE) method (Liang and Zeger, 1986); and
(2) the non-model-based approach which extends the generalized Mantel-Haenszel type es-
timators (Greenland, 1989) to make inferences across multiple responses. These approaches
can also be used for data with dependent observations across strata.

Key words: bootstrap method, dually consistent, generalized estimating equations, gener-
alized Mantel-Haenszel estimator, multiple responses; odds ratio.
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1 Introduction

In many surveys, it is common that respondents may select any number of the outcome cat-
egories. For instance, for the question “What type of contraceptives have you used?” with
possible responses (oral, condom, lubricated condom, spermicide, and diaphragm), respon-
dents would be instructed to select whichever of the outcomes apply. Categorical variables
that summarize this kind of data are called pick any/m variables (Bilder and Loughin, 2002),
where m is the number of outcome categories (m = 5 in this case). We can cross-classify the
counts from a survey that contains a pick any/m variable along with a group variable (r levels,
e.g. whether a subject had a prior history of urinary tract infection) and a stratification vari-
able (K levels, e.g. several age groups) into an r×m×K contingency table. In the r×m×K
table, subjects may be represented in more than one cell. Data for such an example for 239
sexually active college women in a 2 × 5 × 2 table is given in Table 1 by Bilder and Loughin
(2002). We are interested in the conditional relationship between the type of contraception
and a prior history of urinary tract infection given the age groups.

Table 1: The marginal UTI data

Contraceptive Total Total
Oral Condom L. cond. Spermicide Diaphragm responses women

Age ≥ 24
UTI

No 18 9 8 7 0 42 24
Yes 8 9 2 3 2 24 14

Age < 24
UTI

No 55 41 37 27 0 160 85
Yes 75 68 33 22 5 203 116

Another example comes from a study conducted by Dr. Paul Warren in the School of
Linguistics and Applied Language Studies at Victoria University of Wellington, New Zealand.
The data was generated by 6 experts (raters) rated 50 non-native English utterances into 3
scales for overall comprehensibility (from “not easy” to “very easy” to understand) and then
indicated whether there was a problem for that utterance in each of 7 items (e.g. pronunciation
of consonants, vowel pronunciation, word stress, etc.). These 7 items are the pick any/m
variables, where m = 7 in this example. Each item can be treated as a binary choice (i.e., it
was or was not a problem). The study was interested in evaluating the conditional relationship
between the overall rating and the 7 items given the raters. Table 2 shows 6 separate 3 × 7
tables (K = 6, r = 3, and m = 7), where the cell counts are dependent across the columns
for each table and also dependent across the 6 strata.

Both examples are of stratified multiple response data, yet the observations are not inde-
pendent across the strata in the second example. This type of data occurs frequently in health
and social sciences, and in language studies. To analyze the data, we need the complete infor-
mation on which items have been selected for each of the women (Example 1) or utterances
(Example 2). One can express the complete information for each of the respondents using an
r × 2m × K contingency table as in Table 3, where the columns form the response profile on
the m items. In total, there are 2m possible profiles, according to the (yes, no) outcome for
the selection of each item. The complete information on each of the 50 utterances on the 6
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Table 2: The marginal Linguistics data

Items Total Total
1 2 3 4 5 6 7 responses utterances

Rater 1
Rating

1 8 7 2 2 1 0 1 21 8
2 32 22 7 2 6 0 3 72 32
3 8 1 3 0 0 0 1 13 10

Rater 2
Rating

1 10 8 8 4 5 8 0 43 11
2 18 6 10 11 8 11 1 65 19
3 18 9 4 3 8 7 0 49 20

Rater 3
Rating

1 7 1 3 0 4 2 0 17 7
2 11 4 6 1 8 4 0 34 13
3 23 7 8 3 13 8 2 64 30

Rater 4
Rating

1 2 2 2 2 0 0 0 8 2
2 11 7 2 4 1 1 0 26 12
3 11 6 1 5 0 0 1 24 36

Rater 5
Rating

1 1 0 0 0 0 0 0 1 1
2 8 6 5 0 1 1 0 21 23
3 5 11 4 0 1 1 0 22 26

Rater 6
Rating

1 14 18 6 14 14 17 0 83 18
2 12 10 1 9 11 9 0 52 14
3 12 14 4 7 9 11 1 58 18
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raters and 7 items can be displayed in a similar fashion.

Table 3: The complete UTI data

Age ≥ 24
Contraceptive

Oral 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Condom 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
L. cond. 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
Spermicide 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
Diaphragm 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

UTI
No 0 0 0 0 0 0 0 0 0 0 0 0 2 0 4 0
Yes 0 0 0 0 0 0 0 0 2 0 1 1 1 0 0 1

Contraceptive
Oral 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Condom 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
L. cond. 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
Spermicide 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
Diaphragm 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

UTI
No 14 0 1 0 0 0 0 0 1 0 0 0 0 0 2 0
Yes 5 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0

Age < 24
Contraceptive

Oral 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Condom 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
L. cond. 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
Spermicide 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
Diaphragm 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

UTI
No 0 0 1 0 0 0 0 0 2 0 1 0 8 0 18 0
Yes 0 0 1 0 0 0 0 0 14 0 3 0 10 0 12 1

Contraceptive
Oral 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Condom 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
L. cond. 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
Spermicide 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
Diaphragm 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

UTI
No 42 0 1 0 0 0 0 0 1 0 0 0 5 0 6 0
Yes 44 3 0 0 0 0 0 0 15 1 2 0 7 0 3 0

Bilder and Loughin (2002) generalized the Cochran test to determine if the group and
pick any/m variable (or “items”) are marginally independent given a stratification variable
(known as conditional multiple marginal independence, CMMI). For the UTI example, they
tested whether the contraception practices of women are different based on their urinary tract
infection history controlling for their age group. They used a nonparametric bootstrap method
to obtain the p-value of the test. When the group and items are not conditionally marginally
independent, it is more interesting to describe how the items depend on the group. Similarly,
for the Linguistics example, we are not interested in the differences between raters, and we
focus on describing the conditional relationship between the overall rating and the items given
each rater.

This article discusses two approaches to the analysis of such data. The first approach,
called the model-based approach, treats the m items as a m-dimensional binary response
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and then uses logit models directly for the marginal distribution of each item. It applies
the methodology of generalized estimation equations (GEE) (Liang and Zeger, 1986) that
is a multivariate extension of quasi-likelihood methods. With the GEE method, we need
to provide structure only for how the variance depends on the mean and the correlation
structure of the m items. Besides the GEE method, Agresti and Liu (1999, 2001) have
provided other methods to fit the models, such as the Maximum Likelihood (ML) method.
The GEE method is the computationally simplest one. The second approach, called non-
model-based approach, extends the generalized Mantel-Haenszel (MH) estimators (Greenland,
1989) to make the inference across m items. The MH-type estimators have been used in many
cases involving stratified data (Liu and Agresti, 1996; Liu, 2003). The MH-type estimators
are dually consistent, that is, the estimators are consistent under two types of asymptotics –
(a) when the sample size within each stratum increases and the number of strata is fixed, and
(b) when the number of strata increases proportional to the overall sample size. Sparse data
fall into the type (b) situation. For an ordinary binary response case, it is well known that
the MH estimators perform much better than the ML estimators for sparse data (Andersen,
1980, p. 244). To make the inference across m items, we derive the dually consistent variance
and covariance estimators for the generalized MH estimators. Similar to the Cochran-Mantel-
Haenszel test, generalized MH estimators are used when the conditional associations are not
expected to vary drastically among the strata. However, even though the true associations are
heterogeneous between strata, the generalized MH estimators often provide a useful descriptive
summary if the directions of the associations are the same across strata.

Section 2 introduces the model-based approach using the GEE method. Section 3 shows
the way that the generalized MH estimators apply to multiple responses and gives dually
consistent variance and covariance estimators. Section 4 provides the data analysis for the
two examples. The dually consistent variance and covariance estimators for the generalized
MH estimators are applicable only when the strata are independent. When the strata are
dependent as in the Linguistics example, it is more realistic to use the bootstrap method to
evaluate the variance and covariances of the estimators, because the dually consistent ones are
too complicated to derive. Therefore, in Section 5, we discuss the simulation results for the
performance of the bootstrap method when the data are simulated from various situations.
We also compare the performance between the GEE and MH methods. The last section
provides a general discussion.

2 Model Based Approach

Consider the m items as a m-dimensional binary response. For each item, the response is
either “the item is selected” or “the item is not selected”. For example, for Linguistics data,
we let πj|ik be the probability of having a problem on item j when the utterance is overall
rated on level i by rater k. To describe our main interest about the conditional relationship
between the overall rating and the items given each rater, we use the logit model for the
marginal probabilities of each item having the form

log

(
πj|ik

1 − πj|ik

)
= βij + τjk , (1)

where i = 1, . . . , r, j = 1, . . . ,m, and k = 1, . . . ,K. Identifiability requires constraints such

as βrj = 0 and τjK = 0 for all j. Define γj
ab = βaj − βbj . The parameters {γj

ab} characterize
the conditional relationships. For instance, the odds of having a problem on item j when the

utterance is overall rated on level a are exp(γj
ab) times the odds of having a problem on item

j when the utterance is overall rated on level b, given each rater. Since the GEE method is
a multivariate extension of quasi-likelihood methods, we do not need to specify the full joint
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distribution of m items. It only needs the structure for how the variance depends on the mean
and the correlation structure of the m items. One can make a “ working guess” about the
correlation structure of the item responses and then adjust the standard error of the parameter
estimators to reflect what actually occurs for the sample data using a “sandwich” method.
In SAS, PROC GENMOD (the procedure for generalized linear models) with REPEATED
statement can implement the GEE method for a variety of working correlation structures for
the dependence among the m items.

The GEE approach is easy to apply for the UTI data, because the responses are dependent
only across the m items and the observations are independent across strata. For the Linguistics
data, it is not clear how the correlation structure can be chosen when the responses are
correlated across the m items and also the K strata (raters), although one could always
choose an “independent” working correlation structure and use the sandwich standard errors
to take into account the empirical situation.

Instead of using the logit model, the conditional associations can also be obtained using a
generalized MH-type estimator. Unlike the logit model, the MH-type method cannot be used
to select the best model that includes all significant predictors. However, if one is particularly
interested in the conditional association between the item and the overall rating given each
rater, the MH-type estimators evaluate the association directly. The next section gives the
details.

3 Non-Model Based Approach

Consider each item separately. For example, we consider item “1” (consonant pronunciation)
only in Table 2. The conditional association between overall rating and “whether there was
a consonant pronunciation problem” given the rater can be described using a 3× 2× 6 table,
where the column variable is “whether there was a consonant pronunciation problem” with
two levels (yes, no), the row variable is overall rating (not easy, medium, very easy), and
the stratum variable is rater. Suppose we naively treat the 3 × 2 tables for 6 raters as
independent. We can use the generalized MH estimators (Greenland, 1989) to describe the
conditional relationship between the row and column variables. The estimators themselves
are consistent. However, the standard error and covariance estimates for the estimators based
on the naive independent assumption are inappropriate. There are two ways to find proper
standard errors and covariance estimates: (1) deriving dually consistent estimators; and (2)
using the bootstrap method. We will discuss these in sections 3.1 and 3.2.

For a general r×m×K table, let Xj|ik denote the number of utterances having a problem
on item j rated by the kth rater (stratum) with the overall rating (row) i. The notation
nik denotes the total number of utterances in the ith row and the kth stratum. Let Nk =
n1k + . . .+nrk. For convenience, we also let π̄j|ik = 1−πj|ik and let X̄j|ik = nik−Xj|ik. Define
a common odds ratio for rows a and b as

Ψj
ab =

πj|akπ̄j|bk

π̄j|akπj|bk
j = 1, . . . ,m, a = 1, . . . , r, b = 1, . . . , r, and a 6= b,

for all k. The Ψj
ab is the ratio of the odds of having a problem on item j for utterances overall

rated a to the odds of having a problem on item j for utterances overall rated b, given any

stratum. The generalized MH estimator (Greenland, 1989) of log Ψj
ab is

L̄j
ab = (Lj

a+ − Lj
b+)/r ,

where Lj
ab = log

(∑K

k=1
Xj|akX̄j|bk/Nk∑K

k=1
Xj|bkX̄j|ak/Nk

)
and the subscript “+” indicates summation over that

subscript. When the row variable has only two levels (r = 2) as for the UTI example, we
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can use Ψj
12 to describe the conditional row effect on selecting item j. The generalized MH

estimator of log Ψj
12 is simplified to the ordinary MH estimator

Lj
12 = log

(∑K
k=1 Xj|1kX̄j|2k/Nk∑K
k=1 Xj|2kX̄j|1k/Nk

)
.

3.1 Dually consistent variance and covariance estimators

When the strata are independent (e.g., UTI example), we can derive the dually consistent
variance and covariance estimators for the generalized MH estimators. Suppose one is only
interested in a particular item, say x (x ∈ {1, . . . ,m}), the dually consistent variance and
covariance estimators for {L̄x

ab,∀ a 6= b} are applicable directly from the work by Greenland
(1989). However, one might be interested in comparing the conditional association across
items. For instance, for the UTI example, one might be interested in comparing the UTI
effects for contraceptive methods “oral” with “condom”. The covariance estimator between
L̄x

ab and L̄y
ab is desirable for x 6= y (x, y ∈ {1, . . . ,m}). The way to derive the dually consistent

estimator for it is more complicated than the case considering only a fixed item, because Xx|ik

and Xy|ik are correlated for all i and k. That is, the numbers of women who used contraceptive
methods x and y are not independent. To find the dually consistent covariance estimator, we
need to consider up to the fourth moment of X’s and the pairwise counts for the two items.

Define pairwise probabilities for items x and y (x, y ∈ {1, . . . ,m}) as πb1b2
xy|ik with b1, b2 ∈

{0, 1}, where (0, 1) is the (no, yes) outcome for the selection of each item. The πb1b2
xy|ik is the

probability of observing the pairwise outcome (b1, b2) for items x and y. For instance, the
notation π11

xy|ik is the probability that a subject, who is in row i and stratum k, selects both

items x and y. We assume that the pairwise probabilities π00
xy|ik, π01

xy|ik, π10
xy|ik, π11

xy|ik follow a

multinomial distribution. We have π00
xy|ik+π01

xy|ik+π10
xy|ik+π11

xy|ik = 1 and πx|ik = π10
xy|ik+π11

xy|ik,

πy|ik = π01
xy|ik + π11

xy|ik. Define similarly the pairwise observations as {Xb1b2
xy|ik}.

First, we consider the fixed item case, say item x. Define Cx|ab =
∑K

k=1 cx|abk with cx|abk =

Xx|akX̄x|bk/Nk, hx|ab = (Xx|ak+X̄x|bk)/Nk. Greenland (1989) derived the following estimators:

Ux|ab := V̂ar(Lx
ab) Ux|abc := Ĉov(Lx

ab, L
x
ac)

with

Ux|ab =

∑
k

cabhab

2C2

ab

+

∑
k

cbahab+cabhba

2CabCba
+

∑
k

cbahba

2C2

ba

Ux|abc =

∑
k

XaX̄bX̄c/N2

k

3CabCac
+

∑
k

naX̄bXc/N2

k

3CabCca
+

∑
k

naXbX̄c/N2

k

3CbaCac
+

∑
k

X̄aXbXc/N2

k

3CbaCca

For convenience, we often suppress subscripts x and k. For instance, cab = cx|abk, Xa = Xx|ak,
and na = nak.

Because L̄x
ab is a linear combination of {Lx

ab}, Ĉov(L̄x
ab, L̄

x
cd) can be expressed as follows in

terms of Ux|ab and Ux|abc:

Ĉov(L̄x
ab, L̄

x
cd) = (U+

x|ac − U+
x|ad − U+

x|bc + U+
x|bd)/r

2 (2)
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with

U+
x|ab =

{
Ux|a++ =

∑
i,k Ux|aik for a = b

Ux|+ab − Ux|ab+ − Ux|ba+ + Ux|ab = U+
x|ba for a 6= b

The subscript “+” denotes summation over that subscript. Note that setting c = a, d = b

yields V̂ar(L̄x
ab) and setting c = a, d = c yields Ĉov(L̄x

ab, L̄
x
ac).

Next, we make the inference across two different items. For instance, consider the du-
ally covariance estimator between L̄x

ab and L̄y
cd. We propose the following dually consistent

estimators:

Uxy|ab := Ĉov(Lx
ab, L

y
ab) =

D̂ab

Cx|abCy|ab
−

D̂x|ab

Cx|baCy|ab
−

D̂y
ab

Cx|baCy|ba
+

D̂xy
ab

Cx|baCy|ba

Uxy|abc := Ĉov(Lx
ab, L

y
ac) =

D̂abc

Cx|abCy|ac
−

D̂x
abc

Cx|baCy|ac
−

D̂y
abc

Cx|abCy|ca
+

D̂xy
abc

Cx|baCy|ca

with D̂ =
∑

k d̂k and

d̂ab =
1

N2
k

{Xx|aXy|aX
00
xy|b + X11

xy|aX̄x|bX̄y|b − X11
xy|aX

00
xy|b}

d̂x
ab =

1

N2
k

{X̄x|aXy|aX
10
xy|b + X01

xy|aXx|bX̄y|b − X01
xy|aπ

10
xy|b}

d̂y
ab =

1

N2
k

{Xx|aX̄y|aX
01
xy|b + X10

xy|aX̄x|bXy|b − X10
xy|aX

01
xy|b}

d̂xy
ab =

1

N2
k

{X̄x|aX̄y|aX
11
xy|b + X00

xy|aXx|bXy|b − X00
xy|aX

11
xy|b}

and

d̂abc =
1

N2
k

X11
xy|aX̄x|bX̄y|c

d̂x
abc =

1

N2
k

X01
xy|aXx|bX̄y|c

d̂y
abc =

1

N2
k

X10
xy|aX̄x|bXy|c

d̂xy
abc =

1

N2
k

X00
xy|aXx|bXy|c

The formula, Uxy|ab is invariant under interchange of items (x and y) or rows (a and b). Note
that Ux|ab = Ux|ba, because Lx

ab = −Lx
ba. Also, Ux|abc = Ux|acb due to the definition. However,

Uxy|ab 6= Uxy|ba, but Uxy|ab = Uyx|ba by the definition.

Again, Since L̄x
ab (or L̄y

ab) is a linear combination of {Lx
ab} (or {Ly

ab}), we can derive
covariance estimators for (L̄x

ab, L̄
y
cd), which can be expressed as follows:

Ĉov(L̄x
ab, L̄

y
cd) =

1

r2
{U+

xy|ac − U+
xy|ad − U+

xy|bc + U+
xy|bd} (3)
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with

U+
xy|ac =

{
Uxy|a++ =

∑
i,k Cov(Lx

ai, L
y
ak) for a = c

Uxy|+ac − Uxy|a+c − Uxy|ca+ + Uxy|ac for a 6= c

For non-distinct indices a, b, c, d we have

Ĉov(L̄x
ab, L̄

y
ac) =

1

r2
{U+

xy|a++ − U+
xy|ac − U+

xy|ba + U+
xy|bc}

and

Ĉov(L̄x
ab, L̄

y
ab) =

1

c2
{Uxy|a++ − U+

xy|ab − U+
xy|ba + Uxy|b++}.

The Appendix provides dually consistency arguments for these estimators. We will refer
later to “formulae” variance and covariance estimators, meaning Greenland’s dually consistent

variance V̂ar(L̄x
ab) in (2) and the dually consistent covariance Ĉov(L̄x

ab, L̄
y
cd) in (3) proposed

above.

When the strata are not independent (e.g., Linguistic example), it is even more compli-
cated to derive the dually consistent variance and covariance estimators, because the X’s are
correlated across not only items, but also strata. For instance, for K = 6, we need to consider

up to the 24th moment of X’s. Because of this complexity, Section 3.2 provides a realistic
way to find estimates by applying the nonparametric bootstrap method.

3.2 Variance and Covariance estimates using the bootstrap method

The nonparametric bootstrap method (Efron and Tibshirani, 1993) was conducted by ran-
domly selecting subjects with replacement from the original data. For instance, for the UTI

data, we resample Nk women with replacement from the kth stratum, where k = 1, 2. Sim-
ilarly, for the Linguistics example, we resample 50 utterances with replacement and cross
classify the data into a 3×7×6 table. For each resampled data set, the size of each stratum is
the same as the original data. We take B resamples and then for each resample, we calculate
the generalized MH estimates {L̄x

ab, x = 1, . . . ,m, a 6= b = 1, . . . , r}. The bootstrap estimate
of the standard error of L̄x

ab is the standard deviation of the bootstrap replicates,

s.e. for L̄x
ab =

√√√√
∑B

s=1

(
L̄x

ab,s −
∑B

s=1 L̄x
ab,s/B

)2

B − 1
,

where L̄x
ab,s is the generalized MH estimate L̄x

ab for the sth bootstrap resample. Similarly, the

bootstrap estimate of the covariance of L̄x
ab and L̄y

cd is

ˆcov(L̄x
ab, L̄y

cd) =

∑B
s=1

(
L̄x

ab,s −
∑B

s=1 L̄x
ab,s/B

) (
L̄y

cd,s −
∑B

s=1 L̄y
cd,s/B

)

B − 1
.

Later, we will refer to this as “bootstrap” estimate.

4 Examples

For the UTI example, the model-based (GEE) approach gives {β̂1j , j = 1, . . . , 5} = {0.12 ,
−0.52, 0.71, 0.65, −8.96} with sandwich standard errors {0.28, 0.27, 0.28, 0.31, 1.10} using an
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exchangeable correlation structure. Alternatively, the non-model-based (MH) approach gives

{Lj
12, j = 1, . . . , 5}={0.12 , −0.52, 0.71, 0.64, −2.57} with standard errors {0.28, 0.26, 0.28,

0.31, 1.41} by applying formula (2). Choosing B = 100, the corresponding bootstrap standard
error is {0.28, 0.26, 0.28, 0.32, 0.39}. For instance, for the first item (oral contraceptive), the
odds of having used the oral contraceptive for women without a prior history of UTI are
estimated to be exp(0.12) = 1.13 times higher than the odds for women with a prior history
of UTI, given each age group.

Table 4: The “bootstrap” and “formulae” (in parentheses) variance and covariance estimates
of {Lj

12, j = 1, . . . , 5},

L1
12 L2

12 L3
12 L4

12 L5
12

L1
12 0.079(0.076) −0.050(−0.048) −0.045(−0.042) −0.048(−0.002) 0.011(NA)

L2
12 −0.050(−0.048) 0.068(0.070) 0.051(−0.037) 0.045(0.060) −0.007(NA)

L3
12 −0.045(−0.042) 0.051(−0.037) 0.081(0.080) 0.051(0.044) −0.006(NA)

L4
12 −0.048(−0.002) 0.045(0.060) 0.051(0.044) 0.104(0.094) −0.012(NA)

L5
12 0.011(NA) −0.007(NA) −0.006(NA) −0.012(NA) 0.152(1.994)

NA: not applicable

Table 5: A 95% confidence interval for log Ψx
12 − log Ψy

12.

x
1 2 3 4 5

y Oral Condom L. cond. Spermicide Diaphragm

1. Oral (−1.6140, (−0.3876, (−0.5117, (−3.5851,
0.3342) 1.5724) 1.5589) −1.7931)

2. Condom (−1.6055, (0.8074, (0.6022, (−2.9973,
0.3257) 1.6572) 1.7248) −1.1011)

3. L. cond. (−0.3684, (0.3034, (−0.6335, (−4.2517,
1.5532) 2.1613) 0.4959) −2.3113)

4. Spermicide (NA) (NA) (NA) (−4.2498,
−2.1756)

based on formulae (lower left half) and bootstrap (upper right half) (co)variance estimates
NA: not applicable

The two approaches have similar results, except for the last item (“Diaphragm”), because
our data have no women without prior history of urinary tract infection who use diaphragms.
In Table 1, the cell count for row 1 and column 5 is zero for both age groups. For GEE
approach, the estimation routine fails to provide sandwich standard errors. Similarly, MH
estimate L5

12 is undefined. To fix the problem for the model-based approach, we add a pseudo
subject who didn’t have UTI history but used Diaphragm into the dataset. The model (1)
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Table 6: The generalized MH estimates and their bootstrap standard errors (in parentheses)
for the data in table 2

item j
1 2 3 4 5 6 7

pronunciation pronunciation word sentence rhythm intonation rate
of consonants of vowels stress stress

L̄j
12 −0.00 1.19 0.70 0.28 −0.10 0.88 −0.39

(0.81) (0.50) (0.53) (0.40) (0.47) (0.50) (1.07)

L̄j
13 1.34 1.47 1.21 1.49 0.73 1.36 −1.23

(0.73) (0.48) (0.58) (0.49) (0.44) (0.45) (1.17)

L̄j
23 1.34 0.27 0.52 1.20 0.83 0.48 −0.84

(0.52) (0.30) (0.47) (0.50) (0.50) (0.43) (1.35)

is fitted by giving the pseudo subject a small weight (say, 10−3). For the non-model-based
approach, one way to get an amended estimator is by adding 0.5 to each cell as suggested by
Agresti (2002, p. 71) for the ordinary odds ratio estimator. The cell counts in the stratum
having few observations are usually small. If we add 0.5 to a small cell count, it could easily
influence the association which weakens the association. In order not to smooth the data too
much, we add 0.5 to each cell for the stratum with largest size. For instance, because the
stratum of Age<24 contains the greater number of observations, we add 0.5 to each cell in
that stratum. The estimate of the odds ratio for the last item (“Diaphragm”) is not stable
for two approaches because of the imputation. In summary, the conditional UTI effects are
significant for the contraceptives “condom”, “lubricated condom”, and “spermicide” at a 5%
significance level.

Table 4 gives the bootstrap and formulae (in parentheses) variance and covariance es-

timates for {Lj
12, j = 1, . . . , 5}. Table 5 shows all multiple comparisons of the conditional

UTI effects for any two items. For instance, comparing the UTI effects for the contraceptives
“oral” and “lubricated condom”, a 95% confidence interval for log Ψ3

12 − log Ψ1
12 gives (−0.39,

1.57). Due to the sampling zero for the item 5 (Diaphragm), a few consistent covariance esti-
mators involving L5

12 are not applicable. Consequently, the confidence intervals based on the
formulae are not applicable for item 5. Alternatively, one can choose to amend the pairwise
observations to obtain rough estimates for them.

For the Linguistics example, the GEE approach fails to give the sandwich standard errors
for the model (1). Alternatively, we fit a parsimonious model that replaces τjk by τj + αk.
However, the generalized MH estimator works for the general model (1). By comparing overall

rating levels 1 and 2, the MH estimates {L̄j
12, j = 1, . . . , 7} are {−0.00, 1.19, 0.70, 0.28, −0.10,

0.88, −0.39} with the bootstrap standard error of {0.81, 0.50, 0.53, 0.40, 0.47, 0.50, 1.07}.

Comparing rating levels 1 and 3, the MH estimates {L̄j
13, j = 1, . . . , 7} is {1.34, 1.47, 1.21,

1.49, 0.73, 1.36, −1.23} with the bootstrap standard error of {0.73, 0.48, 0.58, 0.49, 0.44, 0.45,
1.17}. There are no significant differences between rating levels 1 and 2 for most of items,
except for item 2 (pronunciation of vowels), given each of raters. However, the differences
between rating levels 1 and 3 are significant for most of items given each rater, except for
items 1, 5, and 7. Table 6 shows the generalized MH estimates and their bootstrap standard
errors. Similarly, the bootstrap variances and covariances estimates can be calculated. For
this example, the formulae (co)variance estimators are not appropriate, because this dataset
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has dependent strata.

Although the GEE results are not comparable because it uses a more parsimonious model,
they give similar results in terms of the significance. For instance, the GEE estimates for

{log Ψj
13, j = 1, . . . , 7} are {1.34, 1.32 0.83, 1.29, 0.76, 1.24, −1.11} with the sandwich stan-

dard errors {0.67, 0.39, 0.53, 0.38, 0.33, 0.32, 1.19}.

5 Simulation Study

In the simulation study we evaluate the performance of the model based (GEE) and non-model
based (MH) estimators for the odds ratio and their (co)variances estimators. The simulation
study consists of two main cases. One case assumes that the strata are independent as in the
UTI example. The other case allows dependency between strata as in the Linguistics example.
For case 1, the scenarios range from ones for which the asymptotic type (a) should work well
to ones for which the asymptotic type (b) seems more appropriate. For case 2, the situations
vary based on the degree of the dependency between strata.

For the model based estimators (GEE), we use R (R Development Core Team) and its pack-
age “geepack” (Yan, 2002; Yan and Fine, 2004) for fitting. We always assume an exchangeable

correlation structure to obtain the estimates {γ̂j
ab; a 6= b; a, b = 1, . . . , r; j = 1, . . . ,m}. We

automatically yield the robust (or sandwich) and naive (co)variances as a by-product from

the fitting algorithm. For the non-model based method (MH) we compute {L̄j
ab; a 6= b; a, b =

1, . . . , r; j = 1, . . . ,m} and its bootstrap and formulae (co)variances.

Independent Strata For simplicity we let r = 2 and use a constant odds ratio for every

item, i.e., Ψj
12 = Ψ for all j = 1, . . . ,m. We also set the marginal probabilities πj|1k to be

0.5 for all items j = 1, . . . ,m and strata k = 1, . . . ,K. The marginal probabilities {πj|2k} are
computed from the given common odds ratio Ψ. Let Yj denote whether a subject selects item
j. Given i and k, if a subject selects item j, then Yj = 1; otherwise, Yj = 0. The pairwise
dependency between items x and y is denoted using an odds ratio θxy as

θxy =
P (Yx = 1, Yy = 1)P (Yx = 0, Yy = 0)

P (Yx = 0, Yy = 1)P (Yx = 1, Yy = 0)
,

where x 6= y = 1, . . . ,m. Then, the 2m joint probabilities PY |ik = {P (Y1 = b1, . . . , Ym =
bm|ik), bj = 0, 1; j = 1, . . . ,m} in the complete table as in Table 3 can be computed from the
marginal probabilities {πj|ik} and {θxy, x 6= y = 1, . . . ,m} described by Lee (1993) and by
Gange (1995) if a feasible solution exists. Following the simulation scheme by Bilder, Loughin,
and Nettleton (2000), we apply Gange’s method, because it generates strictly positive (> 0)
joint probabilities in most cases. It seems more plausible, since none of the 2m binary sequences
is theoretically excluded from the data generation process.

Again, for simplicity, we let m = 2. The dependency between items is assigned by the
odds ratio θ = θ12. We draw Nk samples independently from either row 1 or row 2 with equal
probabilities for stratum k and set N1 = . . . = NK . Given the randomly chosen row i and
stratum k, a sample (a binary sequence of length m), is drawn from the joint distribution
PY |ik. In case 1, we simulate n = 20000 datasets based on the joint distributions {PY |ik}
under a variety of configurations. For the bootstrap method, we use the number of bootstrap
resamples B = 400. Note that, we did not compute the model nor non-model based estimators,
when data amendment was required due to the sampling zero problem.
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Table 7 shows the sample means for the generalized MH estimates (L1
12, L2

12) in the first
row, and the sample means for the GEE estimates (γ̂1

12, γ̂
2
12) in the second row over n = 20000

simulations for various scenarios. We investigate (1) the performance of the MH (L’s) and the
GEE (γ̂’s) by comparing their sample means and the mean square errors (mse), (2) the perfor-
mance of the MH (co)variance estimators for the formulae and bootstrap methods, and (3) the
performance of GEE (co)variance estimators for the robust and naive methods. To compare
the performance of the (co)variance estimators, we calculate the “empirical” (co)variances.
For instance, the empirical (co)variance of L1

12 is defined as the sample (co)variance of L1
12

over 20000 simulations.

For the non-model based approach, we denote the sample mean for formulae (co)variances
by formulaeMH , and the bootstrap (co)variances by bootstrapMH . The empirical (co)variance
is denoted by empiricalMH . Similarly we denote for the model based approach the empirical
(co)variances by empiricalGEE , the mean of the robust and naive (co)variances by robustGEE
and naiveGEE , respectively. Each entry in Table 7 consists of three terms. The first two are
the variances of the log odds ratio (L’s or γ̂’s) for items 1 and 2, and the third is the covariance
of the log odds ratios between items 1 and 2. The first column shows the configuration of
parameters K, Nk, Ψ, θ, and the number in parentheses shows the number of samples which
were not included in the simulation study due to the sampling zero problem. The total number
of simulated samples involved is 20000 − (this number).

Dependent Strata In case 2, we let r = m = 2. Unlike case 1, there is some degree of
dependency between strata (or raters in the Linguistics example). We introduce another two
parameters Λuv and Γxy,uv to describe the dependencies between items and between raters.
Let Zk be whether rater k assigns an overall rating 1. If it is a “yes”, then Zk = 1; otherwise
Zk = 0. Similarly, let Wj,k be whether rater k selects item j. If rater k selects item j, then
Wj,k = 1; otherwise Wj,k = 0. The parameters Λuv and Γxy,uv are defined as

Λuv =
P (Zu = 1, Zv = 1)P (Zu = 0, Zv = 0)

P (Zu = 0, Zv = 1)P (Zu = 1, Zv = 0)
, u 6= v = 1, . . . ,K;

Γxy,uv =
P (Wx,u = 1,Wy,v = 1)P (Wx,u = 0,Wy,v = 0)

P (Wx,u = 0,Wy,v = 1)P (Wx,u = 1,Wy,v = 0)
,

u 6= v = 1, . . . ,K or x 6= y = 1, . . . ,m.

For a special case of u = v, Γxy,uv = θxy describes the dependency between items for a
given rater k. In contrast, Γxy,uv with u 6= v denotes the dependency between items and
between raters. For convenience, we set Λuv = Λ for all u < v = 1, . . . ,K; Γ12,kk = θ for all
k = 1, . . . ,K; and Γxy,uv = Γ for all u < v = 1, . . . ,K and x ≤ y = 1, 2.

We first fix the marginal overall rating probabilities P (Zk = 1) = 0.5, k = 1, . . . ,K and
compute the overall rating joint probabilities PZ = {P (Z1 = z1, . . . , ZK = zK), zk = 0, 1; k =
1, . . . ,K} from {P (Zk = 1)} and Λ applying Gange’s method. As in case 1, πj|1k is set to
be 0.5 for all items j = 1, . . . ,m and strata k = 1, . . . ,K. The marginal probabilities {πj|2k}
are computed from the given common odds ratio Ψ. Given a specific overall rating config-
uration z = (z1, . . . , zK), the items joint distribution PW |z = {P (W1,1 = w1,1, . . . ,Wm,1 =
wm,1, . . . ,W1,K = w1,K , . . . ,Wm,K = wm,K |z),wj,k = 0, 1; j = 1, . . . ,m; k = 1, . . . ,K} can

be computed from {πj|ik}, θ and Γ using Gange’s method. The 2K possible overall ratings

configurations result in 2K different items joint distributions PW |z, which are all computed in
advance.

Then, we draw Nk = N samples from the overall rating joint distribution PZ . Now given
such a realization z, we can sample one vector of length m ·K from PW |z. Then, we separate
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Table 7: MH and GEE Results of the simulation study for independent strata

mean Var(L/γ̂)112,Var(L/γ̂)212,Cov{(L/γ̂)112, (L/γ̂)212}
(L1

12, L
1
12)MH

10·mseMH
10·empiricalMH

10·formulaeMH
10·bootstrapMH

K,Nk,Ψ, θ (γ̂1
12, γ̂

2
12)GEE

10·mseGEE
10·empiricalGEE

10·robustGEE
10·naiveGEE

2, 50, 1, 2 −0.000, 0.002 1.75, 1.70 1.75, 1.70, 0.310 1.67, 1.67, 0.279 1.77, 1.77, 0.300
(4) −0.000, 0.002 1.78, 1.73 1.78, 1.73, 0.317 1.71, 1.71, 0.291 1.71, 1.71, 0.291
2, 50, 1, 4 −0.001, 0.002 1.75, 1.71 1.75, 1.71, 0.588 1.67, 1.67, 0.543 1.77, 1.77, 0.584
(3) −0.001, 0.002 1.78, 1.75 1.78, 1.75, 0.601 1.71, 1.71, 0.566 1.71, 1.71, 0.566
(2)2, 50, 4, 2 1.425, 1.428 2.33, 2.32 2.32, 2.30, 0.296 2.23, 2.23, 0.294 2.55, 2.55, 0.331
(2) 1.440, 1.443 2.39, 2.38 2.36, 2.34, 0.304 2.27, 2.27, 0.308 2.27, 2.27, 0.323
(1)2, 50, 4, 4 1.429, 1.434 2.33, 2.36 2.32, 2.34, 0.654 2.24, 2.24, 0.611 2.56, 2.56, 0.687
(1) 1.443, 1.450 2.39, 2.43 2.36, 2.39, 0.668 2.27, 2.28, 0.638 2.28, 2.28, 0.660

2, 100, 1, 2 −0.002,−0.002 0.84, 0.83 0.84, 0.83, 0.148 0.82, 0.82, 0.138 0.84, 0.84, 0.142
(3) −0.002,−0.002 0.85, 0.84 0.85, 0.84, 0.149 0.83, 0.83, 0.141 0.83, 0.83, 0.141
2, 100, 1, 4 −0.002,−0.003 0.84, 0.83 0.84, 0.83, 0.280 0.82, 0.82, 0.269 0.84, 0.84, 0.278
(2) −0.002,−0.003 0.85, 0.84 0.85, 0.84, 0.283 0.83, 0.83, 0.274 0.83, 0.83, 0.275
2, 100, 4, 2 1.408, 1.405 1.08, 1.09 1.07, 1.09, 0.144 1.07, 1.06, 0.148 1.13, 1.13, 0.156

1.415, 1.412 1.09, 1.10 1.09, 1.10, 0.146 1.07, 1.07, 0.151 1.08, 1.07, 0.157
2, 100, 4, 4 1.407, 1.405 1.08, 1.09 1.08, 1.08, 0.309 1.06, 1.06, 0.301 1.13, 1.13, 0.317

1.414, 1.412 1.10, 1.10 1.09, 1.09, 0.313 1.07, 1.07, 0.307 1.07, 1.07, 0.316

20, 5, 1, 2 −0.002, 0.005 2.25, 2.22 2.25, 2.22, 0.382 2.12, 2.12, 0.351 2.30, 2.30, 0.362
(17653) −0.007,−0.005 2.83, 2.89 2.83, 2.89, 0.527 2.47, 2.48, 0.371 2.45, 2.45, 0.358
20, 5, 1, 4 0.003,−0.003 2.21, 2.20 2.21, 2.20, 0.739 2.12, 2.12, 0.678 2.29, 2.29, 0.709
(18027) 0.003, 0.014 3.19, 3.00 3.19, 3.00, 1.150 2.46, 2.46, 0.838 2.45, 2.45, 0.824
(47)20, 5, 4, 2 1.464, 1.460 3.56, 3.48 3.50, 3.43, 0.391 3.22, 3.20, 0.371 3.50, 3.50, 0.354
(19751) 1.890, 1.779 7.95, 6.75 5.44, 5.22, 0.684 3.65, 3.48, 0.319 3.55, 3.40, 0.379
(28)20, 5, 4, 4 1.457, 1.463 3.47, 3.47 3.42, 3.41, 0.881 3.19, 3.20, 0.769 3.48, 3.48, 0.743
(19784) 1.916, 1.945 7.78, 9.16 4.99, 6.07, 1.565 3.68, 3.75, 1.057 3.63, 3.69, 1.110

20, 10, 1, 2 −0.000,−0.003 0.93, 0.92 0.93, 0.92, 0.162 0.91, 0.90, 0.152 0.88, 0.88, 0.148
(1116) 0.000,−0.004 1.13, 1.11 1.13, 1.11, 0.202 1.00, 1.00, 0.170 1.00, 1.00, 0.168
20, 10, 1, 4 −0.001, 0.001 0.92, 0.93 0.92, 0.93, 0.313 0.90, 0.91, 0.298 0.88, 0.88, 0.290
(1227) −0.002, 0.000 1.12, 1.12 1.12, 1.12, 0.386 1.00, 1.00, 0.334 1.00, 1.00, 0.331
20, 10, 4, 2 1.411, 1.412 1.27, 1.28 1.27, 1.28, 0.170 1.23, 1.24, 0.162 1.38, 1.39, 0.167
(7085) 1.569, 1.570 1.90, 1.87 1.56, 1.54, 0.219 1.35, 1.34, 0.181 1.34, 1.34, 0.184
20, 10, 4, 4 1.412, 1.414 1.28, 1.28 1.27, 1.27, 0.346 1.23, 1.24, 0.335 1.39, 1.39, 0.349
(7667) 1.571, 1.572 1.86, 1.91 1.52, 1.56, 0.428 1.34, 1.34, 0.382 1.34, 1.34, 0.383

log(1) = 0, log(4) = 1.3863. n = 20000 and B = 400.
The value in parentheses is number of datasets having the sampling zero problem (not included)
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each of the vectors of length mK in K vectors of length m, such that the kth vector of length

m represents the items of rater k. For instance, for m = 2, if the kth vector is (0, 1), then
it says that rater k selects item 2, but not item 1. We draw samples from PZ in order to
incorporate some dependency in the overall rating between raters.

In case 2, it is not feasible to sample sparse data with a large number of strata (K >> 5).
Choosing K = 5 and m = 2, we already get 2mK = 210 = 1024 joint probabilities in PW |z for
each overall ratings configuration z. Increasing m or K creates a problem with a huge number
of joint probabilities which is infeasible for most computers. In total, we simulate n = 20000
datasets under a variety of configurations. For the bootstrap method, we use the number of
bootstrap resamples as B = 400. Table 8 shows the results using the same notation as Table
7.

Results Table 7 shows that the MH approach performs better than the GEE approach,
especially when Nk is small. Also, GEE often fails to converge for extremely sparse data, e.g.,
Nk = 5. The convergence problem occurs when the number of parameters increases as the
number of strata increases. In contrast, table 8 shows that GEE provides better estimates
for high dependence (Γ ≥ 4) between strata, whereas for low dependence (Γ = 2) MH still
performs similarly well as GEE.

When we compare the bootstrap with the formulae (co)variances, we can say the following.
Under independence of strata the formulae (co)variance and bootstrap (co)variance behave
similarly. For the dependent strata case, the bootstrap (co)variance is better than the formulae
(co)variance. Only for a few configurations (Γ = 2) the formulae (co)variance is still quite
good and similar to the bootstrap (co)variance despite the violation of the naive independence
assumption.

Comparing the (co)variance estimates for GEE, we see that the robust (co)variance is
generally better than the naive as expected, because the naive (co)variance assumes that
the correlation structure chosen is the correct one. In case 1, the dependence only occurs
across 2 different items. Since the deviation of the chosen correlation structure from the
empirical one is not severe, the naive and robust (co)variances perform quite similarly. For
case 2, dependence occurs across different items and strata. The performance of the naive
(co)variance becomes poorly.

Most software like R only offer simple choices such as “exchangeable”, ”unstructured”,
”independence” for all observations and ratings, and one cannot match the exact correlation
structure as in our simulation study. The “exchangeable” structure is the most common one,
because it incorporates fewer parameters that result in less convergence problems.

6 Conclusion

This article uses both the model-based (GEE) and non-model-based (MH) approaches to eval-
uate the conditional associations between row and column variables for each of the items for
stratified multiple responses. The model-based approach is suitable if one is interested in the
model selection in order to find the relationship between the item responses and explanatory
variables. For highly sparse data (K large, but Nk small), it might have convergence prob-
lems. However, if one is particularly interested in the conditional association between the item
and the explanatory variable given strata, the MH-type estimators evaluate the association
directly. From the simulation studies, they agree with each other.

We give two examples in this paper. The UTI example has independent strata and the
Linguistic example has dependent strata. For the MH approach with independent strata,
Greenland (1989) provided dually consistent variance and covariance estimators for single
items, whereas we derived dually consistent covariance estimators between items. For depen-
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Table 8: MH and GEE Results of the simulation study for dependent strata

mean Var(L/γ̂)112,Var(L/γ̂)212,Cov{(L/γ̂)112, (L/γ̂)212}
(L1

12, L
1
12)MH

10·mseMH
10·empiricalMH

10·formulaeMH
10·bootstrapMH

K,Nk,Λ,Γ (γ̂1
12, γ̂

2
12)GEE

10·mseGEE
10·empiricalGEE

10·robustGEE
10·naiveGEE

(1)2, 50, 2, 2 1.434, 1.431 2.41, 2.40 2.39, 2.38, 0.728 2.24, 2.24, 0.607 2.64, 2.63, 0.749
(1) 1.446, 1.442 2.44, 2.43 2.40, 2.40, 0.717 2.27, 2.27, 0.628 2.23, 2.22, 0.358
(4)2, 50, 2, 4 1.427, 1.432 2.57, 2.55 2.56, 2.53, 0.830 2.24, 2.25, 0.605 2.73, 2.74, 0.835
(4) 1.439, 1.445 2.36, 2.37 2.33, 2.33, 0.600 2.15, 2.16, 0.521 2.11, 2.12, 0.454
(4)2, 50, 4, 2 1.434, 1.426 2.48, 2.46 2.46, 2.44, 0.779 2.24, 2.24, 0.607 2.70, 2.68, 0.802
(4) 1.448, 1.440 2.53, 2.48 2.49, 2.45, 0.779 2.33, 2.32, 0.681 2.30, 2.29, 0.432
(2)2, 50, 4, 4 1.429, 1.431 2.66, 2.60 2.65, 2.58, 0.941 2.26, 2.25, 0.597 2.84, 2.84, 0.925
(2) 1.441, 1.444 2.45, 2.41 2.42, 2.37, 0.714 2.26, 2.26, 0.607 2.22, 2.22, 0.557
(2)2, 50, 4, 9 1.443, 1.443 2.86, 2.94 2.83, 2.90, 1.148 2.28, 2.28, 0.591 3.04, 3.05, 1.105
(2) 1.449, 1.448 2.34, 2.36 2.30, 2.32, 0.595 2.12, 2.12, 0.469 2.09, 2.09, 0.640

2, 100, 2, 2 1.411, 1.411 1.13, 1.13 1.13, 1.12, 0.347 1.07, 1.07, 0.301 1.17, 1.17, 0.349
1.417, 1.418 1.12, 1.13 1.12, 1.12, 0.334 1.08, 1.08, 0.310 1.05, 1.05, 0.174

2, 100, 2, 4 1.406, 1.413 1.17, 1.15 1.17, 1.15, 0.376 1.07, 1.07, 0.299 1.21, 1.21, 0.389
1.412, 1.419 1.07, 1.05 1.07, 1.04, 0.270 1.02, 1.02, 0.252 0.99, 1.00, 0.219

2, 100, 2, 9 1.411, 1.409 1.22, 1.25 1.22, 1.25, 0.451 1.07, 1.07, 0.298 1.28, 1.28, 0.446
1.414, 1.412 0.96, 0.98 0.96, 0.97, 0.183 0.93, 0.93, 0.164 0.92, 0.92, 0.243

2, 100, 4, 2 1.408, 1.410 1.15, 1.13 1.15, 1.13, 0.359 1.07, 1.07, 0.301 1.19, 1.19, 0.373
1.415, 1.417 1.15, 1.15 1.14, 1.14, 0.354 1.10, 1.10, 0.336 1.08, 1.08, 0.210

2, 100, 4, 4 1.411, 1.407 1.21, 1.20 1.21, 1.19, 0.429 1.07, 1.07, 0.298 1.26, 1.26, 0.435
1.416, 1.412 1.12, 1.09 1.11, 1.09, 0.320 1.07, 1.07, 0.299 1.04, 1.04, 0.269

(3)5, 20, 1, 2 1.432, 1.436 2.63, 2.57 2.61, 2.55, 0.760 2.38, 2.38, 0.629 2.94, 2.95, 0.762
(38) 1.489, 1.492 2.73, 2.69 2.62, 2.58, 0.665 2.32, 2.33, 0.545 2.37, 2.36, 0.172
(5)5, 20, 2, 2 1.444, 1.441 2.88, 2.79 2.84, 2.76, 0.990 2.40, 2.39, 0.620 3.18, 3.19, 0.978
(34) 1.500, 1.499 2.91, 2.94 2.78, 2.81, 0.830 2.46, 2.47, 0.663 2.50, 2.51, 0.302
(10)5, 20, 2, 4 1.455, 1.454 3.21, 3.25 3.16, 3.20, 1.310 2.43, 2.43, 0.597 3.54, 3.53, 1.256
(46) 1.506, 1.504 2.75, 2.77 2.61, 2.63, 0.670 2.34, 2.35, 0.535 2.28, 2.29, 0.368
(32)5, 20, 2, 9 1.458, 1.462 3.93, 3.83 3.87, 3.78, 1.852 2.50, 2.50, 0.565 4.02, 4.03, 1.705
(66) 1.497, 1.500 2.78, 2.69 2.66, 2.56, 0.628 2.30, 2.30, 0.488 2.02, 2.02, 0.394
(8)5, 20, 4, 2 1.442, 1.445 3.07, 3.12 3.03, 3.09, 1.203 2.40, 2.41, 0.617 3.37, 3.40, 1.179
(41) 1.500, 1.503 3.09, 3.14 2.96, 3.01, 1.016 2.59, 2.60, 0.805 2.67, 2.67, 0.454
(21)5, 20, 4, 4 1.464, 1.459 3.68, 3.71 3.62, 3.66, 1.734 2.47, 2.46, 0.582 3.97, 3.97, 1.664
(53) 1.505, 1.500 3.02, 3.03 2.88, 2.90, 0.945 2.54, 2.54, 0.734 2.49, 2.48, 0.568
(48)5, 20, 4, 9 1.467, 1.463 4.55, 4.42 4.49, 4.36, 2.447 2.55, 2.53, 0.549 4.67, 4.67, 2.317
(91) 1.500, 1.497 2.99, 2.93 2.86, 2.80, 0.875 2.53, 2.52, 0.701 2.22, 2.19, 0.596

5, 100, 2, 2 1.396, 1.392 0.48, 0.47 0.48, 0.47, 0.175 0.42, 0.42, 0.120 0.48, 0.48, 0.169
1.407, 1.404 0.44, 0.44 0.44, 0.43, 0.131 0.43, 0.43, 0.124 0.41, 0.41, 0.054

5, 100, 2, 4 1.397, 1.393 0.54, 0.54 0.54, 0.53, 0.233 0.42, 0.42, 0.119 0.54, 0.54, 0.231
1.407, 1.403 0.42, 0.41 0.41, 0.41, 0.103 0.40, 0.40, 0.101 0.37, 0.37, 0.063

5, 100, 4, 2 1.396, 1.391 0.52, 0.51 0.52, 0.51, 0.213 0.42, 0.42, 0.119 0.51, 0.51, 0.205
1.407, 1.402 0.47, 0.46 0.47, 0.46, 0.160 0.45, 0.45, 0.150 0.44, 0.44, 0.081

5, 100, 4, 4 1.396, 1.397 0.61, 0.62 0.61, 0.61, 0.305 0.42, 0.42, 0.118 0.62, 0.62, 0.305
1.405, 1.406 0.45, 0.46 0.45, 0.46, 0.143 0.44, 0.44, 0.137 0.40, 0.40, 0.097

Ψ = 4 and θ = 4 for all configurations. n = 20000 and B = 400.
The value in parentheses is number of datasets having the sampling zero problem (not included)
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dent data the bootstrap method provides an easy and plausible way to estimate variances
and covariances. It also performs as well as the formulae estimates for the independent strata
cases.

The Linguistic example is a case of multilevel data where there is a hierarchical correlated
structure to the data. The responses are correlated within each of the m items; and within
each item, the responses are correlated within each of the K raters. Besides the GEE and
MH methods, a generalized linear mixed model can also be used for analyzing the multilevel
data. Fitzmaurice, Laird, and Ware (2004) discuss the multilevel generalized linear mixed
model. Unfortunately, using the existing software it is not easy to implement the multilevel
generalized linear mixed model. Users need to write their own programs for this.
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APPENDIX

For convenience, we let n′
ik := nik − 1 and we often suppress subscripts i and k.

We can express π00
xy|ik, π01

xy|ik and π10
xy|ik in terms of πx|ik, πy|ik and πxy|ik := π11

xy|ik:

π10
xy|ik = πx|ik − π11

xy|ik

π01
xy|ik = πy|ik − π11

xy|ik

π00
xy|ik = 1 − πx|ik − πy|ik + π11

xy|ik

We can compute

EXxXy = nn′πxπy + nπ11
xy

EXxX̄y = nn′πxπ̄y + nπ01
xy

EX̄xXy = nn′π̄xπy + nπ10
xy

EX̄xX̄y = nn′π̄xπ̄y + nπ00
xy (4)

Theorem:

Uxy|ab and Uxy|abc are dually consistent.

Proof The proof is similar to Greenland (1989). Under either limiting model, we have

Cov(Lx
ab, L

y
ab) = 1/(Ψx

abΨ
y
ab)Cov(Ψ̂x

ab, Ψ̂
y
ab)

= 1/(Ψx
abΨ

y
ab)

Cov(Cx|ab−Ψx
ab

Cx|ba,Cy|ab−Ψy

ab
Cy|ba)

ECx|baECy|ba

=
Cov(Cx|ab−Ψx

ab
Cx|ba,Cy|ab−Ψy

ab
Cy|ba)

ECx|abECy|ab

=

∑
k
Cov(cx|ab−Ψx

ab
cx|ba,cy|ab−Ψy

ab
cy|ba)

ECx|abECy|ab

=

∑
k
E(cx|ab−Ψx

ab
cx|ba)(cy|ab−Ψy

ab
cy|ba)

ECx|abECy|ab

=
{Dab−Ψx

ab
Dx

ab
−Ψy

ab
Dy

ab
+Ψx

ab
Ψy

ab
Dxy

ab
}

ECx|abECy|ab

= Dab

ECx|abECy|ab

−
Dx

ab

ECx|baECy|ab

−
Dy

ab

ECx|abECy|ba

+
Dxy

ab

ECx|baECy|ba
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with D =
∑

k d

dab =
nanb

N2
k

{n′
aπx|aπy|aπ

00
xy|b + n′

bπ
11
xy|aπ̄x|bπ̄y|b + π11

xy|aπ
00
xy|b}

dx
ab =

nanb

N2
k

{n′
aπ̄x|aπy|aπ

10
xy|b + n′

bπ
01
xy|aπx|bπ̄y|b + π01

xy|aπ
10
xy|b}

dy
ab =

nanb

N2
k

{n′
aπx|aπ̄y|aπ

01
xy|b + n′

bπ
10
xy|aπ̄x|bπy|b + π10

xy|aπ
01
xy|b}

dxy
ab =

nanb

N2
k

{n′
aπ̄x|aπ̄y|aπ

11
xy|b + n′

bπ
10
xy|aπ̄x|bπy|b + π00

xy|aπ
11
xy|b}

The first equality follows from the delta method, the second by writing Ψ̂ab − Ψab =
Cab−ΨabCba

Cba
, the third and last by Ψx

ab = Ecx|ab/Ecx|ba = 1/Ψx
ba, the fourth by independence of

the strata and the fifth by E(cx|ab − Ψx
abcx|ba) = 0. The sixth equality is shown by applying

straightforward calculation of the expectations using (4).

Similarly

Cov(Lx
ab, L

y
ac) = 1/(Ψx

abΨ
y
ac)Cov(Ψ̂x

ab, Ψ̂
y
ac)

= 1/(Ψx
abΨ

y
ac)

Cov(Cx|ab−Ψx
ab

Cx|ba,Cy|ac−Ψy
acCy|ca)

ECx|baECy|ca

=
Cov(Cx|ab−Ψx

ab
Cx|ba,Cy|ac−Ψy

acCy|ca)

ECx|abECy|ac

=

∑
k
Cov(cx|ab−Ψx

ab
cx|ba,cy|ac−Ψy

accy|ca)

ECx|abECy|ac

=
{Dabc−Ψx

ab
Dx

abc
−Ψy

acD
y

abc
+Ψx

ab
Ψy

acD
xy

abc
}

ECx|abECy|ac

= Dabc

ECx|abECy|ac

−
Dx

abc

ECx|baECy|ac

−
Dy

abc

ECx|abECy|ca

+
Dxy

abc

ECx|baECy|ca

with

dabc =
nanbnc

N2
k

π11
xy|aπ̄x|bπ̄y|c

dx
abc =

nanbnc

N2
k

π01
xy|aπx|bπ̄y|c

dy
abc =

nanbnc

N2
k

π10
xy|aπ̄x|bπy|c

dxy
abc =

nanbnc

N2
k

π00
xy|aπx|bπy|c

The dually consistency follows from the fact that the D̂’s and D̂’s converge to the same
expressions for both limiting models and that the Cx|ab are exactly unbiased estimators of
their expectations, also under both limiting models.
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