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1 Introduction

Resource selection (usually either habitat choice or food preference) is modelled

using Manly’s alpha (Manly 1974; Manly, McDonald and Thomas, 1993; Chesson

1978, 1983). This measure uses ratios to allow for different availabilities of the re-

sources. Resource selection models lead to measures of niche overlap between taxa,

which is used in the description and analysis of biological community structure.

The taxa in this report are groups of organisms. They may be species, functional

groups, size groups, or some other classification.

In this report, we construct null models (Gotelli and Graves 1996, Gotelli 2000) to

evaluate and compare resource selection, using a unified approach which is appro-

priate for different kinds of raw data. The Bray-Curtis distance (an overlap statis-

tic, see Schmid and Schmidt, 2006) is the measurement of distance used through-

out, for comparing two statistical distributions, or comparing observed with ex-

pected values.

Definitions and notation are given in Sections 2.1 and 2.2. Sections 2.3 to 2.5

provide tests under the assumption that usage occurs as count data, and Sec-

tion 3 gives adaptations of the tests for continuous data. Section 4 has a specially-

developed test for two different types of resources which are measured on different

scales, and a brief discussion of the tests is given in Section 5.
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2 Resource Selection

The electivity scores proposed by Manly (Manly 1974, Chesson 1978, 1983) pro-

vide measures of the preference of a particular taxon for different types of food

items or habitats, taking into account the availability of each food type (prey taxon)

or habitat type.

2.1 Usage and Availability

For a given taxon at a given site, assume we have measures of both the usage (fr)

and the availability (gr) of nR different resources (r = 1, 2, . . . nR).

Two major applications are:

• Habitat selection models:

– Usage is measured as the number or biomass of individuals of this taxon

found in each type of habitat:

fr = number or biomass of this taxon found in habitat r, r = 1, . . . , nR,

where there are nR types of habitat available at the site. Examples in-

clude a species of fish on different substrates, or a species of lizard or bird

in different vegetation types.

– Availability is measured as either the percentage or the proportion of

ground covered by each habitat type, e.g.

gr = percentage cover of habitat type r, r = 1, . . . , nR,

with
∑nR

r=1 gt = 100 for percentages (or
∑nR

r=1 gt = 1 for proportions).

• Food preference models:

– Usage is measured as the number or weight of food items of each prey

species found in the diets of the predator taxon of interest:

fr = number or weight of items of prey type r in the diet, r =
1, . . . , nR,

where there are nR different prey species available at the site.

– Availability may be a measure of the relative biomass of each prey type

or species at the site,

gr = relative biomass of prey type r, r = 1, . . . , nR,

with
∑nR

r=1 gr = 1. Another example, relevant to grazing animals, could

use proportion or percentage of ground cover of food types.
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2.2 Electivity Scores: Manly’s alpha

Manly’s alpha αr is the preference of the taxon of interest (at this site) for resource

r, defined by

αr =

fr

gr

∑nR
j=1

fj

gj

, (1)

giving a vector of values (α1, α2, . . . αnR
) over the different resources. The scaling

factor on the denominator of the formula ensures that the α values add to one.

Hence αr has the following properties:

1. Each αr is between 0 and 1 inclusive, 0 ≤ αr ≤ 1.

2. The α values add to one,
∑nR

r=1 αr = 1.

3. If the taxon of interest completely avoids resource r, fr = 0 and hence αr = 0.

4. If the taxon of interest has a complete preference for resource r to the exclu-

sion of all others, fr > 0 but all other fj = 0 (j 6= r), and hence αr = 1.

5. If the taxon of interest shows no preferences, it merely uses each resource in

proportion to its availability, and all αr values are equal. Since they must add

to 1, this means all αr = 1
nR

.

Note that in the case of numbers of individuals in different habitats, α is essentially

a measurement of relative density in each habitat. If the areas covered by habitat

types 1 to nR are a1, a2, . . . anR
respectively, with a total area A =

∑nR
r=1 ar, they are

related to the gr proportions by

gr =
ar

A

and Manly’s α is unchanged by using ar instead of gr since

fr

ar
∑nR

j=1
fj

aj

=

fr

A.gr
∑nR

j=1
fj

A.gj

=
1
A

fr

gr

1
A

∑nR

j=1
fj

gj

=

fr

gr
∑nR

j=1
fj

gj

= αt.

The numerators in this case are simple densities, numbers per unit area, and the

denominator rescales them to make them add to one, so αr is just the relative

density of this taxon in habitat r.
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2.3 Testing for the Existence of Preference

In this section, fr is assumed to be a count, not continuous data. For one taxon

at one site, we wish to establish whether the taxon is showing any preferences at

all, rather than just randomly selecting habitat or food in proportion to its avail-

ability. We first postulate the existence of underlying population parameters αr for

the “true” preferences, and regard equation 1 as providing an estimate α̂r of the

unknown αr for each resource r. We now test the overall hypothesis

H0: All αr = 1
nR

, versus HA: At least one αr 6=
1

nR
.

More detailed tests for each resource separately (e.g. a two-sided test H0: αr = 1
nR

,

versus HA: αr 6=
1

nR
) will give information about which (if any) resources are being

selected or avoided. An adjustment for multiple testing is needed if each resource

is tested.

One option for performing these tests would be to build generalized linear models

with (for example) Poisson assumptions if fr is count data, and use a likelihood

ratio test (G2) or a Pearson’s χ2 test. However, there could be excess zeros, which

would invalidate the Poisson assumption, and the assumptions of large samples

and independence may also not be met. Therefore we prefer to use randomization

tests and null models, which are more robust and appropriate (Gotelli and Graves,

1996; Manly, 1997).

2.3.1 Randomization Tests

To construct a suitable randomization test (Manly 1997), we must:

• Select a test statistic which will differentiate the null from the alternative

hypothesis.

• Evaluate the test statistic for the actual data.

• Decide the units for the randomization process.

• Do repeated randomizations assuming the null hypothesis is true, and in each

run calculate the pseudo-value of the test statistic, thus building up a picture

of the null distribution of the test statistic.

• Find where the data test statistic lies on the null distribution in order to

determine the p value for the test.
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2.3.2 Construction of the Overall Test

The null hypothesis is that the resource selection is occurring at random, in pro-

portion to availability, with no preference shown. In the habitat preference model,

this is the hypothesis of equal densities in all habitats.

The test is constructed by considering the expected usage values E(fr) under the

assumption of random choice. Suppose we have count data for fr (e.g. number of

fish on substrate r, number of prey items of type r in the diet). We discuss the

test construction in terms of relative density, which gives a heuristic argument for

increased clarity, but the argument holds for other situations unrelated to density

provided each fr is a count.

If H0 is true, the individuals are distributed over the habitats with an underlying

process of equal density. Our sample will not show exactly equal density because

of sampling fluctuation, but we are testing if the data are near enough to equal

density for H0 to be accepted. The availability gr is the relative area of habitat r,

where the relative areas sum to 1.

We have observed counts in each habitat, and the model gives us expected counts,

as follows. If the underlying common density is λ, habitat r with area ar has ex-

pected number λar. If a total of F =
∑nR

r=1 fr individuals were observed, λ is esti-

mated as F
A

, where A is the total area searched, A =
∑nR

r=1 ar. Hence the expected

number in habitat r, assuming H0 is true, is

E(fr) = λar = F.
ar

A
= F.g(t).

To check that this matches H0: all αr = 1
nR

, we note that the expected frequencies

above give

αr =

E(fr)
ar

∑nR
j=1

E(fj)

aj

=
λar

ar
∑nR

j=1
λaj

aj

=
λ

λ
∑nR

j=1 1
=

1

nR

.

Two possible test statistics for comparing observed with expected values would be

the likelihood ratio statistic (deviance)

G2 = 2
nR
∑

r=1

fr log
fr

E(fr)

or Pearson’s chi-squared statistic

χ2 =
nR
∑

r=1

(fr − E(fr))
2

E(fr)
,
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where fr and E(fr) are the observed and expected counts respectively for habitat

r. However, both these statistics work best for large samples, and can be unstable

for low expected values, so we choose instead to use the more robust Bray-Curtis

index of dissimilarity, which also measures the discrepancy between two vectors

(observed and expected values).

2.3.3 Test Statistic

Our test statistic is the Bray-Curtis index of dissimilarity between the ob-

served and expected vectors,

BCD =

∑nR
r=1 | fr − E(fr) |

∑nR
r=1 (fr + E(fr))

=

∑nR
r=1 | fr − E(fr) |

2F
(2)

which has a value between 0 (for completely matching vectors) and 1 (for the most

extreme dissimilarity, where for each resource r either fr = 0 or E(fr) = 0).

The null distribution of the Bray-Curtis index will be found by randomization.

Each randomization will take F individuals, and assign each independently to a

habitat, with the probability of going to habitat r being gr. This is a multinomial

distribution, with the categories being the habitats.

2.3.4 Algorithm for Overall Test

The algorithm for the overall test incorporates random allocation using the multi-

nomial distribution, as follows:

1. Calculate the expected values under the assumption of no selection, E(fr) =
F.gr, and then the data BCD values using Equation 2.

2. Do a large number of randomizations. Within each randomization:

(a) Allocate F individuals independently to habitats 1 to nR, with probabili-

ties (g1, . . . gnR
(a multinomial allocation).

(b) Use these pseudo-usages to calculate and store the pseudo-BCD value.

3. See where the data BCD falls in the distribution of different pseudo-BCD

values. A high BCD value indicates a large distance between observed and

expected values. The proportion of pseudo-BCD values which exceed the ob-

served value is the p-value (exact significance level) for the test. If there are

1000 randomizations, the p value will be found to 3 decimal places.
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2.3.5 Detailed Resource-Specific Tests

For each resource r, the distribution of the numbers in habitat r is binomial (F, gr)

(i.e. F trials, “success” with probability gr), so if a significant difference via the

Bray-Curtis index is found, tests of whether each habitat has higher or lower se-

lection than expected may be done.

The two-sided test for selection or avoidance of one resource r could use as a test

statistic the deviation of the αr estimate from 1/nR, Dr = α̂r−nR. This is calculated

for the original data, and then at each randomization, the pseudo-value of Dr is

saved. At the end the data Dr value is compared with the null distribution of the

saved pseudo-values.

The null distribution will be centred on zero. For a two-sided test, the p value for

resource r is the proportion of Dr pseudo-values further from zero than the data Dr

value. The direction of preference will also be clear, with data Dr > 0 indicating

preference, and data Dr < 0 indicating avoidance.

If nR such tests are performed, an adjustment for multiple testing, for example a

sequential Bonferroni adjustment, should be done to the p-values.
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2.4 Comparing Multiple Taxa at the Same Site

Suppose we wish to compare some or all of the taxa at the same site, to see if they

have the same resource selection. Not all the available taxa need to be compared

in the test. For example, the test has low power for rare taxa, and these may well

be omitted as they contribute little information on resource selection.

Let nT be the number of taxa to be compared. Assuming the usages are counts, let

ftr be the usage of resource r by taxon t (t = 1, 2, . . . nT ). The test will be based on

the expected usages for each taxon under an assumed null hypothesis of the taxa

having the same preference vector. The data are shown in Table 1, with marginal

totals Ft = total usage by taxon t, and Ur = total usage of resource r.

Resource

1 . . r . . nR Total

Usage Taxon 1 f11 . . f1r . . f1,nR
F1

. . . . . . . . .

. . . . . . . . .

Taxon t ft1 . . ftr . . ft,nR
Ft

. . . . . . . . .

. . . . . . . . .

Taxon nT fnT ,1 . . fnT ,r . . fnT ,nR
FnT

Total U1 . . Ur . . UnR
F

Availability g1 . . gr . . gnR
1

Table 1: Data for nT taxa at one site.

2.4.1 Statistical Tests

The overall test is whether or not all nT taxa have the same resource usage. The

unknown population α values are tested:

H0: For each r = 1, . . . nR, α1r = α2r = . . . = αnT ,r, versus

HA: For at least one pair of taxa (t and t′) and at least one r, αtr 6= αt′r.

More detailed tests are:

• Resource-specific tests: Check each resource r separately, with hypothe-

ses:

H0: α1r = α2r = . . . = αnT ,r, versus

HA: For at least one pair of taxa (t and t′), αtr 6= αt′r.
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• Pairwise comparisons of taxa: If nT > 2, any two taxa may be compared

over the nR resources.

If multiple detailed tests are used, a correction for multiple testing (e.g. sequential

Bonferroni) should be applied.

2.4.2 Expected Values under H0

For the overall test, we will find contingency-table probabilities and expected val-

ues of the usages under the null hypothesis, in order to randomize from the appro-

priate distribution. We then compare the data α̂ values with the α values under

the null hypothesis. The Bray-Curtis distance between the data and generated α̂
values will form the test statistic.

To find the expected usages, assume H0 is true, i.e. that all nT taxa select the

resources in the same pattern. Then the individuals in taxon t have the same

probabilities p1, . . . pnR
of selecting resources 1 to nR as the individuals in each other

taxon. These common probabilities are estimated by pooling the nT taxa to give an

overall estimate of usage from all sources. The estimated probability for resource

r is the total usage of resource r divided by the overall total usage,

pr =
Ur

F
where Ur =

nT
∑

t=1

ftr and F =
nT
∑

t=1

Ft.

This gives the expected usages (numbers of individuals) for taxon t as

E(ftr) = prFt, r = 1, . . . nR.

Table 2 shows the expected usages under the null hypothesis. Note that this table

has the same margins (row sums and column sums) as the table of observed usages

(Table 1).

As a check, the resource selection parameter for the expected usage of resource r
by taxon t is

αtr =
E(ftr)/gr

∑nR
j=1 E(ftj)/gj

=
prFt/gr

∑nR
j=1 pjFt/gj

=
pr/gr

∑nR
j=1 pj/gj

which is independent of t. Thus all taxa have the same distribution of α values

across the available resources.

There is now enough information to construct the randomization test of H0. The

probability vector (p1, . . . pnR
) is calculated from the data, and at each randomiza-

tion each taxon has pseudo-usages calculated from a multinomial distribution.
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Resource

1 . . r . . nR Total

Probability pr = Ur

F
p1 . . pr . . pnR

1

Expected Taxon 1 p1F1 . . prF1 . . pnR
F1 F1

usage . . . . . . . . .

under H0 . . . . . . . . .

E(ftr) Taxon t p1Ft . . prFt . . pnR
Ft Ft

. . . . . . . . .

. . . . . . . . .

Taxon nT p1FnT
. . prFnT

. . pnR
FnT

FnT

Total U1 . . Ur . . UnR
F

Availability g1 . . gr . . gnR
1

Table 2: Expected usages under H0.

For taxon t, Ft individuals are allocated to the resources with probabilities pr,

r = 1, . . . pnR
. This allocation has assumed the truth of H0.

2.4.3 Test Statistics

We will use as test statistics the Bray-Curtis distances between pairs of α vectors.

For comparing two taxa, t and t′ say, the distance is

d(t, t′) =

∑nR
r=1 | α̂tr − α̂t′r |

∑nR
r=1 (α̂tr + α̂t′r)

=
1

2

nR
∑

r=1

| α̂tr − α̂t′r |, (3)

with the denominator simplifying because α is scaled to add to 1 across the re-

sources. The null hypothesis is that the distance between the true α vectors is

zero; if this is true, a Bray-Curtis distance above zero is due to sampling fluctuation

alone. Randomization will be used to generate the null distribution of BCD, under

the null hypothesis of equal α vectors. Values of the test statistic close enough to

zero will lead to an acceptance of H0, while values sufficiently far above zero will

give evidence to reject H0.

For an overall comparison of two or more taxa (nT ≥ 2) over all nR resources at

this site, we let the test statistic be the sum of the Bray-Curtis distances between

all possible pairs of different taxa:

Overall Test Statistic = D =
nT −1
∑

t=1

nT
∑

t′=t+1

d(t, t′) (4)

10



where d(t, t′) is the Bray-Curtis distance between taxa t and t′. There are nT (nT −1)
2

different pairs contributing to D. For a more detailed resource-specific test for a

single resource r, we may use the Bray-Curtis contribution for that resource only,

Test Statistic for resource r = Dr =
nT −1
∑

t=1

nT
∑

t′=t+1

1

2
| α̂tr − α̂t′r | (5)

If the overall test gives significant differences of resource selection, the individual

resources may be tested as above, with a correction (e.g. sequential Bonferroni) for

multiple testing.

2.4.4 Algorithm to Compare Taxa (same site)

The procedure for an overall comparison and resource-specific tests of nT taxa at

the same site, with nT ≥ 2, is:

1. Calculate the (estimated) αtr values for each taxon t and each resource r.

2. Calculate and save the data BCD, d(t, t′), between the α values for each pair

of taxa, t, t′, using Equation 3.

3. Calculate and save the overall sum D (Equation 4) and the vector of Dr values

(Equation 5).

4. Calculate the overall probability vector which holds if H0 is true:

pr = Ur/F for r = 1, 2, . . . nR

where Ur is the total usage of resource r and F is the overall sum of the usages.

5. Do a large number of randomizations. Within each randomization:

(a) For each taxon t, independently allocate Ft individuals to resources 1 to

nR, with probabilities p1 to pnR
(a multinomial allocation). This gives an

nT × nR matrix of pseudo-usages.

(b) Calculate the associated nT × nR matrix of pseudo-alphas.

(c) Calculate and store the pairwise pseudo-d(t, t′) distances, the overall pseudo-

test statistic D, and the resource-specific pseudo-distances Dr, as in steps

1–3 above.
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6. After the randomizations, see where the data D value falls in the distribution

of pseudo-D values. If there are fewer than 5% of the pseudo-D values above

D, there is a significant difference of resource selection among taxa 1 to n at

a 5% significance level. The p-value is

p =
No. pseudo-D values > data D

No. randomizations
.

7. If there are significant differences, resource-specific tests may be done. For

each resource r compare the data Dr value with the distribution of stored

pseudo-Dr values, finding a p-value for each resource. Apply a multiple-

testing adjustment to the resource-specific p-values.

8. If nT > 2, pairwise tests of taxa may be done to find which pairs differ and

which are similar. Compare the data d(t, t′) values with the generated pseudo-

values, and do a correction for multiple testing. These tests may help to iden-

tify functional groups of taxa, with similar resource selection within groups.

12



2.5 Comparing One Taxon Across Multiple Sites

In this section, we compare the resource usages of one taxon over two or more

sites, which will have different resource availabilities. The taxon must be present

at all the sites. If the taxon has varying preferences over the different sites, this

could possibly indicate adaptative differences. Although we refer to different sites,

these tests may instead be used for the same site at different times. For example,

a seasonal change in resource availability may occur in food preference data, or

perhaps there is a long-term trend for changing resource selection as habitats are

modified during succession or interference.

Arthur et al. (1996) discussed a similar problem of changing availability, but details

of the application differ from ours and so the models also differ.

To compare a group of sites, we must restrict the analysis to resources which are

available over all the sites being compared, since any resource missing at one site

will yield no estimate of possible usage at that site.

We construct two types of tests, an overall test to compare two or more sites (with

a resource-specific version), and a pairwise test for two sites. The testing is again

based on finding what usages we would expect if the null hypothesis is true.

Assume our restricted data set has nS sites and nR resources (available at all sites),

and that the usages are counts. The data are shown in Table 3.

2.5.1 Statistical Tests

The overall test has a null hypothesis that the resource selection pattern is the

same over all the sites, versus an alternative that at least two sites show some

difference in resource selection. If αrs is the selection (preference) for resource r at

site s (r = 1, 2, . . . nR, s = 1, 2, . . . nS), the hypotheses are

H0: for each resource r, α1r = α2r = . . . = αnS ,r, versus

HA: for at least one resource r and one pair of sites s and s′, αsr 6= αs′r.

More detailed tests are:

• Resource-specific tests: Check each resource r separately, with hypotheses:

H0: α1r = α2r = . . . = αnS ,r, versus

HA: for at least one pair of sites s and s′, αsr 6= αs′r.

• Pairwise comparison of sites: If nS > 2, any two sites s and s′ may be

compared over the nR resources, using

13



Resource

1 . . r . . nR Total

Site 1 f11 . . f1r . . f1,nR
F1

. . . . . . . . .

. . . . . . . . .

Usage Site s fs1 . . fsr . . fs,nR
Fs

. . . . . . . . .

. . . . . . . . .

Site nS fns,1 . . fnS ,r . . fnS ,nR
Fm

Total U1 . . Ur . . UnR
F

Site 1 g11 . . g1r . . g1,nR
1

. . . . . . . . .

. . . . . . . . .

Availability Site s gs1 . . gsr . . gs,nR
1

. . . . . . . . .

. . . . . . . . .

Site nS gnS ,1 . . gnS ,r . . gnS ,nR
1

Average V1 . . Vr . . VnR
1

Table 3: Data for one taxon at nS different sites.

H0: for each resource r, α1sr = αs′r versus

HA: for at least one resource r, αsr 6= αs′r.

Multiple testing should have a correction (e.g. sequential Bonferroni) applied to

the p values.

2.5.2 Expected Values under H0

The expected usages under H0 are found to be similar to those in Section 2.4,

but with an adjustment for different availabilities. Each usage is adjusted to be

the expected usage under average availability Vr (averaged over the sites). The

expected usage of resource r at site s is

E(fsr) =
FsUrgsr/Vr

∑nR

j=1 Ujgsj/Vj

(6)

As a check, the resource selection parameter for the expected usage at site s of

14



resource r is

αsr =
E(fsr)/gsr

∑nR

k=1 E(fsk)/gsk

=
FsUr/Vr/

(

∑nR
j=1 Ujgsj/Vj

)

∑nR

k=1

[

FsUk/Vk/
(

∑nR
j=1 Ujgsj/Vj

)] =
Ur/Vr

∑nR

k=1 Uk/Vk

which is independent of s. Hence these expected values represent the same distri-

bution of α values across the different sites.

The probability estimates vary from site to site, because of the different availabili-

ties. For site s, the estimated probabilities under H0 are

psr = E(fsr)/Fs =
Urgsr/Vr

∑nR
j=1 Ujgsj/Vj

(7)

for resources r = 1, . . . nR, and
∑nR

r=1 psr = 1 for each site s. Under the null model, the

usages at site s follow a multinomial distribution with Fs trials, and probabilities

{psr} for the different resources.

2.5.3 Test Statistics

We will again use Bray-Curtis distances as test statistics.

For comparing two sites, s and s′ say, the distance is

d(s, s′) =

∑nR
r=1 | α̂sr − α̂s′r |

∑nR
j=1 (α̂sj + α̂s′j)

=
1

2

nR
∑

r=1

| α̂sr − α̂s′r | . (8)

with the denominator simplifying because α is scaled to add to 1 across the re-

sources.

The overall test among three or more sites has test statistic

Overall Test Statistic = D =
nS−1
∑

s=1

nS
∑

s′=s+1

d(s, s′) (9)

The more detailed resource-specific test for selection of a single resource r over

the different sites has test statistic

Test Statistic for resource r = Dr =
nS−1
∑

s=1

nS
∑

s′=s+1

1

2
| α̂sr − α̂s′r | (10)

These distance-based test statistics all lead to rejection of H0 if the observed dis-

tance is greater than would be expected by chance.
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2.5.4 Algorithm to compare Sites (one taxon)

For two or more sites, using the same taxon, the test procedure uses randomiza-

tions from the multinomial distribution, with the probabilities (equation 7) which

were used in deriving the expected values under H0.

1. Restrict the data to the nS sites at which this taxon is present, and the nR

resources which are available at all these nS sites. Rescale the availabilities

to add to 1 at each site.

2. Calculate the (estimated) αsr values for each site s and each resource r.

3. Calculate and save the data BCD, d(s, s′), between the α values for each pair

of sites, t, t′, using Equation 8.

4. Calculate and save the overall sum D (Equation 9) and the vector of Dr values

(Equation 10).

5. Calculate the nS×nR probability matrix which holds if H0 is true, using Equa-

tion 7.

6. Do a large number of randomizations. Within each randomization:

(a) For each site s, independently allocate Fs individuals to resources 1 to

nR, with probabilities ps1 to ps,nR
(a multinomial allocation). This gives

an nS × nR matrix of pseudo-usages.

(b) Calculate the corresponding nS × nR matrix of pseudo-alphas.

(c) Calculate and store the pairwise pseudo-d(s, s′) distances, the overall

pseudo-test statistic D, and the resource-specific pseudo-distances Dr,

as in steps 2–4 above.

7. After the randomizations, see where the data D falls in the distribution of

pseudo-D values. If fewer than 5% of the pseudo-D values are above D, there

is a significant difference of resource selection over sites 1 to nS at a 5% sig-

nificance level. The p value is the proportion of pseudo-D values above the

data D value.

8. If there are significant differences, resource-specific tests may be done. For

each resource r compare the data Dr value with the distribution of stored

pseudo-Dr values, finding a p-value for each resource. Apply a multiple-

testing adjustment to the resource-specific p-values.

9. If nS > 2, pairwise tests of sites may be done to find which pairs differ

and which are similar. Compare the data d(s, s′) values with the generated

pseudo-values, and do a correction for multiple testing. These tests may help

to identify groups of sites, e.g. into different habitat types.
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3 Continuous Usage Measures

In the definition of selectivity, the usages may be either counts or continuous data.

Either way, the α values may be calculated.

The discussion so far has assumed the usages are counts, e.g. numbers of animals

using a certain habitat, or numbers of items of different prey types in the diet. This

restriction was imposed in order to have independent units to permute or allocate

in the randomization tests.

However, the usage data obtained may be continuous. In habitat studies, if animals

are tracked through habitats by radiotelemetry, time intervals in different habitats

are available (e.g. Hoare et al., 2007). In diet analyses, the weights of different prey

types are likely to be recorded, with counts of individual items being impossible.

In these cases, there is no natural unit for random allocation in the randomization

tests. The conservative approach is to set the randomization units high enough for

independence to be assured. At worst, this may result in the loss of some power in

the testing.

With continuous records of animals over different habitats, one could sample the

locations at time points far enough apart for the animal to have had a choice of

staying or moving to a different habitat in the intervening interval. This will de-

pend on the mobility of the animal and the size of the habitat patches.

With weights of diet items in stomach contents, a reasonable assumption would be

that each prey type in one stomach represents an independent choice. There may

well be independence down to a finer level, e.g. different bites, but we don’t know

this. We make the conservative assumption that each “morsel” (type of prey, with

associated weight) in one stomach was selected independently. This morsel is used

in the randomization tests as the unit to be randomized, retaining its associated

weight.

This conservative approach will help to keep the Type I error controlled, although

the tests will have less statistical power than those with independence assumed

down to a finer level.
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4 Combining Different Availability Measures

With food preference data, there may be different prey categories which cannot be

measured on the same scale. For example, omnivore predators may be grazing veg-

etation and hunting mobile animals. The abundance of vegetative (sessile) avail-

ability is best described by percent cover per unit of area; whereas mobile, benthic

or pelagic prey availability is best described by the total number of individuals per

unit of area for both terrestrial and aquatic habitat. In an aquatic environment,

mobile or sessile prey or habitat availability can also be described by units of vol-

ume of water; for example, when mobile prey is pelagic (e.g. fish, salps, etc) or when

the biomass of sessile prey or habitat occurred on a three-dimensional space (e.g.

kelps). While α values may be calculated for each prey category separately, these

do not give meaningful comparisons between predators - for example they may ap-

pear to have similar usage within each category, but one predator may really have

a strong preference for vegetation and the other for animal prey, a fact which can-

not show up in separate analyses. Resource selection estimates would give more

meaningful comparisons among predator species if a unified overall measure of

availability is used. In such cases we need to estimate the relative importance of

each type of measure.

We propose a comparability coefficient κ to convert one availability measure to

another. One prey category is taken as the standard, and the availabilities of any

other prey categories 1, 2, . . .N are converted to the standard using the coefficients

κ1, κ2, . . . κN respectively. The following discussion refers to data with just two cat-

egories of prey, mobile and sessile, but the argument may be extended to multiple

categories.

If the predators are fish species (the taxa), the mobile prey are measured in units

of weight per unit of area or volume of water, while the sessile prey units are %

substrate cover. We take the mobile prey as the standard, and use the data to

construct a comparability coefficient κ to convert from sessile prey availability to a

measure comparable with the mobile prey.

The prey types are first pooled into just the two categories, mobile and sessile. To

estimate κ, the data set used must include:

• Two or more comparable sites, each having both prey categories available.

• A set of predator taxa, each of which

– uses both prey categories,

– occurs at all the chosen sites, and

– may be assumed to have similar preferences over these sites.
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We cannot use fish species which eat either mobile or sessile prey exclusively, as

they provide no information to compare preferences between the two categories.

The similar sites are needed to give some replication, so that an assumption of

each predator taxon having similar preferences over the sites enables an estimate

of κ to be made.

At a given site s, the availability measures are gsA = weight per unit volume of

water for mobile prey (category A), and hsB = % cover for sessile prey (category B).

The comparability coefficient κ will convert the hsB measure to gsB,

gsB = κhsB

where gsB is now on a scale comparable with gsA.

Since both mobile and sessile prey are available at the selected sites, Manly’s α val-

ues are indicating true preferences of each predator taxon, without any restriction

of choice which would occur with unavailability. Let αtsA and αtsB be the prefer-

ences of predator taxon t at site s for mobile (category A) and sessile (category B)

prey respectively.

If κ were known, estimates of these α values could be found. The formula for

simultaneous conversion from hsB to gsB and estimation of α̂ is

α̂tsA =

ftsA

gsA

ftsA

gsA
+ ftsB

κhsB

and α̂tsB =

ftsB

κgsB

ftsA

gsA
+ ftsB

κhsB

where ftsA and ftsB are the usages, for example weights of mobile and sessile prey

respectively in the stomachs of fish species t at site s. Note that α̂tsA + α̂tsB = 1.

Since Manly’s α adjusts for site (and availability) differences, the value of αtsA

should be similar across sites for each taxon t. The estimates α̂tsA should vary

between taxa but be similar across sites within taxa.

We try different values of κ, and select the one which maximises the species differ-

ences in α̂tsA while minimising the site differences. (This is similar to discriminant

analysis, and some types of cluster analysis, in which a between-groups difference

is maximised in relation to the within-groups difference.) For each taxon t, the

mean over the sites, αt.A, is an estimated expected (or fitted) value for αtA.

Three criteria which could be used for choosing κ are:

1. Minimise the sum of squares of deviations of observed from expected values

(as is done in least squares regression),

2. Minimise the sum of absolute values of deviations of observed from expected

values, which will be less sensitive to outliers than 1., or
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3. Minimise the Bray-Curtis distance between the observed and fitted values,

which is less sensitive to outliers and to small expected values.

The Bray-Curtis distance proved the most consistent in the experiment which in-

spired the development of the comparability coefficient (Pérez Matus, 2007, in

prep.).

Once the comparability coefficient has been estimated numerically, it may be used

for more detailed analyses in which there are many prey types, some mobile and

some sessile. All sessile prey types have their measured availability (% cover)

adjusted by κ to make them comparable with the mobile prey.

The analyses of Sections 2.3 (existence of preference), 2.4 (different taxa, same site)

and 2.5 (same taxon, different sites) are now feasible.
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5 Discussion

Tests have been given for comparing several taxa at one site, or several sites with

one taxon. A generalization would be possible, giving an overall test over several

sites and taxa, using the same methods.

A graphical representation of results using non-metric multidimensional scaling

is a useful adjunct to these tests. For several taxa at one site, the Bray-Curtis

distances between taxa, d(t, t′) (Equation 3) have been calculated. A scaling can

illustrate in two dimensions which taxa are most alike, and which are most differ-

ent. This and clustering methods could provide an objective method of determining

functional groups of taxa, grouped by their selection of resources. Similarly, for one

taxon and several sites, a non-metric multidimensional scaling or a clustering of

the site by distances d(s, s′) (Equation 3) will group the sites for similarity of selec-

tivity by that prey taxon.

Note that the independent allocation used in the randomization process implies

that this test does not allow for density dependence mechanisms (e.g. intra- or

inter-specific competition). With habitat usage, each individual is assumed to

choose on the basis of habitat area alone, without reference to other occupiers.

With diet data, each individual at one site has the same availability of food as the

other individuals; selection is based on food availability, independently of other

users.

R programs for these analyses are available from the first author.
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