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1 Introduction

1.1 Degree classes

In this paper we will discuss recent work of the authors {Downey, Greenberg and
Weber [8] and Downey and Greenberg [6, 7]) devoted to understanding some new
naturally definable degree classes which capture the dynamics of various natural
constructions arising from disparate areas of classical computahbility theory.

It is quite rare in computability theory to find a single class of degrees which
capture precisely the underlying dynamics of a wide class of apparently similar
constructions, demonstrating that they all give the same class of degrees. A good
example of this phenomenon is work pioneered by Martin [22] who identified the
high c.e. degrees as the ones arising from dense simple, maximal, hh-simple and
other similar kinds of c.e. sets constructions. Another example would be the
example of the promptly simple degrees by Ambos-Spies, Jockusch, Shore and
Soare [2]. Another more recent example of current great interest is the class of
K-trivial reals of Downey, Hirscheldt, Nies and Stephan [5], and Nies {23,24].

‘We remark that in each case the clarification of the relevant degree class has
lead to significant advances in our basic understanding of the c.e. degrees. We
believe the results we mention in the present paper fall into this category. Our
results were inspired by another such example, the array computable degrees
introduced by Downey, Jockusch and Stob [10,11]. This class was introduced by
those authors to explain a number of natural “multiple permitting” arguments
in computability theory. The reader should recall that a degree a is called array
noncomputable iff for all functions f <, @ there is a a function g computable
from a such that

Iz (g(z) > f(=z)).!

* Research supported by the Marsden Fund of New Zealand.

1 Of course, this was not the original definition of array noncomputability, but this
version from [11] captures the domination property of the notion in a way that shows
the way that it weakens the notion of non-lowg-ness, in that a would be non-low:
using the same definition, but replacing <., by <7.



1.2 Totally w-c.e. degrees

Qur two new main classes are what we call the totally w-c.e. degrees and the
totally w¥-c.e. degrees. These classes turn out to be completely natural and relate
to natural definability in the c.e. degrees as we will discuss below. We begin with
the w case.

Definition 1 (Downey, Greenberg, Weber [8]). We say thal a c.e. degree
a is totally w-c.e. iff for all functions g <7 a, g is w-c.e.. That is, there is
a computable approzimation g(z) = lim, g(z, s), and e computable function h,
such that for all x,

[{s: g(z,8) # g(z,5+ 1)}| < A{z).

The reader should keep in mind that array computability is a uniform version
of this notion where h can be chosen independent of g. This class captures a
number of natural constructions in computability theory.

As an illustration, recall that a c.e. prefix-free set of strings A € 2<% presents
a left ce. real @ if & = 3, 2719, that is, o is the measure of A. Now it is
easy to use padding to show that every c.e. real has a presentation A which is
computable (Downey [4]}. On the other hand, bizarre things can happen. In [12],
Downey and LaForte showed that there exist noncomputable left c.e. real ¢, all
of whose c.e. presentations are computable. We have the following:

Theorem 1 {Downey and Greenberg [6]). The following are equivalent.

(i) a is not totally w-c.e..
(ii) a bounds a left c.e. real @ and a c.e. set B < o such that if A presents o,
then A <p B.

1.8 Natural definability

One of the really fascinating things is that this is all connected to natural de-
finability issues within the computably enumerable Turing degrees. In terms of
abstract results on definability, there has been significant success in recent years,
culminating in Nies, Shore, Slaman [25], where the following is proven.

Theorem 2 (Nies, Shore, Slaman [25]). Any relation on the c.e. degrees
invariant under the double jump is definable in the c.e. degrees iff it is definable
in first order arithmetic.

The proof of Theorem 2 involves interpreting the standard model of arith-
metic in the structure of the c.e. degrees without parameters, and a definable
map from degrees to indices (in the model) which preserves the double jump.
The beauty of this result is that it gives at one time a definition of a large class
of relations on the c.e. degrees.

On the other hand, the result is somewhat unsatisfying in terms of seeking
natural definitions of objects in computability theory as outlined in the paper



Shore {27]. Here we are thinking of results such as the following. (We refer the
reader to Soare [28] for unexplained definitions below since they are mainly to
provide background for the results of the current paper.)

Theorem 3 {Ambos-Spies, Jockusch, Shore, and Soare [2]). A c.e. degree
a is promptly simple iff @t is not coppable.

Theorem 4 (Downey and Lempp [13)]). 4 c.e. degree a is contiguous iff it
is locally distributive, meaning thaot

Vaj,as,blajUag=anb<a—
3b1,b2(b1 Ubhs=hAb  <aijAbs £ az))

holds in the c.e. degrees.

Theorem 5 (Ambos-Spies and Fejer [1]). A c.e. degree a is contiguous iff
it is not the top of the non-modular 5 element lattice in the c.e. degrees.

Theorem 6 (Downey and Shore [14]). A c.e. truth table degree is low iff
it has no minimal cover in the c.e. truth table degrees.

At the present time, as articulated in Shore [27], there are very few such
natural definability results.

In [6-8], we gave some new natural definability results for the c.e. degrees.
Moreover, these definability results are related to the central topic of lattice
embeddings into the c.e. degrees as analyzed by, for instance, Lempp and Lerman
[19], Lempp, Lerman and Solomon [20], and Lerman [21].

A central notion for lattice embeddings into the c.e. degrees is the notion of a
weak critical triple. The reader should recall from Downey [3] and Weinstein [30]
that three incomparable elements ag, a; and b in an upper semilattice form a
weak critical triple if agUb = a; Ub and there is no ¢ < ag,a; with ag < bUec.
This notion captures the need for “continuous tracing” which is used in an
embedding of the lattice My into the c.e. degrees (first embedded by Lachlan
[17]).2

The necessity of the “continuous tracing” process was demonstrated by Downey
[3] and Weinstein [30] who showed that there are initial segments of the c.e. de-
grees where no lattice with a (weak) critical triple can be embedded. It was also
noted in Downey [3] that the embedding of (weak) critical triples seemed to be
tied up with multiple permitting in a way that was similar to non-lows-ness.
Indeed this intuition was verified by Downey and Shore [15] where it is shown
that if a is non-lows then a bounds a copy of Ms.

The notion of non-lows-ness seemed too strong to capture the class of de-
grees which bound M;s’s but it was felt that something like that should suffice.
On the other hand, Walk [29] constructed a array noncomputable c.e. degree
bounding no weak critical triple, and hence it was already known that array
non-computability was not enough for such embeddings. We proved the follow-
ing definitive result:

2 We recall that a lattice is not join semidistributive (also called principally indecom-

posable) iff it contains a copy of Ms iff it contains a weak critical triple.
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Fig. 1. The lattice Mjy

Theorem 7 (Downey, Greenberg and Weber {8]). A degree a is totally
w-c.e. iff it does not bound a weak critical triple in the c.e. degrees. Hence, the
notion of being totally w-c.e. is naturally defineble in the c.e. degrees.

Theorem 7 also allowed for the solution of certain technical problems from
the literature.

Corollary 1 (Downey, Greenberg and Weber [8]). The low degrees and
the superlow degrees are not elementarily equivalent.

Proof. As Schaeffer [26] and Walk [29] observe, all superlow degrees are array
computable, and hence totally w-c.e. Thus we cannot put a copy of M5 below
one. One the other hand there are indeed low copies of Ms.

Corollary 2 (Downey, Greenberg and Weber [8]). There are c.e. degrees
that are totally w-c.e. and not array computable.

Proof. Walk [29] constructed an array noncomputable degree a below which
there was no weak critical triple. Such a degree must be totally w-c.e.

The class of totally w-c.e. degrees also captures other constructions.

Theorem 8 (Downey, Greenberg and Weber [8]). A c.e. degree a is totally
w-c.e. iff there are c.e. sets A, B and C of degree <v a, such that

(i) A=7 B

(ii) A &r C
(%Z) For all D Lawit A,B, D et C.



1.4 Totally < w¥-c.e. degrees

The class of totally < w“-c.e. degrees also arises quite naturally. Recall that if
b is an ordinal notation in Kleene’s @, then a AJ function g is b-c.e. if there is
a computable approximation g(z, s) for g such that the number of changes in
the guessed value is bounded by some decreasing sequence of notations below
b; that is, there is a function o(z, 8) such that for every z and s, o(z, s) <o b,
o(z,s+1} <o o(z, s) and if g(z, s+ 1) # g(z, s) then o(z, s+ 1) <o o(z,s). The
definition of the class of totally < w*-c.e. degrees involves strong notations, being
notations for ordinals in Kleene’s sense, except that we ask that below the given
notation, Cantor normal form can be effectively computed. Exact formalization
of this notion is straightforward for the ordinals below eg; such notations are
computably unique, and so the corresponding class of functions is invariant under
the chosen strong notation for a given ordinal; we thus call a function o-c.e. if it
is b-c.e. for some (all} strong notations b for . To make this definition explicit,
we note how the lower levels correspond to functions that are given as increasing
limits. Observe the following:

— A function g is w-c.e. if there is a computable approximation g{z, s} for g
such that the number of changes in the guess for g(z) is given in advance,
in a computable fashion.

— A function g is w - 2-c.e. if there is a computable approximation g(x, s) for g
such that the number of changes n(z) in the guess for g(z) has a computable
approximation that changes at most once.

— Similarly, a function is w - n-c.e. if we may change our mind at most n — 1
times about the number of possible changes.

— A function is w?-c.e. if is has some computable approximation such that the
number of changes n(x) is w-c.e., that is, the number of times we change our
mind about n(z) is computably bounded.

— Similarly, a function is w™*-c.e. if it has a computable approximation for
which the number n(z) of changes in the guess for g(z) is w"-c.e. (So for
example, g is w3-c.e. if it has an approximation where there is a computable
bound on the number of times we may change our mind about the number
of times we may change our mind about the number of changes of our guess

for g(z).)

A degree a is totally < w¥-c.e. if every g <t a is w™-c.e. for some n. In [6],
Downey and Greenberg introduced this notion and showed that the collection
of totally < w*-c.e. degrees is naturally definable:

Theorem 9 (Downey and Greenberg [6]). 4 c.e. degree is totally < w*-c.e.
iff it does not bound a copy of Ms.

Again, Downey and Greenberg showed that a number of other constructions
gave rise to the same class.

In the present paper, we will try to lead the reader to understanding how this
class arises by showing how the class relates to the class of m-topped degrees
of Downey and Jocksuch {9]. Whilst we cannot get the exact classification, the
analysis is revealing, as we see in section 2.



2 m-topped degrees

Recall that a c.e. degrees a is called m-topped if it contains a c.e. set A such
that for all c.e. W <1 4, W <, A. Of course 0 is m-topped as it contains the
halting set, but there exist incomplete m-topped degrees (Downey and Jockusch
[9]); by index-set considerations, all of these are lows.

We lock at the Downey-Jockusch construction to try to understand what is
needed to make it work. We must meet the requirements

Re: 2 =W, — W, < 4.

Additionally there will be a Friedberg strategy in the background making A
noncomputable and some other one making sure that A is not complete.
To meet R, we will have nodes 7 = 7(e) on a priority tree devoted to mea-
suring
{r,5) = max{z: &) z=W, [z [s]}.

The idea is crude and simple. For a given 2, at the first suitable T-expansionary
stages s, where £(7,s;) > 2, if z is not yet in We ,,, we will take a fresh number
y > s, and define f(7, z) = y. The promise is that if z enters W, after stage s,
then we will put f(r,2) into A. Notice that A is controlling W, and hence such
a situation won't occur unless we change A;, [ we(2, 52).

Now suppose that we are trying to carry out this construction below a a given
degree b represented by a c.e. set B. We look at this in the single requirement
scenario. The action would occur as follows.

At some stage sp we would initiate something by enumerating some number p
into A,,. By that stage, 7 will have already defined f(r, z) for all z < n for some
n. By the next 7-stage we see, s1, perhaps some z; < n entered We,s,, causing
us to now enumerate f(7, z1) into A, . In turn, this number might be below the
use p.{z;,51) of other z;’s at stage sy, and hence this process could snowball
so that it re-occurs many times before all pending coding actions are finished.
It will finish since we won’t define new f(7,z") until we have a T-expansionary
stage s where there are no pending coding actions to be done.

The point is that each enumeration of some f(7, 2;) really needs some B-
permission. Thus the sequence we have began at stage sq could actually need a
sequence of more or less (sq) many B-permissions to be achieved.

Indeed, things are even worse when many requirements are considered. For
example, if we consider two 7’s, say 71,72, each building their own f(m,2)’s,
then assuming that 7o has weaker priority than 71, 71 could recover many times
before we see any Tp-expansionary stages. At each T expansionary stage, we
would fulfill its obligation to enumerate f(7,z) into A. Now, 7 cannot know
if 75 will ever recover, so that before we did any enumeration of numbers like
f(72, ') we might have defined many new f(71, £) where £ > so. Now the pending
action at 79 of enumerating some f(r, 2’} into A will likely cause new changes
in W,, and hence yet further enumeration into A for the sake of 71. This process
could repeat again more or less s many times,



In summary, one R, would seem to require f(j) many permissions for some
computable function f, for attack number 7, and two requirements would seem
to need 37, ;) 9(3, 7) many permissions for some computable g{i, 7). Thus in
some relatively natural way this construction would seem to need at least “w®
many permissions” to be carried out.

Now the construction of an m-topped degree also seems to need more in that
once we have begun some action we must finish it. There is no way to allow us to
“lose” on some f(7,z). In the embeddin of M5, we can think of the R.'s above as
belonging to some gate of a pinball construction mesasuring some minimal pair
requirement

P =M =h - h<Q.

Here we will assume that the reader if familiar with the construction of a 1-3-1
using a pinball machine as in Downey and Shore [15].

The analogous action is that we have some sequence of numbers z, T(z, s),
T2%(z,s)... that have been realized and are traveling down the machine towards
the pockets. They are a number z with its trace T'(z,s), etc. This can’t pass
the gate if they are a k,[ sequence. For example, k = 1,{ = 2 and z is targeted
for Az, T(z,s) for Ay, T%(z,s) for Ag etc. They must pass one at a time. We
put the last one p = T"(z,s) (targeted, say, for A;} out at the gate, and give
it a trace T™11(z, s) targeted for Az and so forth as a 1-3 sequence at the gate.
When the gate opens at the next expansionary stage, we would drop the balls
to the first unoccupied 1-3 gate and repeat.

To achieve this, we would need to repeat this n many times one per ball
at gate G, alone. For two gates, the situation is like the above, each ball from
the first gate itself generates a long 1-3 entourage, and hence needs g(%, 7) many
permissions for each descendent.

The critical difference between the situation for the Mj lastice and the m-
topped degree, is that if some set of balls is stuck forever at some gate then that
causes no real grief. However, in the m-topped case, the failure of us fulfilling
some f(r,z) commitment is fatal. The issue seems to concern lowness; this is
why we can’t get a true reversal for the class of m-topped degrees:

Theorem 10. There is a degree that is not totally < w®-c.e., but does not bound
any noncomputable m-topped degree.

Proof. Downey and Jockusch [9] proved that no noncomputable m-topped c.e.
degree is low. On the other hand, even Lachlan’s original construction can be
shown to produce a low degree that is the top of an embedding of Mjy. By (7]
mentioned above, such a degree cannot be totally < w*-c.e. Of course, the low
degrees form an initial segment of the c.e. degrees.

But in the present paper we will prove that the analysis above works in one
direction:

Theorem 11. No totally < w“-c.e. degree bounds a noncomputable, m-topped
degree,



On the other hand, it is possible to carry out the construction of an m-topped
degree at a relatively low level. The reason for the interest in the next result is
that the m-topped construction was a natural candidate for a construction that
needed the “full power” of non-lows permitting. The reason for this is that
Downey and Shore [14] proved that a c.e. degree a is lows iff it is bounded by
an incomplete m-topped degree. The following theorem shows that Theorem 11
is optimal in the hierarchy of totally < a-c.e. degrees; the next level above < w®
is the class of totally w*-c.e. degrees, the degrees that only compute w*-c.e.
functions.

Theorem 12. There exists a m-topped c.e. degree that is totally w¥-c.e.

3 Proof of Theorem 11

We sketch the proof of Theorem 11. As the class of totally < w*-c.e. degrees
is closed downwards, it is sufficient to show that no totally < w*-c.e. degree is
m-topped.

For a simplified start, suppose first that the given degree a is totally w-c.e.;
let A € a be a candidate for having a maximal c.e. m-degree inside a. Out goal
is to build a c.e. set V <p A via ¥4 = V such that we meet the requirement

M,: V £ A via @,

That is, for some z, we would have z € V iff p.(z) & A (or ¢, is not total.)

As with all these constructions, we will build an auxiliary function A4 = g.
Now suppose that we knew in advance the witness to the the fact that g is w-c.e.
That is we had in advance a computable function f so that g is w-c.e. via some
approximation h(z, s), where the number of changes is bounded by f(z).

We could then proceed as follows.

‘We choose some “permitting number” n, and a finite set X of size greater
than f(n), consisting of fresh potential diagonalisation witnesses. We wait until
every x € X is realised, that is, pe(z) |; we then let v = max{p.(z) : z € X},
and define ¥ (z) = w for all z € X and §*(n) = u as well. [Strictly speaking, we
need to define both §(n) and ¥(z) before the realisation, because the totality of
A4 and ¥4 cannot depend on «, being total; for this we use simple permitting.]

We are then ready to attack with some z € X (it doesn’t matter which): we
enumerate x into V. If we are unlucky, then at a later stage ¢o the attack fails:
we(z) enters A. The way we defined §(n) allows us to extract a price from A in
exchange for this failure: since §(n) > we(x), we know that the failure of the at-
tack allows us to redefine A4(n) with new value that hasn’t been guessed before
as some h(n, s). At a later stage sp we get a new guess h(n, 80) = A4 (n)to], and
then we can attack with another 2/ € X. Now note that we do not want to attack
again before we get a change in i(n, s), because the limit we have on the number
of changes is used to show that some attack is eventually successful. Note that
the reduction ¥4 = V is not damaged here: we defined {z') > we{z}, and so



at stage ¢o, ¥(x’) T; at that stage we can define ¥(2') = 1 with anticipation of
stage sg.
This plan succeeds because:

(i) h is indeed a correct approximation for g, and so every failure is followed
by another attack; every stage g as above is followed by some sp. It follows
also that the definition ¥(z") = 1 made at stage to is correct, and so indeed
V < A,

(ii) Some attack must succeed, because h(n,s) cannot change more than f(n)
many times. Hence M, is met.

In the real construction, we don’t know h and f in advance, so we list out
all possibilities. We would use one V for each possible pair f, h. The point here
is that if f is the real f, and h is the real witness for g, then the Vj, 5 built for
h and f will have Vi, y <7 A. But the key point is that g is total nevertheless -
we never leave §(n) undefined.

o

Fig. 2. The w-c.e. construction

Now consider the case that A is totally w®-c.e. To continue the analogy
above with the gates of a pinball machine construction, we see that the w-c.e.
ease corresponds exactly to the failure of a single node 7 to meet H.. A set that
has totally w?-c.e. degree may be able to win on all single gates alone, but fails
to meet the combined requirements R,, and R.,. The analogy suggests that we
need to build fwo sets V;, and V., and succeed on one of them. We now describe
how the necessities of the construction lead us to require these two sets.

Again we construct an auxiliary function g = A“ and guess at an approxi-
mation h(z, s) for g, which is accompanied by a bounding function oz, s} which
gives, for every z, a non-increasing sequence of ordinals below w?; every change



in the guess for g(z) is matched by a change in o(x,s). Consider the following
naive plan. At first, we get o(z,0) = w-kg-+k1; we set up a collection of potential
witnesses X of size greater than k; and repeatedly attack with these witnesses
as before. Since each attack is related to a decrease of o(z, s), before we run out,
we have a new value w - lp + {1 where Iy < I1, so we'd like to have at least [
more new witnesses to throw into X. Of course this cannot work as it would
translate to an argument that no totally b-c.e. degree (for any notation b) can
be m-topped, contradicting Theorem 12. [For the naive plan to “work” we need
to work with some b, otherwise we may repeat the process infinitely many times
and A4 (n) would be undefined.] The problem is one of timing: before X runs
out, we can appoint {; new witnesses; but at some point we need to wait for
them to get realised. This has to happen before some stage as sg above where
we can redefine §(n) to be at least y.(z) for all new witnesses z. This means
that before, say, we make the last attack with an old witness, we first need to
wait for realisation of the new witnesses. But if @, is not total then this may
never happen, and this spoils the reduction ¥4 = V., Here the nonuniformity,
familiar from these constructions, creeps in: the solution is to build a backup
get V, that is only needed if we fail o meet M, for the main set V. All work
regarding V. (including the definition of a reduction 2 = V,) is based on the
assumption that ¢, is total. Thus, when we run out of old witnesses, we appoint
new witnesses, wait for realisation, and then attack with a Ve-witness; when this
attack fails, §(n) frees up and we can redefine it as larger as is required to start
working with the new witnesses.

Here's the construction for the w?-case, assuming that we guessed h and o
correctly. We show how to meet the requirement

M, ;+ Either M, holds, or V. is not 1-1 reducible to A via ¢;.
The algorithm is as follows:

1. Appoint a permitting number n. Let o(n,0) = w - kg + k1. Appoint a set of
witnesses Y, targeted for Ve, of size greater than kg. Wait for realisation, i.e.
for p;(y) l forally € Y.

2. Let uy = max{p;(y) : v € Y}; let ¢.(y) = uy for all y € ¥ and let
8(n) = uy as well. Appoint a set of witnesses X, targeted for V, of size
greater than k;. Wait for realisation, i.e. for p.(z) | for all z € X. [In the
meanwhile we can define ¥(z) = uy forall z € X ||

3. Attack with some y € Y: enumerate it into V. Wait for the failure of the
attack, Le. for ¢;(y) to enter A.

4. Let ux = max{p.(z) : ¢ € X} and u = max{ux,uy}. Redefine é(n) =u
and ¥(z) = u for x € X and 9.(y) = u for y € Y. However, reserve one
z € X for attack, and wait for a new guess h(n,s) = A4(n).

5. Attack with z: enumerate it into V. Walit for the failure of this attack, i.e.
for we(x) to enter A; repeat as in the w-case, until X runs out.

6. Upon the failure of the attack of the last z € X, we have a new number [,
as above; we appoint a new X with more than [; many fresh witnesses; we
let é(n) = uy = () for z € X. We walit for realisation of all z € X.
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Fig. 3. The w?-c.e. construction

7. We then attack with another y € Y¥; repeat as in step (3) and onwards.

For w™, we need n sets V, Vg, Veg.eqs- - -, Dested by layers of nonuniformity;
the idea is the same. In the more complex case of A® = g being only < w¥-c.e.,
we must guess for which n it is w™-c.e., and the witnesses for this. Again this is
typical.

4 Proof of Theorem 12

In this last section we sketch the proof of Theorem 12. In fact this comes from
analyzing the complexity of the natural construction of Downey and Jockusch
[9], carefully controlling where numbers are assigned as followers.

We enumerate a set A. We meet the following requirements:

P.: . is not the characteristic function of A.
Rt If &,(A) = W, then W, <; A
Qet If F.(A) is total then it is w¥-c.e.

Here {,) is a listing of all Turing functionals, and (w.) is a listing of all
partial computable functions. {{®., W,)) is a listing of all pairs of Turing func-
tionals and c.e. sets. Note that the fact that A is totally w™-c.e. guarantees its
incompleteness; in fact, it guarantees that it is lows. Recall that the key is that
{in the setting of R.) @.(A) controls W, in the sense that if at some stage ¢ we
have @, (A, x) = 0 = W(z) {f] and s > ¢, then if A did not change below the use
$e(A, z)[E] between ¢ and s then = ¢ W, [s].

The construction is done on a tree of strategies, with every level working for
a single requirement. The tree of strategies is 2<% {and as usual, the priority



ordering is the lexicographic one); we identify 0 with the infinite outcome for a
node working for R, or (., and with the positive satisfaction for P.. Recall that
a node ¢ that works for R, builds a recursive function f, that attempts to be a
one-one reduction of @,(A} to A,

At stage s, we construct (by induction) the path of accessible nodes; for an
accessible node o, we describe ¢’s action and which successor (if any) is next
accessible.

o works for P.: If ¢ has no follower, appoint a fresh follower z; let 671 be
accessible. If o has a follower x then there are three cases:

1. If we already have x € A (so P is satisfied) we let ¢70 be accessible.

2. If it is not the case that w.(x) |= 0, then let ¢ 1 be accessible.

3. If pe(z) |= 0, but z has not yet been enumerated into A, then we enumerate
z into A and let o0 be accessible.

¢ works for R.: First, we need to correct potential inconsistencies between
W, = @.(A) and f;!A. For every z such that f;(z) is defined, x € W, [s] and
fo(z) ¢ Alsl, enumerate f,(z) into A.

If some numbers were enumerated into A4, then we end the stage; we initialise
all nodes that lie to the right of ¢™0, but not nodes that extend ¢™0.

Assuming that we did not end the stage, we define £(c){s] be the length of
agreement between @.(A} and We. Let { < s be the last stage at which o0 was
accessible (¢ = 0 if no such stage exists); if £(o}[s] > ¢ then let 70 be accessible,
otherwise let 1 be accessible. In the first case, for every z < £(o}[s] for which
fo(x) is not yet defined, define it (with fresh value).

o works for Q.: Let t < s be the last stage at which ¢™0 was accessible. If
dom W,(A)[s] > t then let 00 be accessible; otherwise let ¢ 1 be accessible.

If the stage was not halted by the time we got to a node of length s, we end
the stage and initialise all nodes that are weaker than the last accessible node.
[This means that all followers are cancelled, and all functions are restarted from
scratch.|

Verification. The existence of a true path is standard. On the true path, each
node is eventually never initialised. The point here is that if & works for R, and
&1 is on the true path then only finitely many values f,({z) are defined, so after
some stage, ¢ does not halt the stage (and initialise 1) because it enumerates
some f,{z) into A. It follows that every P, requirement is met. It is also easy to
see that each R, requirement is met: if ¢ on the true path works for R, {(and the
hypothesis @.(A) = W, holds), then for every z, f;(z) is eventually defined, and
enumerated into A iff z enters W,; this is because ¢ 0 is accessible infinitely
many times.

It thus remains to show that each @, is met; fix e < w, assume that Z = ¥,(A)
is total, and let & be the node on the true path that works for Q.; we know that
the next node on the true path must be ¢70. Let r* be a stage after which o is
never initialised.



Let d < w; we describe how to approximate Z(d) in an w*-c.e. fashion. The
approximation itself is simple: at a stage s > r* at which ¢ 0 is accessible and
d < dom ¥, (A) [s], we guess that Z(d) = ¥.(4,d)[s]. The point is of course to
find the ordinal bound on the number of possible injuries to these computations.
Of course such a computation can only be injured by nodes that are compatible
with o™0.

Recall that the key to this construction (as is in Fejer’s branching degree
construction, Slaman's density and other constructions) is the establishment of
natural barriers and the preservation of the sets below these barriers by a concert
of all agents involved. Let sp be a stage at which ¢70 is accessible and such that
d < domW.(A) [sg]. Suppose, for example, that at stage sp, there is only one
node 7 compatible with ¢70 which works for some R, and has any value f,{z)
defined (say o0 € 7) and that there is only one node p 2 770 that works for
some P, and has a follower y defined at so. Until the computation ¥, (A, d)[se)
is injured (possibly at stage sp, but possibly later), all new values f-(z) and
followers y appointed for any node are greater than the use ¥.(d){so], and so
the injury has to result from action by either 7 or p. To begin with, some such
injuries can happen by 7 enumerating values f.(z) into A; the number of such
injuries is bounded by sg. After each such injury, nodes to the right of +—0
are initialised, and nodes extending 7 are not accessible, so the next injury still
must come from 7 or p. Eventually, new values fr(z) are defined at a stage s;
at which 770 is accessible. The barrier mechanism now comes into place: these
values are defined only for « < £(7)[s1], and the only node that has a number
smaller than the $.-use is p. By @ (A)’s controlling of W, no z < £(7)[s1]
will enter We (and no f.(z) will enter A) unless p acts at some s3 > s1. At
that stage some new cascading by 7 may begin, yielding at most se-many new
injuries for ¥,(A,d). Thus the approximation for Z(d) is w - 2-c.e. If there are
further P-nodes p then we get w - n-c.e.

However, if we have two R-nodes 79 and 71 (say 7o C 71), then the effect is
multiplicative (in a reverse fashion). After each time 71 enumerates & number into
A, the total 79, 71-equilibrium is damaged and a barrage of new numbers can be
enumerated into A by 7. The result (together with several P-nodes weaker than
71) is an w? . n-c.e. approximation. As d increases, more and more nodes 7 have
values fr(z) defined when ¥, (A, d) is first encountered, which means that we get
w®-c.e. approximations where k — oo. Overall, we get an w*-approximation for
Z.

Here is the formal argument.
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