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1 Introduction

Computability theorists have studied many different reducibilities between sets of natural
numbers including one reducibility (<), many-one reducibility (<,,), truth table reducibil-
ity (<y), weak truth table reducibility (<) and Turing reducibility (<7). The motivation
for studying reducibilities stronger that Turing reducibility stems from internally motivated
questions about varying the access mechanism to the oracle, and the fact that most natural
reducibilities arising in classical mathematics tend to be stronger than <. For instance con-
sider the reduction of, say, the word problem to the conjucacy problem in combinatorial group
theory. Deeper examples include Downey and Remmel’s [3| proof that if V' is a enumerable
subspace of V., then the degrees of computably enumerable (c.e.} bases of V' are precisely
the weak truth table (wtt-)degrees below the degree of V. Similarly, wtt-reducibility proved
fundamental in the work on differential geometry Nabutovsky and Weinberger [13], as stud-
ied by Csima [2] and Soare [21]. A final motivation is a technical one: results about strong
reducibilities and their interactions with Turing reducibility can lead to significant insight
into the structure of (for example) the Turing (T-)degrees. There are innumerable examples
of this phenomenon and a good example is the first paper of Ladner and Sasso [11] in which
they construct locally distributive parts of the c.e. T-degrees using the wti-degrees and their
interactions with the T-degrees. For gencral information concerning these reducibilities, we
refer the reader to the survey article by Odifreddi [14] as well as the books by Rogers [17],
Odifreddi [15] and Soare [20].

The concern of this paper is the interaction of minimality and enumerability, two of the
basic objects of classical computability. All constructions of minimal degrees are basically
effective forcing arguments of one kind or another and such constructions are relatively incom-
patible with the construction of effective objects. In particular, by Sacks Splitting Theorem,
no c.e. T-degree can be a minimal T-degree. On the other hand, it is known that there can be
c.e. sets of minimal m-degree and of minimal #t-degree. Since wit-reducibility is intermediate
between < and <r, it is natural to wonder what happens here. Again, Sacks Splitting The-
orem shows that no wtt-degree of a c.e. set can have minimal witt-degree, but this leaves open
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the intriguing possibility that a minimal wtt-degree might have c.e. T-degree. This question
served as the primary motivation for this paper. Before we present our answers, we discuss
the history and motivation in more detail.

It is surely a basic question in any degree structure whether minimal degrees exist. Ire-
quently, a positive answer to this algebraic question leads to a negative answer to the logical
question of whether the first order theory (in the language of a partial order or an upper
semi-lattice) is decidable. Spector [22] proved the existence of a minimal T-degree using a
forcing argument with perfect trees. This type of construction eventually led to Lachlan’s
proof [7] that every countable distributive lattice can be embedded as an initial segment of
the T-degrees and hence that the structure of the T-degrees (as an upper semi-lattice) is
undecidable. Furthermore, the method of forcing with perfect closed sets is now a mainstay
in set theory.

Spector’s construction uses a 0” oracle to construct a sequence of total trees which force
T-minimality and hence gives a A} minimal T-degree. Because the trees are total, his con-
struction also gives a minimal wtt-degree and a minimal #t-degree. Sacks [18] strengthened
Spector’s theorem to show that there are AS minimal T-degrees by using a O’ oracle to de-
fine a sequence of partial recursive trees which force T-minimality. Because these trees are
partial, his construction does not immediately give either a minimal wtt-degree or a minimal
tt-degree. The use of an oracle in the construction of a minimal T-degree can be completely re-
moved with a full approximation argument and such arguments can be used to build minimal
T-degrees in a variety of contexts such as below any noncomputable c.e. T-degree or below
any high T-degree. This technique also uses partial trees and hence does not automatically
produce minimal wit or ti-degrees.

The other studied theme for the present paper is that of enumerability, and hence the
c.e. sets. For strong reducibilities such as <;, <, and <y, the techniques for building minimal
degrees and c.e. degrees can be combined. Lachlan proved that there is a c.e. minimal 1-degree
([8]) and a c.e. minimal m-degree ([9]). (That is, there is a set A with minimal 1-degree such
that A =, W, for some c.e. set W,. Of course, in the 1-degrees and the m-degrees, the property
of being c.e. is closed downwards. Therefore, to build such minimal degrees, it suffices to make
them minimal within the c.e. 1-degrees or in the c.e. m-degrees.) Marchenkov {12] proved that
c.e. minimal tt-degrees exist, although the first direct construction of such a degree was given
by Fejer and Shore [4].

As we remarked earlier, for weaker reducibilities such as <7 and <y, the techniques for
constructing minimal degrees and c.e. degrees do not mix. Sacks [19] proved that the c.e. T-
degrees are dense and Ladner and Sasso [11] proved that the c.e. witt-degrees are dense, so there
are no c.e. minimal T or wit-degrees. Thus, Turing and weak truth table reducibility differ
from the stronger reducibilities with respect to the existence of c.e. minimal degrees. However,
it is possible to get some positive results concerning the relationship between minimal 7-
degrees and c.e. T-degrees. For example, Yates [23] used a full approximation argument
together with c.e. permitting to show that in the T-degrees, every noncomputable c.e. set
bounds a minimal T-degree.



In this paper, we look at Yates’ Theorem from a different perspective. Instead of looking
at whether noncomputable c.e. degrees bound minimal degrees, we look at whether minimal
degrees can bound noncomputable c.e. degrees or can even be of c.e. degree. Obviously, if
we work entirely within the T-degrees or the witt-degrees, this is not possible, but it becomes
nontrivial if more than one reducibility is involved. Although a minimal wi{-degree d cannot
wit-bound a noncomputable c.e. set, we look at what d bounds under Turing reducibility.
Specifically, if A is a AJ set with minimal wtt-degree, can A Turing bound a noncomputable
c.e. set? Can A have c.e. T-degree? The main theorem of this paper gives a positive answer
to the first question.

Theorem 1.1. There is a AY set A and a noncomputable c.e. set B such that A is wit-
minimel and B <p A.

We feel that the proof of this theorem is also of significant technical interest. The proof
combines a full approximation argument to make A witt-minimal with permitting to build
the noncomputable c.e. set B such that B <7 A. Because of the complexity of the inter-
actions between the witt-minimality strategies and the permitting strategies, we need to use
a A method with linking in our tree of strategies to control the construction of the partial
computable trees in the full approximation argument. The kind of inductive considerations
needed for the construction of the reduction somewhat resemble the methods used by Lachlan
[10] imbedding nondistributive lattice in the c.e. degrees. Such techniques have hitherto never
been used in the full approximation construction, which is why we will only slowly work up
to the details. The majority of this paper is concerned with the proof of Theorem 1.1: in
Section 4, we give an informal sketch of the proof and in Section 5, we present the formal
construction.

Before presenting the proof of Theorem 1.1, we prove two results giving limitations on
possible extensions of Theorem 1.1. In particular, we consider whether a AJ set with minimal
wit-degree can have c.e. T-degree and whether a AJ set with minimal wit-tree can Turing
bound a noncomputable c.e. set which is “close to” 0’ in some sense. While these limitations
could be stated for wtt-minimality, the proofs yield slightly stronger results using a different
notion of minimality.

Definition 1.2. A noncomputable set A is wtt-minimal over the Turing degrees if for
any C <,u A, either C' is computable or C =, A.

The notion of being wit-minimal over the Turing degrees is more general than the notion
of being wit-minimal (in the sense that every wit-minimal set is wtt-minimal over the Turing
degrees) while not implying that the set is T-minimal. In Section 2, we show that we cannot
extend Theorem 1.1 by making A and B have the same Turing degree.

Theorem 1.3. If A is a noncomputable AY set with c.e. Turing degree, then A is not wtt-
minimal over the Turing degrees (and hence is not wit-minimal).

In Section 3, we show that the set B in Theorem 1.1 cannot be promptly simple and hence
cannot be “close” to 0’ in this sense.



Theorem 1.4. Let V be a promptly simple c.e. set and let A be a A set such that A >7 V.
There exists a c.e. set B such that 0 <p B <,u A.

Because the c.e. wit-degrees are dense, the set A in the statement of Theorem 1.4 cannot
have minimal wtt-degree. However, we can also show that A cannot be wi{-minimal over
the Turing degrees. By Theorem 1.3, if A =7 B in Theorem 1.4, then A is not wit-minimal
over the Turing degrees. On the other hand, if B <7 A, then B is both wit and T below A
and hence A is not wit-minimal over the Turing degrees. Therefore, we have the following
corollary.

Corollary 1.5. If A Turing bounds a promptly simple c.e. set, then A is not wit-minimal
over the Turing degrees.

Most of our terminology is standard and follows Soare [20]. To distinguish between 7" and
witt-reducibilities, we use @, for the e Turing reduction and [e] for the e weak truth table
reduction. The proof of Theorem 1.1 uses a full approximation argument for which Posner
[16] provides an excellent introduction. The proof of Theorem 1.4 relies on basic results about
promptly simple sets which can be found in Chapter XIII of Soare [20].

2 Proof of Theorem 1.3

In this section, we give the proof of Theorem 1.3. For convenience, we restate it here.

Theorem 2.1. If A is a noncomputable A set with c.e. Turing degree, then A is not wit-
minimal over the Turing degrees.

Proof. Let A be a noncomputable A9 set with c.e. Turing degree. Fix a c.e. set B such that
A =1 B and fix Turing reductions ® and A such that ®* = B and A® = A. For any stage s
and any number y, if AB:(y) |, then let §(y, s) denote the use of this computation. (Similarly,
let ¢(z,s) denote the use of ®%+(z).) Because ® and A are total, 6(z,s) and ¢(z,s) reach
limits for each z as 8 — 0.

To prove that A is not wit-minimal over the Turing degrees, we construct a noncomputable
AY set E such that E <, A and A £r E. We have to meet the following requirements.
First, to make F noncomputable, we satisfy

Pe:ipe# E

for each e € w. (By this, we mean that ¢, does not compute the characteristic function
of E.) Second, we make F <, A using permitting with a fixed computable bound. More
specifically, for all s and k&, we guarantee that

Ak = Alk = Bk = Elk.

Third, to make A £¢ F, we satisfy
Np:TE£ A
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where I' ranges over all Turing reductions.
We use the following length of agreement function between the fixed Turing reductions ©
and A.

I(s) = max {z | Vy < z (AZ:(y) | = As(y) AVq < 8(y, s) [822(q) |= Bs(a)])}

Since ®4 = B and A® = A, this length of agreement function will approach co in the limit.
A stage s is called expansionary if {(s) > (¢} for all £ < s. By speeding up the approximations
to A and B, we can assume that every stage of our construction is expansionary in this sense.
(We will have different length of agreement functions {(T', s) for the Nr requirements and the
stages of the construction will not all be expansionary with respect to the (T, s) functions.)

Our strategies to meet P, and Nr are both finitary so the argument is a finite priority
requirement. As usual for these types of requirements, the P. requirements attempt to put
a single diagonalizing element into E while the Np strategies attempt to restrain E from
changing on certain uses. These strategies interact in a standard way. Each time a P, strategy
places a number into £, it injures all lower priority Nt requirements, causing them to lose
their current restraint and begin again. Each time an Ny strategy establishes a restraint,
it injures all lower priority P, requirements, causing them to work with numbers above this
restraint. Because the strategies are all finitary, each strategy eventually becomes the highest
priority strategy not yet satisfied and hence acts as though it is the highest priority strategy.
Therefore, we describe the action of each strategy, make clear why it is finitary and eventually
succeeds in isolation, and leave the formal details of putting these strategies together in a finite
injury argument to the reader.

We begin with the strategy for P,. The strategy proceeds in cycles and each cycle poten-
tially computes an initial segment of A. The main point is that if we go through infinitely
many cycles, then we have a computation procedure for A, contrary to our assumption that A
is noncomputable. Therefore, the strategy for P, will go through only finitely many cycles and
will be finitary. When a F, strategy is initialized, it cancels all of its witnesses and followers,
ceases all action for its current cycles and begins again with its first cycle as though it had
never acted.

Step 1 for cycle n. Pick a large witness z, and wait for {(s) > 2,. This step is finitary
since I{s) — oo in the limit.

Step 2. Assume that [(s) > z,. Pick a large follower z8 for z, and begin to wait for ¢.(z3)
to converge to 0. (We continue with the construction while waiting for this convergence.
If we see @e(z2) converge to 0 at a later stage, we say the follower =8 is realized.) By our
definition of I(s), we have that AP computes the initial segment of A, up to z, and that &4
computes the initial segment of B, needed for the use of these A¥: computations. Therefore,
the composition of use functions ¢(d(z,, s), s) is defined at stage s. The important feature of
the follower %% is that it is chosen large, so 5 > ¢(8(2y, 8), 8). If there is a change in A or B at
stage ¢ > s (while still waiting for =¥ to be realized) that causes ¢(6(z,,1t),t) # ¢z, $), 8),
we cancel the follower z2, rechoose zf to be large so that z¥, > ¢{8(2,,1),1), and switch to
waiting for =, to be realized (that is, for ¢.(z%) to converge to 0).



Because ®* = B and AP = A, we must either eventually see some follower x that is
realized or settle on a final follower 2 which is never realized. In the former case, we proceed
to Step 3. In the latter case, we have w.(z2) % 0 (and it might not even converge) and we
never put x5 into E, so we win F,. Therefore, if we get stuck forever at Step 2 of a cycle for
P., we win P,. Hence, assume that we reach a stage ¢ such that zf, is realized. (We do not
assume that ¢(0(z,,1),t) has reached its limit; it may continue to change while we are in Step
3.)

Step 8. Assume that z¢, is realized and let ¢, = ¢(8(2,,t),t). We perform the following
three actions. First, declare that our attempt to compute A says Alz, = Ai|2,. Second, start
the (n 4+ 1)® cycle for P,. Third, wait for a stage u > ¢ such that A,|c, # A¢lcn.

Notice two things about this step. We cannot have u > ¢ with ¢(6(z,, u), u) # ¢(6(zn, 1), 1)
without Ay|c, 5 Acn. Also, if we never see such a stage u, then our guess that Alz, = Az,
is correct. Therefore, if we get stuck forever in Step 3 of cycle n, then we have correctly
computed A up to z,.

Step 4. When we see uw > t such that Aujc, # Ailen, we put z¥, into £. Because
en = ¢(8(2n, 1), 2) and ¢(8(2,,1),1) < 2, we have permission (at least temporarily) to put
into F. There are two cases to consider here.

Step 4, Case 1. There is a number k < 6(z,,t) enumerated into B at stage u. (Notice
that if A;|2z, # Aulz,, then we must be in this case.) In this case, we know that there must
eventually be a permanent change in A below ¢, (so0 also below 2%,). Hence, although A may
make many future changes below ¢,, it can never return to As|c, because B is computably
enumerable and so the change in B below §(zn,t) is permanent. Therefore, we can put z,
permanently into E and win P,. We quit all other work on P, and declare it satisfied.

Step 4, Case 2. There is no change in B up to 6(2,,1) (and hence no change in A up to
z,). In this case, we still put z! into E (temporarily winning F,), but we may have to take
7t back out of E if at some future stage A reverts back to A; up to cn. (That is, if there is
no change in B up to c,, then the opponent is free to make Ay|c, = Alc, at a later stage
v > u.) Should the opponent do this, we lose our permission to keep zt in E and must take
it out. In this case, we return to Step 3 and wait for the next stage u at which A,|c, # A¢|cn.

To emphasize the finitary nature of F,, we summarize what can happen. Every cycle
started for P, proceeds from Step 1 to Step 2. If any cycle waits forever at Step 2, we win
because the final follower z8 is not realized and is never put into E. Furthermore, no new
cycles are started while one is waiting at Step 2. Therefore, assume that all cycles started
for P, move from Step 2 to Step 3. Each time a cycle moves to Step 3, we start a new cycle
with a large value for z,. If any cycle reaches Case 1 of Step 4, then we win F, as described
in that case and cease our action for P,. Therefore, assume that no cycle ever reaches Case
1 of Step 4. In this case, we never stop the action of F, so we start cycle n for each n € w.
Each of these cycles reaches Step 3 and may go on to Case 2 of Step 4. Furthermore, the
n't cycle may bounce back and forth between Step 3 and Case 2 of Step 4 many times as A
changes below ¢,. However, since the approximation to A must settle down up to c,, the nth
cycle eventually settles into either waiting forever at Step 3 or waiting forever at Case 2 of



Step 4. In either case, we have that Az, = A;|z, (where t is the stage at which the n'® cycle
saw x¢, realized). Hence our guesses at the initial segments of A are all correct and we have
a computation procedure for the noncomputable set A. Since this cannot happen, we must
have that either some cycle gets stuck forever at Step 2 (and we do not begin any further
cycles and take no further action, other than waiting, for F,) or some cycle eventually is in
Case 1 of Step 4 (in which case we stop the action of P, because we know z%, is permanently
allowed in F). In either case, the action of P, is finitary.

Next, we describe the action of Ny, where I is a Turing reduction. If I'?*(z) converges, we
let v{zx, s) denote to use of this computation. We work with the following length of agreement
function and maximum use function.

(T, s) =max{z|vy < z(T(y) |= A(y))}
u(T, 5) = max {y(y, s} |y < (T, s)}

We say that a stage s is I'-expansionary if I(T, s} > (T, ) for all ¢ < s. Notice that I'f = A
if and only if {(T', s) goes to infinity in the limit.

The action of Nr also proceeds in cycles for each n € w. Each cycle will potentially
compute an initial segment of B such that if infinitely many cycles establish a restraint, we
have a computation procedure for the noncomputable set B. Because of this contradiction,
the restraint imposed by Nr will be finitary.

Step 1 for cycle n. Wait for a I'-expansionary stage s such that (T, s) > ¢(8(n,s), s).
Because ¢(6(n, s), s) eventually reaches a limit, if we wait at Step 1 forever then ([, s) is
bounded and we win Np. Therefore, assume that we eventually see such a [-expansionary
stage. (We do not assume that ¢{d{n, s}, s) has reached its limit at this stage. These uses
can still change in Step 2 below.)

Step 2. When we see I(T', s) > ¢{é(n, 5), ), we act as follows. Fix the stage s, at which
we first see this inequality. Declare our attempted computation of B to say Bl|é(n, s,) =
B;, |6(n, s,). Start the (n + 1)*® cycle for Ny, Restrain E from changing below u(T, s,,).

Consider what happens if our guess that B|d(n, s,) = Bs,|0{n, s,) is incorrect. In this case,
some number ¢ < 6(n, s,) must enter B after stage s,. This entry means that there is even-
tually a permanent change in A below ¢(d(n, 8,), sn). Because (T, s,) > ¢(8(n, s,), s») and
we restrained F from changing below u(T', s,), we have that I'® computes A, |¢(6(n, sp), 8n)
which is not the same as A|¢(8(n, 8,), 8»). Therefore, if our guess at B is incorrect, we win
Nr. Furthermore, we can recognize this win since it involves a number entering B and this
number must enter permanently since B is computably enumerable. Therefore, if we ever see
a number g < 6{(n, s,) enter B, we stop Nr from imposing more restraint and we declare Nt
satisfied.

On the other hand, if all of our cycles move past Step 1 and all of our guesses at initial
segments of B are correct, then we have a computation procedure for the noncomputable set
B. Because this cannot happen, we must either have some cycle which waits forever at Step
1 (in which case we start no further cycles and impose a finite restraint) or we eventually see
a number enter B below &(n,s) for one of our cycles in Step 2 (in which case we stop Np
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from imposing further restraint and declare Nr satisfied). In either case, we win Np while
imposing only finite restraint on F. [

3 Proof of Theorem 1.4

In this section, we prove Theorem 1.4. For convenience, we restate it here. {We refer the
reader to Soare [20] for information on promptly simple sets and degrees. Below, we state the
property of promptly simple sets which we will use in the construction.)

Theorem 3.1. Let V be a promptly simple c.e. set and let A be a AY set such that A > V.
There exists a c.e. set B such that 0 <p B <,u A.

Before presenting the formal construction, we fix notation and give an intuitive sketch of
how to meet one requirement. Let V' and A be as in the statement of the theorem and fix a
Turing reduction I'* = V. We speed up the A approximation to A, the enumeration of V
and the reduction I' so that the length of agreement function

I(s) = max{alVy < a(T%(z) = Vi(2))}.

satisfies I(s + 1) > I(s) for all s. (That is, we assume that every stage of our construction is
expansionary.) Because V is promptly simple, there is a fixed computable function p(s) for
which we have the following property for all ¢ (see Soare [20] Chapter XIII, Theorem 1.7):

W, infinite = I®zds(x € Wears A Vilz # Vpgo)|z)-

Weats means that z € W, s and o & W, .. For z < i(s), we use vy(z, s) to denote the use of
D4s(z).

To make B noncomputable, we meet the requirement R, that B # W, for every e. R,
is met by choosing a witness which we attempt to put into B if it ever enters W,. To make
B <uu A, we guarantee that

As|lz = Alz = Bs|z = Blz.

Consider a single R, requirement in the presence of our permitting. We attempt to meet
R, in cycles (which may be initialized by higher priority requirements, but only finitely often).
The prompt simplicity of V' will insure that only finitely many cycles are needed for R,.

Assume that the n'* cycle for R, starts at stage s. Pick a large prefollower z,. (In the
formal construction, we will denote such a witness by z., to indicate it is the nt* prefollower for
R.. For now, we leave off the extra subscript e since we are only considering one requirement. )
Wait for a stage s; > ¢ such that I(s;) > z,. At stage sy, pick a large follower ¥3! such that
Y3l > v(zy, s1). Notice that if there is a change in Vj,|2,, then there must be a corresponding
change in Ag, }y(zn, 81), which we would like to use as a permission to put y3! into B.

We say 43! is realized at t > sy if y3t € W,,;. We say that y3* is canceled at stage t > s
if ¥(2n,t) # Y(zn,51) and y3* has not yet been realized. If 3! is canceled at stage £, then

n
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we pick a new follower v, > v(z,,%). Notice that since t > s, we have I(t) > I(s1) > z,
and so the computation I'?*(z,) does converge and 7(z,,t) is defined. In general, we use the
notation y? for the follower of z, at stage ¢, if there is one. Because there is a final use y(z,)
for T'*(z, ), the sequence of followers for any given prefollower z, is finite and must eventually
settle down on a single follower.

Assume that at some stage s; > s;, the current follower 322 becomes realized (that is, it
enters W, at sp). We want to use the prompt simplicity of V' to get permission to put y;?
into B. Two technical problems arise at this point. Prompt simplicity tells us that if W,
is infinite, then there are infinitely many numbers x € W, for which if z enters W, at stage
t, then a number below z must enter V between stage ¢ and stage p(t). The first technical
problem is that ¥22 may not be one of these infinitely many elements of W, for which the
condition of prompt simplicity holds. The second technical problem is that even if %32 is one
of the numbers for which the condition of prompt simplicity holds, it only causes a number
below ¥52 (and not necessarily below z,) to enter V. Numbers below y3? are potentially too
large to force the desired change in A below y(z,, s2) (which is < ¥;? and so would give us
permission to put %2 into B). We want to force a number below z, into V in order to cause
a change in A below y32.

We solve these problems with a computable function f which for any e gives an index for a
Turing procedure () which does the following on input z. (The existence of such a function
f follows from the Recursion Theorem.) First, it runs our construction until it finds out if
T = z, for some n in a cycle of R.. If it never finds such a z,, then @y (z) T. Once it finds
T = 2, it watches the construction until it sees a realized follower y5. Again, if it never sees
one, then @) (z) T. Once it sees a realized follower, @y (z) converges and outputs 0. (The
output is irrelevant; only the fact that it converges matters.) The point of this procedure is
that it halts on exactly the prefollowers of R, which have realized followers. Notice also that
if ¢% enters W, at stage ¢, then @y takes at least ¢ steps to halt.

Returning to the scenario of our construction, recall that z, is our follower and that y32
has just entered W, at stage s». This scenario implies that ¢ f){(2,) halts. Calculate the stage
t > sp such that z, enters Wy, at £. Look at each stage t between s; and p(t) to see if

Viol2n # Vflzn
If we find such a stage, then we know

As, |¥(2n, 52) # Aglv(2n, 52)-

Furthermore, since Vi,|z, # V|z, (recall that V is c.e.), we know that Ay, |y(zn,s2) #
A|v(z,,52) (even though A is AY). Therefore, we have permission to put y5? into B and
win R.. If we do not find such a stage #, then we start the (n + 1)* cycle of R, and initialize
everything of lower priority.

The prompt simplicity of V' guarantees that Wy cannot be infinite, for if so, there would
have been a chance to put one of the followers into B. This would imply there were no new
prefollowers for R., which in turn makes Wy finite.
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We now present the formal construction and lemmas verifying that the construction suc-
ceeds. The priority on our requirements is Ry < Ry < --- and the construction is finite injury.
As above, we assume that I'* = V and that for every s, {{s+ 1) > i(s). Let p denote the
prompt permitting function for V under this enumeration. At stage 0, set By = B.

At stage s+1, run the current cycle (as described below) for each R, with e < s (in order
of their priority) which is not already satisfied. If some R, ends a cycle and initializes all R;
with ¢ > e, then end the stage early. (We initialize R; by canceling any current prefollowers
and followers and setting it at the start of its next cycle.)

Cycle n for R,: Assume that the cycle starts at stage s. Pick a large prefollower zp.
The cycle takes no more action until the first stage s; at which I{s1) > zen. At stage s; pick
a large follower 5!, > (%n,51). As noted above, we use the notation Y5, for the current
follower of z,, at stage ¢.

We say that yt , is realized at t > 51 if 4} , € We,. The current follower 3}, is canceled and
a new large follower is chosen at ¢ if Y(zepn, $1) 7 ¥(Zen, t) and g3}, has not yet been realized.
The cycle takes no more action, except to cancel and pick new followers as necessary, until a
stage s2 when the current follower g3, is realized.

Suppose y22, is rcalized at stage so. Find the number ¢ > s such that zn enters Wiy
at t. Calculate V; for each £ such that s; < £ < p(t) and for each such value of { check if
ViolZem = Vi|2en. If there is a £ such that Vi, |2zen # Vij2en, then put yg2, into B and declare
R, satisfied. If there is no such f, then end this stage and initialize all requirements of lower
priority. (At the next stage, R, will begin its (n 4 1)* cycle.} This ends the description of
cycle n for R, and the description of the formal construction.

Lemma 3.2. B <, 4 A.

Proof. Each element in B is a realized follower y5,. Suppose ¥, is realized at stage s and
we enumerate it into B. There must be a number { with s < £ < p(t) (where ¢t is the stage at
which 2, entered Wy ) such that Vi|ze, # V;|%en. Because V is c.e., this inequality implies
that Vilzen # Vizen.

We claim that A,|y:, # Alyg ., and hence enumerating y;, into B is allowed by our
permitting. For a contradiction, suppose that Aslys, = Alys.,. Since ¥(zen, s) < ¥s,, we have
Al (Zem, 8) = Aly(Zem, 8). Because {(8) > Zepn, ['9#|2n = [4|2.n and hence Vilzen = V|zepn.
This contradicts the condition on V in the last sentence of the previous paragraph. (I

Lemma 3.3. Each R, requirement is won.

Proof. This proof proceeds as a finite injury argument. Assume that at stage s, requirement
R, has priority. That is, assume that R, is never initialized by any R; with i < e after stage
5. For a contradiction, assume that B = W,.

Claim. R, has infinitely many realized followers.

Suppose R, is in cycle n. We have chosen 2, and when I(s;) > 2., we chose a follower
vy This follower may be canceled, but eventually we get to a stage s; with a true use
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Y(Zem, 52). After this stage, y52, will never be canceled. We do not need to worry about ze,
being initialized since nothing of higher priority initializes it and R, only initiates a new cycle
after a realized follower is found.

If y22, & We, then B # W, because we never put y52, into B. Hence, ygi,a € W, but since
we never get to put this element into B, we know that we eventually move on to the next
cycle. The same scenario happens in the (n + 1)% cycler zp,41 eventually gets a realized
follower, but doesn’t put it into B and so moves on to the next cycle. In this way it is clear
that for every m > n, there is a prefollower z. ,, which eventually get a realized follower. This
completes the proof of the claim.

Since each 2, for m > n eventually gets a realized follower, we have that zem € Wy
and so Wy is infinite. Also, since we did not put any of the followers into B, there is a
sequence of stages s, Spt1,- -, Sm, - . . Such that

Zem € Wf(e) at sm but mmlze,m = Vp(sm)lze,m-

However, since Wye) C {2zl € w}, there can be at most finitely many z for which the
prompt permitting function works. This violates the fact that V' is promptly simple. (I

4 Informal Construction

In this section, we present an informal description of the construction used to prove Theorem
1.1. For convenience, we restate the theorem below. Recall that [e] denotes the e wii-
reduction, while ¢, denotes the e Turing-reduction. We use A to denote the empty string
and o to denote the string obtained from a by removing the last element. For uniformity
of presentation {that is, to be able to treat A like any other string), we regard A’ and A’
are distinct symbols. Whenever we define a number to be large or the length of a string to
be long, we mean for it to be larger than (or longer than) any number or string used in the
construction so far. (We will be more precise about this definition in the formal construction.)

Theorem 4.1. There is a A} set A and a noncomputable c.e. set B such that A is wit-
minimal and B <p A.

To make A be wti-minimal, we meet
R, : [e]* total = A <,y [e]? or [e]* is computable.
To make B noncomputable, we satisfy
P, :B#W.,.

We also need to meet the global requirements that B is c.e. and B <; A by a Turing reduction
[’ which we build.

We use a full approximation argument to satisfy the R, requirements. (We assume the
reader is familiar with full approximation arguments. Posner [16] is an excellent introduction
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Figure 1: When the current path moves from T,{o % 0) to T,(c * 1}, we challenge R, to verify
that it converges on all elements of X, = {z | [e]7(z) converges for someT 2 T.{(0o * 0)} using
oracles along the new current path A"eY,

to these arguments.) To meet a single R, requirement, we build a sequence of computable
trees T, s on which we attempt to find [e]-splittings. A node T, s(a) is said to [e]-split if there

is an = < s such that
[0 @) I [V ) | .

We say that the number z is a splitting witness for the node T, ;(a). A node which [e]-splits
is said to be in the high state and a node which does not [e]-split is said to be in the low
state. In addition, we define a current path A, which represents our stage s approximation
to A. (Technically, we define A, at the beginning of stage s and then allow strategies which
act during stage s to change this path. Therefore, in the full construction A, really has two
subscripts A, where 1 was the last strategy to act. For simplicity of notation right now,
we omit the second subscript. We also occasionally leave off the stage number subscripts,
especially in our diagrams where they cause unnecessary clutter.)

We make two significant modifications to a typical full approximation argument. First,
rather than look for [e]-splits for every node, we only look for [¢]-splits along the current path.
To be more specific, suppose T, s(a) has been defined and we are trying to define T ;(a * )
for i = 0,1. If Tos(a) C A, then we look for extensions 75 and 7y which [e]-split and such
that either 74 or 7; is on As. If we find such strings, then we define T, (@ * i) = 7. Otherwise
we define T, o(a *7) as they were defined at stage s — 1 (if these nodes are still available) and
if not, we extend T, ;(v) trivially (that is, we take the first available extension strings). If
Te,s{¢) is not on the current path, then we define T, s %) as they were defined on T, ;1 (if
possible} and otherwise define them by taking the first available extensions.

The second important modification is that we will occasionally move the current path A,
for the sake of a P requirement. (See Figure 1.) When a requirement moves the current path,
it may challenge R, to prove that [¢] is total on some finite set X, of number using oracles
on the new current path. In this situation, {e] has converged on all the numbers in X, using
oracles from the old current path. As long as there is a number z € X, for which {e] does
not see an oracle along the new current path which makes [e] converge on z, R, remains in a
nontotal state and we define T, ; trivially. (That is, we atteropt to keep the nodes of T, , as
they were at the last stage and take the first possible extensions when this is not possible.)
If R, remains in a nontotal state forever, then [e]* is not total and R, is satisfied.

The current path A, seftles down on larger and larger initial segments as the construction
proceeds and gives us A in the limit. Furthermore, nodes T, ¢(c) which are on A reach
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pointwise limits and final [e]-states. At the end of the construction, we are in one of three
situations. FEither R, is eventually in a permanent nontotal state, the nodes T, () along
A are eventually in the high state or there is a string « such that T, ¢(a) is on A and all
extensions of T, ;{c) are permanently in the low state. If R, is permanently in the nontotal
state, then we win R, because [e]? is not total. If the nodes along A are each eventually in
the high state, then A <,y [e]*. If sufficiently long nodes along A are eventually always in
the low state, then [e] is computable.

The basic idea of these computation lemmas is as in a typical full approximation argument.
For the low state case, we show that once we see [¢]7=+{®)(z) converge at a stage s for some
node T s(c) on the current path, then this computation is equal to [e]*(z). As usual, this
equality follows (for sufficiently long nodes T, s(«)) because if not, we would later have the
option of using Ty ;(e) and the node along A which gives the correct computation for [e]*(z)
to make T, .(a') high splitting (where ¢ > s is a stage at which the correct computation
appears).

For the high case, we can define A inductively using [e]* because the computations of
[e]4 tell us which half of each high split A eventually has to pass through. In general, this
computation procedure gives a T-reduction A <p [e]A and not & wtt-reduction A <,u [e]A.
To achieve a wit-reduction, we incorporate stretching. (Stretching is also used by P strategies
as described below.) Before describing the stretching procedure, we give the algorithm for
determining the computable use for the wtt-reduction and then explain how to alter the
construction so that this use function works.

To compute the use u(m) of the reduction A <r [e]* (and show it is a wit-reduction) on a
number m proceed as follows. Wait for a stage s and a node T ({a) C A, such that T, () is
in the high state and |T, s(c}| > m. Define u(m) to be the maximum of the splitting witnesses
that R, has seen in the construction so far.

The apparent problem with this definition is that the current path may move below 7, s(c)
at a later stage ¢ > s and along the new current path, there may not be a node of length > m
which is high splitting. To handle this potential problem, we redefine our trees by stretching
each time we move the current path. (See Figure 2.) Suppose the current path moves from
Toi(B%0) C Tes(a) to Te (8% 1) at stage ¢ (for the sake of some lower priority requirement).
Because T, o(08) C 7. s(c) and T, s() is high splitting, we know that T, (/) is high splitting
(and is still high splitting at stage t). We let . p be the shortest node along the new current
path such that T, (8. ;) is not high splitting. (In other words, T, (5, ;) is the longest node
on the new current path which is high splitting so 8 C 8, 4 & Be.rr.} Because we only look
for new high splits along the current path and because either 3, ; = 8 (so Te,s(5; 5) is high
splitting) or G € . g (so Te:(f5, ;) is not on the current path and cannot change from low
to high splitting between stages s and t), T¢ {8, ;y) must have been high splitting at stage s.
Therefore, the splitting witness for Te (8} ;) is less than the purported use u(m).

Redefine T, (0. 1) so that it extends its old value, it has long length and is along the
current path. (That is, its new length is longer than any number used so far in the construction
and in particular is longer than m. For strings « such that 8. y C ¢, extend the definition
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Te(Be.n)
Te(B*1) Te(5 +0)
™~ ~
T.(8)

Figure 2: If To(a) is high splitting and the current path moves from T.(0 * 0) to T,.(8 * 1),
then we stretch T°9(8, 5) to have value T2 (8, pr) such that |72 (Bez)| > |Te(a)] > m.

of T,, trivially.) We refer to this redefinition process as stretching and say that the node
Tes(Be,ur) is stretched. The node T.:(5, ) is not changed by this process and it remains in
the high state with the same splitting witness (which is less than «(m)).

Assume that the current path does not move below T, {0, ) after stage ¢{. In this case,
the reduction A <r [e]! uses the witness for the high split at Tei(B5 ) to tell us that A
passes through T, ;(8. #) (which has length > m) since this node remains on the current path
forever and hence is on A. However, this splitting witness is less than the purported use u(m)
for A <¢ [e]*, so u(m) is correct. If the current path does move below T; (5, ;) after stage
t, then we repeat this stretching procedure at the next place where the current path moves.
As long as such movement of the current path occurs only finitely often, we have the desired
wit-reduction.

To see that stretching does not interfere with the pointwise convergence of nedes along
A, notice that a node is only stretched when the current path is moved and that node is the
shortest node along the new current path which is not high splitting. Therefore, once a node
becomes high splitting it is not stretched again. Since the current path will settle down on
longer and longer segments, we will show that stretching only causes a finite disruption in the
definition of the nodes along A. There are more subtle issues with stretching when multiple
R strategies are involved and we address these below.

The basic strategy for meeting one P, requirement (in the presence of a single R, require-
ment of higher priority which is defining T} ) is to pick a node T, ; () such that T, ;(ax0) C A,
at which to diagonalize and a large witness x with which to diagonalize. Since we have not
yet put z into B, we define T7es(®*0)(z) = 0. (Recall that I' is the reduction we build to
witness B <r A.) We wait for z to enter W,. If this never happens, then we never put z into
B and we win P,. If z does enter W, at some later stage ¢, then we try to put z into B. (If
the node T, ¢(a *0) ever changes because of a new [e]-split, then we initialize this P, strategy
and start over with a new large witness z. In the full construction, we will have different P,
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strategies guessing what the final state of the R, strategy is.)

Before putting z into B, we need to get permission from A by changing A below the use
of the computation T'%+**0(z) = 0 which we defined at stage s. We would like to move the
current path A; from T, (a * 0) € A; to Ty * 1) C Ay, declare T+ (z) = 1 and put
into B. However, there is a potential problem with this strategy. If the current path A,, for
some u > t, is ever moved so that T, ;(a*0) C A, again, then we will have ['“«(z) = 0 (by our
definition that I'7et(®0)(2) = 0) and x € B. Since B must be c.e., we cannot remove z from
B. Therefore, before we can put z into B, we must forbid the cone above T, ;(« * 0) in the
sense that we promise never to move the current path A, for v > ¢ back to this cone again.
If T, ;(c) is in the high state, then this strategy is fine because there is no reason to look at
nodes above T, ;(a*0) for a potential high split of T, () since this node is already in the high
state. Furthermore, we can tell from [e]? that T, ,(a % 1) C A as opposed to T, (a * 0) C A.

However, there is a problem if T, (@) is in the low state. If the true final state of R, is
low, then to compute [e]*(y) for any value y, we look for a node T, () on the current path in
the low state such that [e]7s»®(y) converges and declare this to be the value of [¢]*(y). This
computation will be correct since otherwise we could put up another high split. However, if
the node T¢,(8) happens to be in a cone like T, ;(c * 0) which is later forbidden, then it is
possible that [¢]?(y) has a different value and the forbidding process restricts us from putting
up the new high splitting. Therefore, in this case, we do not want to rule out the possibility
of using nodes above T (e * 0) to make T, ;(c) high splitting at a later stage unless we have
further evidence that T, :(c) should be in the low state. To accomplish this, we start a low
challenge procedure to check that to the best of our knowledge, T .(a) should be in the low
state.

For the low challenge procedure, we let X, be the finite set of numbers y for which we
have seen [e] convergence using a node above Tg{c * 0) as the oracle but we have not seen
[e] convergence using Te.() as the oracle. We move the current path A; from T, ;(a * 0) to
Tei(c * 1) and declare the cone above T (a * 0) to be frozen. (See Figure 3.) This means
that we no longer look at computations involving nodes in this cone as oracles. P, challenges
R, to verify that T, () should be in the low state by providing computations along the new
current path which agree with the computations from the old current path for all the numbers
in X,.. We also pick a large auxiliary diagonalization spot T, (o) with T, (o *0) on the (new)
current path such that Ty (o % 1) € Tis(0). We define TT+{(7*0 () = 0 since z has not yet
been enumerated into B.

This auxiliary diagonalization spot is chosen to have length larger than the use of any of
the computations for numbers in X,. Since we are working with wtt-computations, R, is only
concerned with nodes on the current path below T,:(c) as oracles for the [e] computations
on numbers from X,. Furthermore, while R, is waiting for verification that 7, ;(a) really
should be in the low state, it can suspend building 7, any further. That is, with the current
path running through T, (o * 0}, R, thinks that [e]* will not be total until it actually sees
computations involving all the numbers in X,.

If R. sees a computation at stage w > t on some element of X, using an oracle on the
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Figure 3: If 7.(c) is in the low state and we move the current path from Te{a*0) to Te(a*1)
for the sake of P,, then we freeze the cone above T.(a * 0} until we have seen identical
computations on all the elements of X, using oracles along the new current path A"¥. The
auxiliary diagonalization node T(o) for F, is chosen so that its length is greater than the use
for any [e] computation on an element in X,.

current path which differs from the computation using the oracle above T, s(a * 0), then it
unfreezes the cone above T, (e % 0) (which is the same as T, (a *0) since R, does not change
T, while it is low challenged) and it uses this computation to put Te,(c) in the high state. In
this case, we initialize the P, strategy and let it work with a new large witness x at the same
node T¢ (). (In the full construction, we will actually have a separate P, strategy guessing
that the final R, state is high.) Since this node now has the high state, we know that we will
win P, with this new witness z (either because = never enters W, or because z does enter W,
and we can immediately diagonalize since T, ,(c) is now in the high state).

If R, sees computations at stage u > t using oracles along the current path for all the
numbers in X, and they agree with the computations using oracles above T, ;{« * (), then
it is safe to forbid the cone above T, ,(a * 0) because we have identical computations in a
nonforbidden part of the tree. That is, any future high splitting which might want to use
a node above T.,(a % 0) can use a node above T, ,(a * 1) instead which gives the same
computation. To perform the diagonalization in this case, we use the auxiliary split Tp (o).
We move the current path from T, ,{o * 0) to T, (o * 1), declare the cones above T,y (a * 0)
and T, (o * 0) to be forbidden, put z into B, and declare T'7==("*1) (7} = 1. The forbidding
action is allowed for T, ( *0) because we have identical computations for all numbers in X,
above Te (o * 1) and it is allowed for T, ,{c * 0) because the length of this node was chosen
large. That is, when we chose T, ;(¢), we had not looked at any computations above this node
and because T; (o) has length greater than the {e] use for any number in X,, we never need
to look at computations above this node when verifying the lowness. Therefore, we are not
committed to any computations above T, (o * 0) at the time it is forbidden.

Finally, we might never see convergence on some number in X, using any node above

16



Tet(cxx 1) (and below T.4(c)) on the current path. In this case, R, remains in the nontotal
state forever and is won trivially because [e]* is not total. Furthermore, we can start a
different version of the P, strategy which guesses that R. never meets the low challenge and
which picks its own node above T, (o = 0) at which to diagonalize and its own large witness
with which to diagonalize. It gets to diagonalize immediately if it ever sees its witness enter
W,. Immediate forbidding is allowed for this strategy since the R, strategy has not looked at
any computations above T, (o * 0).

This completes the informal description of the interaction between a single R strategy
and a single P strategy. The interaction is significantly more complicated when multiple R
strategies are involved. Before illustrating this interaction, we describe the tree of strategies
used to control the full construction. An R, strategy n has three possible outcomes: H, L,
and N. We use the H {high) outcome whenever n finds a new high split along the current
path. All strategies extending this outcome believe that the final [e]-state along A will be
high. Each strategy p with # % H C u defines a large number p, and does not begin to
act until the tree T, being built by 7 has the high state along the current path up to level
pu. We use the N (nontotal) outcome whenever 7 has been challenged to verify its lowness
and has not yet seen computations on all numbers in the set X, it has been challenged to
verify. All strategies extending this outcome believe that [¢]* will not be total and hence
they ignore the strategy R, when making calculations about which action to take. We use
the L (low) outcome whenever neither of the other two applies. Strategies extending this
outcome think that [¢]* may be total, but that the final [¢]-state along A will be the low
state. These outcomes are ordered in terms of priority with H the highest priority and NV the
lowest priority. (That is, n * H is to the left of 7 * L which is to the left of n x N.)

A P, strategy n has two possible outcomes, S and W. The § outcome is used when F,
has already been satisfied by a diagonalization. Otherwise, we use the W outcome. The S
outcome has higher priority than the W outcome. (That is, n+.5 is to the left of 7% W.) The
action of a P, strategy is finitary, while the action of an R, strategy is infinitary.

Formally, the tree of strategies is defined by induction, with the empty string A being the
only Ry strategy. If n is an R, strategy, then % H, n* L and n * N are F, strategies. If n is
a P, strategy, then n+ W and % § are R..; strategies. To make the notation more uniform,
we use [n] and W, to denote [¢] and W, if  is an R. or P, strategy. We let Tj,, denote the
tree build at stage s by an R strategy n. Furthermore, we use the term frue path to refer to
the eventual true path through the tree of strategies. We use the term current path to denote
the current approximation A, to the set A.

To illustrate the remaining features of the construction, we consider four R strategies p;,
0 <4 < 3 and one P strategy . Assume that the priorities are py < 1 < 2 < 3 < 1, and
that p1 = po* L, o = % H, i3 = pe x L, and nn = uz * H. We consider the action of 7.
During this example, we assume that we never move to the left of these strategies in the tree
of strategies and thus these strategies are never initialized. In particular, neither up nor u»
finds a new high split during our discussion.

Since n thinks the final state along A will be (L, H, L, H), there is no reason for # to pick
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a node at which to diagonalize that does not have this state. When 7 is first eligible to act, it
picks a large number p,. During each later stage at which 7 is eligible to act, n checks if the
node T}, ;(c) along the current path with |a| = p, has state (L, H, L, H). Until this occurs,
n does not pick a node at which to diagonalize or a witness with which to diagonalize.

If n is on the true path, then eventually there will be such a node T, ,(c). At this stage,
n sets a, = « and picks a large witness x,, with which to diagonalize. 1 begins to wait for z,
to enter W, (while keeping z, out of B) and n defines [Tras(@n () = 0. If z, eventually
enters W,, then n begins a verification procedure to put z, into B.

Assume z,, enters W, at stage s. 77 moves the current path from T}, o{(a,*0) to Ty, s{y 1)
and freezes the cone above Ty, 4(y*0). 7 would like to put z,, into B, define T7ras{* D) (g, ) = 1
and forbid the cone above T}, s{a, *0). There are two issues that need to be addressed before
forbidding this cone. First, because we have moved the current path, we need to perform
stretching for the sake of the strategies p; and p3 which are in the high state in order to ensure
that the set A has minimal wtt-degree. This issue is easy to address and does not stop us from
immediately forbidding this cone. The second issue is more serious. The action of forbidding
this cone is fine for u; and us since T, s(¢y,) is in the high u; and ug states. However, since
Tys,s{cn) is in the low po and po states, we cannot do this forbidding before finding identical
computations (to the computations they have already seen) for these strategies along the new
current path.

We begin with the issue of redefining the trees T}, , by stretching. First, we let Gy L
and 3, ; denote the strings such that the current path just moved from T, s(8,,,1 * 0) to
Tyes(Busp 1) (for i = 0,2). Second, we let By,  be the shortest string such that Ty, (8, #)
is on the new current path and 7}, (8, 5) is in the low yu; state. Hence, T, s(B,, y) is
the longest node on the new current path which has state (L, H). Similarly, we define 8,; u
to be the shortest string such that T}, (B, 5) is on the new current path and has state
(L,H,L,L). In other words, T}, s(8,, ) is the longest node on the new current path with
state (L, H, L, H). Notice that T}, «(Bus,5) & Tyir,e(Bus,zr). Finally, let & be a string with long
length (that is, longer length than any number or string considered in the construction so far)
such that ¢ is on all of these trees and is on the new current path.

We redefine these trees by stretching. (See Figure 4. The node T, (o) is introduced
after the definition for stretching.) For pg, let 7, remain the same. For p, let Ty = Ture
and we redefine T),, ;. For any node « such that o C B, 5 or « is incomparable with 3, &,
let T}, +{c) = T() (and this node retains its previous state). Redefine T}, s(8u,,s) = 6 and
extend this definition trivially above here. That is, if 8, # C o and T}, ;(c) has been defined,
then set T, s(c *3) = T}, (@) % {and has all low states). Notice that the new definition of
Ty (B br) extends the old definition (since both the old value of T, s(8,,,7) and & are on
the new current path), so Ty, 4(8, ) is still in the high p; state.

For pg, let 8 denote the string such that T, ((8) is equal to the value of T}, s(Bu,,5)
before it was redefined by stretching. We set TM = T,,,s and redefine T}, ; as follows. For
o ¢ B or « incomparable with G, set T, o(a) = ’f’m (that is, leave these nodes unchanged).
Redefine T}, ;(8) = ¢ and extend the definition of T}, , trivially above here. For pg3, we follow
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Figure 4: When we move the current path from T, (e, * 0) to T, * 1) for the sake of the
P strategy 77, we freeze the cone above T, (o, * 0) and stretch the trees 7, 0 <4 < 3. In
this figure, 4 is equal to T (8,,.1), Tis¥(8), T ¥ (Bus,z) and Ty, (01)-

essentially the same procedure as for p;. Set ’fpa = Tlp.6. For @ © By, g and a incomparable
with Buq.1, define Ty, s(a) = Tiuy(c). Redefine Ty s(Busm) = 8 and extend the definition
trivially above here. Notice that the new value of T, (8, #) extends the old value of this
node, 80 Ty, +(6,,, &) still has state (L, H, L, H).

This completes the redefinition of these trees by stretching. The important properties to
note are that each tree (except T, ) has a unique node along the new current path that is
stretched, these nodes are all stretched to the same value (that is Ty, (Buy ) = Ty s(B) =
Ts,s(Bus, ) = &) and the longest nonstretched node on each tree retains its old state.

We turn to the issue of verifying lowness for pp and pe. As with the case of a single P
strategy, we must calculate the sets X,; and X,, on which these strategies need to verify
computations. The set X, is calculated as before: it contains all numbers y such that pp has
seen [1i] converge on y with an oracle extending T (8,1 * 0) but not with T, 5(8,,,2) as an
oracle. (Recall that 3,, ; marks the place on T}, ; above which the current path just moved.)
The set X,, has to be calculated slightly differently by taking into account the states of the
nodes extending 7, s(Bu,,1 * 0). Let v be the string such that T, ((v) = T), s(a). Because
po sees the state of T), ,(v) as (L, H, L), when p, looks for a high splitting for this node, it
only looks at extensions of T}, s(y) which have high p; state. Therefore, we define X, to be
all y such that p2 has seen a computation on y using an oracle above T}, s(8y, £ #0) which has
high p,; state and has not seen a computation on y using T, «(8,,,1) as the oracle. (Notice
that the node T, s(8,,,s) and the tree above T}, s(8,,.r * 0) are not effected by the stretching
procedure.) These are the numbers for which uy has to verify its lowness.

If both X,, = 0 and X,, = @, then n has permission from all of the R strategies u; for
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i =0,1,2,3 to immediately put z, into B and forbid T}, s(cy, * 0). (It has permission from
t41 and g because T, o(or) is high p; and pg splitting and it has permission from pg and g
because there are no numbers on which these strategies need to verify their lowness.) Assume
this is not the case so that some verification of lowness for either pg or pz (or both) is required.
We split into the cases when X, = § and when X, # 0. Handling these cases requires the
introduction of links into our tree of strategies.

First, assume that X,, = § and X,,; # 0. In this case, n has permission from p;, ue and
3 to forbid the cone above T, s(04,*0) and only has to wait for g to verify the computations
on numbers in X,,. 7 defines o1 to be the string such that T,,(¢1) = § {where J is the string
used in the stretching process as shown in Figure 4) and defines T'Tkos(+ 0 (3 ) = 0. (We
need this I' computation to be defined since we have not yet placed z, into B and we do not
know ahead of time whether 5 will eventually verify the computations on numbers in X,,,.)
n places a link from ug to 7, challenges uo to verify its lowness and passes the set X, and
the string 8,z to to.

At future stages, po checks whether there are computations with oracles above Ty, o(8p,L *
1) for all the numbers in X ,, which agree with the computations with oracles above T}, s(By0,0%
0). Because [uo] is a witt procedure and because 6 was chosen to have long length, pg never
has to look at strings longer than T, s(o1) = & for these computations. If yg ever finds a
disagreeing computation, it can put up a new high split, take outcome pp * H and initialize
the attempted diagonalization by 7. (By our assumption for this informal description, this
situation does not occur.) If ug eventually finds identical computations for all the numbers
in X,,, then instead of taking outcome uo * L, it travels the link to . Until such a stage
arrives, uo takes outcome ug * IV and strategies extending pg * IV define their trees higher up
on Ty,,. S0 that they do not interfere with any of the nodes mentioned so far. Also, if ;19 takes
outcome N at every future stage, then [uo]? is not total because it diverges on at least one
of the numbers in X,,. Therefore, assume that we eventually travel the link from g to n.

When we travel the link from pug to n at stage t > s,  acts as follows. It moves the
current path from T}, (o) * 0) to Ty {01 % 1) (these nodes are the same as they were at
the end of stage s since all the action of strategies extending g * N takes place with longer
nodes), it forbids the cone above T}, s(cy, * 0) (since 7 has yo permission to forbid this cone
and it previously had permission from g, for 1 < ¢ < 3), it forbids the cone above Ty, +(o % 0)
(which is allowed by g since pg did not need to look in this cone to verify its computations
on numbers in X, and is allowed by p; for 1 <4 < 3 since T}, s(o1) = ¢ was defined to have
long length and only strategies extending ug * N have been eligible to act between stages s
and £, so none of the strategies p; for 0 < ¢ < 3 have looked at any computations in this
cone) and it puts z, into B. Because the only computations of the form I'(z,) = 0 are
v = Ty o % 0) = Ty {0ty % 0) and vy = T),0 1(01 * 0) = T, o(oq % 0), we have forbidden all
strings which define a I' computation on z, to be = 0. » picks a large number &k (larger than
any number or length of string used in the construction so far) and defines I'"(z,) = 1 for all
strings v of length k which do not extend T, ;(a, * 0} or T}, s(c0 *#0). Therefore, [(z,) = 1
and 7 has won its requirement.
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Next, we consider the case when X, # 0. In this case, at stage s, 17 defines o) to be the
string such that T, s(01) = 6 (where ¢ is the string used in the stretching process at stage
s as shown in Figure 4) and defines [T2s(@1*0 (3.} = 0. n places the link from o to 7. We
challenge o and e to verify their lowness (and pass them the strings 8, 1 and G, r and the
sets X, and X, respectively). We challenge p to verify its highness and define z,, = z;.
The meaning and purpose of this high challenge is explained below. Since u; is an R strategy,
it does not keep a value z,, for the purposes of diagonalization. However, as we shall see,
1 may need to take over the I' definition of z, temporarily and hence it needs to retain this
value as a parameter.

Consider how the construction proceeds after stage s. Until yg verifies its lowness, it takes
outcome ug* N and the strategies extending pg* N work higher on the trees and do not effect
the nodes defined above. Assume that yo eventually meets its low challenge at stage sq > s.

At sy, po takes outcome g * L and py becomes eligible to act for the first time since stage
s. p1 needs to verify that T}, (8, z) should be in the high [u,] state. (Because strategies
containing g * N work higher on the trees, we have T, o0 (Bum) = Tyt s(Bus o)y Tpa oo (B i *
1) == Ty s(Buy,ir % 1) for i = 0,1 and the current path still goes through T, ¢ (8,1 * 0). For
the rest of this informal explanation, we take it for granted that strategies to the right of the
i; or 7 strategies do not cause any of the named nodes defined by these strategies to change
and do not cause the current path to move below any of these nodes.)

The point of verifying that T, s,(8u,.#) is in the high u; state is that uy eventually needs
to verify that it is in the low state by finding computations for each number in X, using
oracles along the current path which are in the high u; state. The length of T}, o (8, #) was
stretched at stage s, so it has length longer that the [us] use of any number in X,,. But, we
need this node to be in the high u; state in order to use it as a potential oracle for these [us)
computations on X,,,.

141 begins to look for a high splitting for Ty, s, (8y,,u). Because Ty, (8, ) is already high
pa splitting, T}, 5,(Bu, m) is the first node on the current path which is not high w, splitting.
Until g1 finds a potential high split for this node, it takes outcome p * L.

Suppose p; eventually finds a pair of strings 7, and 73 which could give a high splitting
for T}, so( By, 1) with either 7p or 7 on the current path. (Recall that we only look for new
splittings for which half of the splitting lies on the current path. If 75 and 7 have this
property, then either one or both satisfy T, s,(8u, 5 * 0} C 7; since this node remains on the
current path.) Consider the action that n eventually wants to take if this entire verification
procedure stated by 7 comes to a conclusion. 7 wants to move the current path from the
node T, (01 * 0) = Ty, s (B, i * 0) to the node T}y, (o1 ¥ 1) = Ty, 50(Buy,z * 1) and forbid
the cone above T, s(oy * 0) before enumerating z, into B (because we are committed to
[Ti2s0120) (1} = 0). Therefore, if we define a new high splitting for T}, s (B, 5) at stage
51 > sp, we want the values of T}, s, (B, i * ) to satisfy the condition

Tul,So(ﬁ#l,H ® 3) - Tu1,31 (6#1,11 * Z)

for i = 0, 1. If the potential splitting pair 79 and 7 satisfies this condition, then we use them
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Figure 5: This figure represents our actions at stage s; when y; finds a potential high split
using nodes 7y and 7y extending T}, (By,, & # 0). For ease of notation, we have used § in place

of ﬁm,H-

to make T}, ¢, (B.,,2) high splitting and take outcome py * H. In this case, we say that 11 has
met its high challenge.

However, it may not be the case that 7o and = satisfy this condition. It is possible that
when we find these nodes 7o and 7, at stage s; > sg, both nodes extend T}, 5,(8p, 5 * 0). In
this case, we want to press p; to find an appropriate half for the high splitting which extends
Ty 1B, * 1) = Ty (B, ¥1) = Tpyyp s(01 % 1). Because we have two different computations
using oracles extending T, s, (81,1 * 0) = Ty, s0(Bus,zr * 0), this pressing amounts to forcing
1 to find any oracle extending T, 5, (8., * 1) which gives a convergent computation with
the splitting witness w,, for the p; splitting strings 7o and 7. (The splitting witness wy, is
the number on which the [u;] computations using oracles 7o and 7y differ.) If u; finds such a
computation using a node extending T}, s,(By, & * 1), then it can use this node together with
one of g or 71 to get a high splitting for T}, s, (8,7} which has the required property above.

To accomplish this goal, 1, moves the current path from T}y, 5, By, 5 %0) to Ty s (Buy mr* 1)
and freezes the cone above T, 5, (0,1 *0). (See Figure 5.} Because u; has moved the current
path, it redefines the trees T}, ,, and T}, s, by stretching. As before, we set [(3,, 1 to be the
string such that the current path just moved from T}, s, (Byo,z #0) 10 Tyyg.s, (Buo,z * 1). Because
po % L C py, the tree Ty, 5, remains the same. To redefine T}, ,, set T, = Ty.s For o such
that @ G By, g * 1 or « is incomparable with 8, g * 1, define T, 4, (o) = T, (@) (that s,
leave these nodes unchanged). Redefine T}, s(8,,,# * 1) to have long length and lie on the
new current path {and hence the new definition of T, ¢ (8., 1 * 1) extends the old definition).
Extend the definition of T}, ,, trivially above this node.
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Figure 6: This figure represents our action at stage s, when p; begins the process to forbid
the cone above T}, (B,, 5 * 1 * 0) to eliminate the I" definition using this node as the oracle.
For ease of notation, we have used 8 in place of §,, .

Between the time po met its original low challenge at stage sg and the stage s, at which
1 finds the potential high split, po may have looked at computations involving oracles above
Ty 51(Bus,;r #0). Because we may or may not ever unfreeze the cone above this node, 1o needs
to verify these computations along the new current path. Therefore, u issues a low challenge
to up to verify the computations it has seen in this frozen cone.

g1 defines the set X, of numbers on which p has seen computations using oracles ex-
tending Ty s, (Buo,r * 0) but not using Ty s, (Bo,2) as an oracle. It passes this set X, and the
string B,z t0 po and challenges g to verify its lowness on these numbers. Furthermore, be-
cause 41 has moved the current path away from the node T}, 5, (Bu, 5 %0) = T}, s(o1 #0) which
was used by # in the I' definition on z,, i1 needs to take over the I' definition of z,,. When u,
was challenged to verify its highness, we set ,, = 2,, so y; defines [7a P m 10 (z,,) = 0.
Once it makes this definition, p; ends the stage. However, we do not want to allow y; to
initialize n, so p; only initializes the strategies of lower priority than uy * L, including u, # L.

Consider how the construction proceeds from here. Assume that up eventually meets the
low challenge issued by y; and takes outcome yg * L so that uy is later eligible to act again.
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Figure 7: This figure represents the situation at stage s; when g returns the cwrrent path to
Ty; (Buy,zr #0) and meets its high challenge by putting T}, (8, &) into the high y; state. For
ease of notation, we have used 3 in place of 8, u.

Because the length of T, 4, (8,1 * 1) was stretched when p; redefined the trees at stage s,
it has length longer than the use of the wit computation [u1] on the splitting witness w,,, for
7o and 7. Therefore, once y; is eligible to act again, it checks if the [u1] computation on wy,
with oracle T}, 4, (Bu, 1 * 1) converges. Until it sees this convergence, it takes outcome py * N.

If this computation never converges, then [u;]* will not be total. Therefore, assume that
this computation does eventually converge at stage s; > s;. In this case, p1 wants to use the
node T, s,(By,, 1 * 1) and either 75 or 71 to make T}, 5, {8, ) high p; splitting. To do this, it
needs to unfreeze the cone above Ty, 4, (By,,1 *0) that was frozen at stage s; and it will let the
current path return to passing through T}, s, (8,,,z*0). However, when we perform this action,
we don’t want to leave the extra x,, = z, computation Ik .s2(fu#*150) (3 ) = 0 unforbidden
because it could cause us problems if n eventually enumerates z, into B. Therefore, before
moving the current path back to Ty, o (O, * ), 141 begins a verification procedure to forbid
the cone above T}, ¢, (B, .z * 1 %0).

1 acts as though it were a P strategy with only one low R strategy of higher priority. (See
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Figure 6.) That is, it moves the current path from T}, 5, (B, 5% 1%0) 0 Ty o By, mr# 1% 1) iy
redefines T}, 5, and T}, ,, by stretching essentially as before: it defines 8, 1 and X, leaves
Tuos; the same and stretches Ty, 5, (8,14 * 1 * 1) to have long length. p; calculates the set
X, of numbers which o has seen converge with an oracle above T 5, (8.2 * 0) but not with
Thuo.s2(Buo.z) 8s oracle. It defines TTue2Bur ¥ x0) (3 ) = 0 and issues a low challenge to g
with 8,1 and X,,. Because T}, 5,(8u m * 1 * 1) is redefined to have long length, o does
not need to look above this node for any computations on the numbers in X,,. Therefore,
if this low challenge is met at s3 > g, p1 forbids the cone above T, s, (8,5 * 1 % 0) (since
o has verified the computations that used oracles above this node), forbids the cone above
T 1,52 (Bpa, i * 1 1% 0) (since pig did not look at any computations above this cone}, unfreezes
the cone above T, o (Bu.zr * 0) and uses T}, 5, (O * 1) together with either 70 or 71 to
make T}, 5,(0,,;,zr) have high 1y state. The current path A, also returns to passing through
T .53 (B, mr % 0) now that this node is unfrozen. (See Figure 7.) u; has met its high challenge
and takes outcome p; * H.

It might seem that there are too many uo low challenges by p;. However, the first 1 low
challenge issued by i1 at stage s; is because we cannot know whether u; will ever see [u1]
converge on wy,, with oracle T, 5,{By, z * 1). If this computation never converges, then the
cone above T, o, (B,,,m * 0) in never unfrozen and so is essentially forbidden despite never
being officially forbidden. Therefore, the first 1 low challenge by p; at stage s; is to account
for this possibility. The second pg low challenge issued by u1 at s is to allow the cone above
Ts1,82(Bpy, 1 # 1% 0) to be forbidden to remove the potentially damaging I' computation on z,
using this oracle.

Summing up the action for p; which is challenged high, u; meets its high challenge (in
one of the two ways described above) by eventually finding a high splitting for T, s (Bu..z) =
Tyr,s1 By, pr) at some stage sy > sy such that Ty o0 (Buy .z * 8) € Ty 63(Bpy,m * 1) for @ =
0,1. If it fails to find such a splitting, then it is either because po failed to meet some low
challenge (in which case either we win the gy requirement because [ug]” is not total or else
to finds a high split, takes outsome po % H and initializes w1} or because p,; failed to find
an appropriate “second half” to a potential high split (in which case we win p; because
[1]# is not total). Furthermore, the current path at stage s3 goes through T}, (8,5 * 0)
and the computations [Tees(@*0)(z, ) = 0 (defined by n when it originally chose z,) and
[T By, 120 () = TThas(@1¥0) (3} = 0 (defined by 7 at stage s when it started the verification
procedure to put =, into B) are the only I' computations on z, which are not forbidden at
stage s3. Finally, the node T}, o, (Bpy,5) = T, ,s(Bus, i) has not changed since being stretched
by n at stage s when 7 began its diagonalization process and is now in the high u; state.

At stage ss, uo is eligible to act for the first time since stage s. ug begins to verify its
lowness as challenged by 7 at stage s. The current path still runs through 7, (o, *1) (where
it was moved at stage s) through T, s, (8, ) and T}y, 6, (B, 1 +0). (Of course, u3 has not been
eligible to act since stage s.) We now have permission from pg, 11 and ps to forbid the cone
above T, s(ay, * 0) and only need to obtain u; permission by verifying its computations on
the numbers in X, along the current path using oracles in the high y; state (since Tj,; ()
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was already in the high u, state at stage s). Because the length of T}, o{(Bu1.0r) = Ty 65 (B, 1)
was stretched at stage s when X, was defined by 7 and because this node is now in the
high p, state, u» does not need to look at any computations using oracles which extend
this node. Furthermore, at stage s, 7 defined oy so that T}, s(01) = T, ,s(8.,5). Therefore
Tn,s0(01) = Tpiys(01) and po does not need to look at any computations using oracles above
Tz rsa (01)-

Until g sees the correct computations on these numbers using an oracle along the current
path, it takes outcome pg # N. If there is a number in X, for which up never sees a correct
computation, then [u]? is not total and we win requirement p,. If there is a number in X,
for which us sees a computation which does not agree with the computation along the old
current path that ran through 7, s(ay, * 0), then us can use this computation to define a new
s high splitting, take outcome us * H and initialize . Therefore, assume that po eventually
verifies these computations at a stage s4 > 3.

In this case, us follows the link to 7. n now has permission from p;, 0 <4 < 3 to forbid
the cone above T, s(a, * 0). However, before placing z, in B, 7 also needs to worry about
the computation ['Tkes(01*0) (g ) = 0 that it defined at stage s after moving the current path.
Therefore, pg moves the current path from 7}, 5, {01 *0) = Ty 5, (B, % 0) to Ty, o, (01 ¥ 1) =
Trirsa(Bus,zr * 1), redefines T, ,, for 0 < ¢ < 2 by stretching and freezes the cone above
Tiz,salon # 0).

Because T}, s5,(Bu,,zr) Is already in the high 1] state, 7 has permission from 1 to forbid
the cone above T}, 5, (01+0). Because we have not considered u3 since stage s when 7 originally
began its diagonalization procedure, 3 has not seen any computations in this cone and hence 7
has permission from g3 to forbid this cone. Because T, o, (01) = Ty 60 (01) = Tpup,e(01), 2 did
not look at any computations in the cone above T), 5, (o1 *0) when it verified its computations
on X, and hence has seen no computations in this cone. Therefore,  has permission from
ty to forbid this cone. However, po may have seen computations using oracles in the cone
above T}, 5,(01 * 0) between stage sp when pp verified its lowness and stage ss. Therefore, 1
still needs jiy permission to forbid this cone.

To obtain this permission, 7 defines 8, 1, to be the string such that the current path moves
from Tyyg,64(Bro.z * 0) 10 T4 (Buo,z * 1) and defines X, to be the set of all numbers y such
that po has seen a computation on y using an oracle extending T, s, (8o, * 0) but not using
oracle Ty 6,(Buo,2). 7 issues a low challenge to pg with X,,. The action proceeds just as in
the case when X, # @ and X, = 0. That is, 1 sets up another I' definition on z, using a long
string on T, ,, places a link from pq to n and waits for o to verify its lowness. When this
occurs, 1 has the last remaining permission to forbid the cone above T}, 5,(o3 * 0) and it has
the permission to forbid the new I' computation on z, since yo does not need to look above
this large node to verify its computations and none of y; for 1 <4 < 3 is eligible to act and
to look at any computations in this cone while y is verifying its lowness. Therefore, when
o verifies its lowness, n can safely place z, into B, forbid the remaining I computations on
T, (including T, (e, * 0)}, pick a large number k and define [''(z,) = 1 for all strings <y of
length k& which are not forbidden. After performing this action, # has won its requirement.
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5 Formal construction for Theorem 1.1

Before giving the formal construction, we list some notational conventions. We use the letters
n, v and u to refer to R and P strategies and we use &, [, 7, 9, ¢ and 7 to denote finite
binary strings. A denotes the empty string and for any nonempty string ¢, o’ denotes the
string formed by removing the last element of . For uniformity of presentation, we regard
N as a special symbol distinet from A and set Ty ¢ to be an identity tree for all s.

In the tree of strategies, an R, strategy n has successors n * H, n* L and n * N ordered
left to right by n* H <z n* L <p n* N. A P, strategy p has successors p* S and p* W
ordered left to right by u* S <y pu* W. If uis a P, strategy, then y' is an R._; strategy and
1 will attempt to do its diagonalization on the tree T), ; built by u'. If n is an K, strategy,
then n” is an R, strategy and n will attempt to build its tree T} ¢ as a subtree of the tree
Ty s built by 7. Because we use the extra symbol A" and assume that Ty» s is the identity
tree for all s, we can treat the highest priority R strategy A as any other strategy.

The current path A, ; at stage s is defined by induction on the sequence of strategies %
which are eligible to act at stage s. When 7 begins its action at stage s, it uses the current
path Ay, and it may move this path during its action. A, ¢ denotes the current path at the
end of #’s action. (Typically, the current path is the rightmost path through 77, which does
not pass through any frozen or forbidden nodes.)

Each R, requirement 7 keeps several pieces of information. G, € {H, L, N}° represents
n’s fixed guess at the final (e — 1) state along A in T, ,. For each i < e there is a unique
R; strategy p C 1. Gy(¢) € {H,L, N} is defined such that p* Gy(é) C 7. Typically, if
is eligible to act at stage s, n defines a tree T, ;. Each node T, ,(a) is assigned an e-state
U(Tys(a)) € {H, L} (called the 5 state of T, () which is defined by induction as in a
standard full approximation argument. The n” state of a node T, s(a) is defined to be the
(e — 1) state of Tyws(y) where «y is such that Ty (7)) = Ty s(e). We make some technical
comments below on comparing e-states of the form U(T;s(a)) (which cannot contain the
letter N) and e-states of the form G, (which can contain the letter N).

We will abuse terminology by using the phrase “the n state of T;, s(a)” to refer to the
state as defined above (for example when comparing the 7 state to G, for some i extending
n) and to refer to whether or not T}, ;(«) is  high splitting (for example when saying that
Tys() has the high or low 7 state). It will be clear from context which of these meanings is
intended.

py € N is the level on the n” tree at which we start building 7;,. That is, we wait for a
string o such that |o| = p,, U(Ty (o)) = G (ignoring for the moment the fact that G, may
contain the letter N}, and T (o) is on the current path. When we find such a string, we
set o, = « and begin to define T}, ; by setting T3, 5(A) = Ty s (o).

If n is challenged low, then it is given a finite set X, of numbers on which it is waiting for
convergence and a string 3, r. such that it is looking for convergence above either T;, (8y, L % 0)
or Ty,s(0y,c * 1) depending on which strategy challenged 5 to verify its lowness.

If n is challenged high, then 7 is given a string 8, 5 and a number z,. The string G, x
determines the node T}, s(3, x) which 7 needs to verify is high splitting and the number z, is
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the number on which 1 may need to define I' computations higher on the tree if it has to move
the current path while verifying its highness. In addition, n may define a number w, on which
the [r7] computations disagree for potential splitting strings 7y and 7; while it attempts to find
an appropriate string 75 so that the two halves of the new high split will extend T, (G a * 0)
and Ty o{Gpm * 1).

Fach P, requirement 7 also keeps several pieces of information. G, is n's fixed guess at
the final e-state and it is defined as in the R, case. 1 defines a number p, and a string o, as
in the R, case and attempts to do its diagonalization at the node T}y (). 7 also choses a
large witness z, with which it attempts to diagonalize.

During the construction, strategies may freeze or forbid certain nodes. We use the term
active to refer to a node which is neither frozen nor forbidden and the term inactive to refer
to a node that is either frozen or forbidden. We adopt the following conventions concerning
inactive nodes. If « is declared frozen or forbidden, then so are all extensions of . If &% 0
and a x 1 are both inactive, then so is a. We never search for splits in the part of the tree
which is inactive. After the construction, we verify that the current path is always infinite.

Before giving our methods for defining trees, we make one comment on comparing e-state
strings. If n is an R, strategy, then the e-state for a node T, ;(e) is denoted U(T;, s(a)) and
is a string 7 € {H, L}**L. If 7 = U(T, s(«)) and a lower priority strategy u is comparing 7
and G, then for all ¢ such that G,(¢) = N, u treats 7 as though 7(i) = N. That is, p is
guessing that the R; strategy of higher priority is not total and hence has no interest in the
i component of any e-state string. In other words, when comparing e-state strings, p ignores
the entries for which u is guessing nontotality. Although we continue to use the standard
notations =, <, and > for comparing e-state strings, they always have this addition meaning
in the context of a strategy p.

We also need to clarify the definition for a number to be large or a string to be long.
During this construction, each tree T3, ; which is defined is at stage s is a total function from
2<% to 2<%, Therefore, in some sense we use all the elements of w at each stage s! However,
when we define a number to be large, we want to say that it is larger than any number we
have looked at in a meaningful way in the construction. One way to do this is say to limit our
trees T, s to being finite functions from strings of length < s to 2<“. However, it seems more
natural to view the trees as total functions. Therefore, we define a number n to be large to
mean that n is larger than any parameter defined so far in the construction and larger than
any string used as an oracle in any computation looked at so far in the construction. We say
that a string is long if its length is large.

We have three basic ways of defining the tree 1}, ; from T ;. In all cases, n will already
have defined its parameters p, and o,. First, we define T, , trivially from T,» ; as follows.
Let T,s(A) = Ty s(ey,) and continue by induction. Assume that T, (8) = Tpws(v) has
been defined. If there is a most recent stage ¢ < s at which n defined T,,; and n has not
been initialized since ¢, then we attempt to keep T, the same as it was at stage f. If
T,,s(8) = T,4(B) and for ¢ € {0,1}, T,,,(8 1) is still on Ty 5, then set T (5 # 1) = T54(0 + 1)
and U(T,, +(8)) = U(T;:(8)). If any of those conditions fails or there is not such stage ¢, then
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set Tn,s(ﬂ * 2) = TTJ",S(’Y * 2) and U(Tﬂ,s(ﬁ)) = U(T’A‘T”,s('Y)) * L.

We sometimes define a subtree of T;, ; trivially by following the same algorithm above an
already defined node. If T} () has already been defined, then defining T),, trivially above
T,,+(8) means to use the above algorithm to define T, ,(§) for all 8 C 4.

Second, we may define T, by searching for active splittings on Ty s. Set T (X)) =
Ty (o) and proceed by induction. Assume that T, (8) = T, s(7y) has been defined.

If T, «(3) C Ay s and has 0" state Gy, then we look for an appropriate splitting extension
with half of the split lying on A, ;. Check for active nodes 5 and 7 on T 5 such that

L. |7o|, || € s with 75 to the right of 71,

2. Ty s(7v) € 10,71,

3. either 79 C Ay s or 71 © Ay s,

4. Ulmp) = U(n) = Gy, and

5. there is an z < s such that []®(z) |# 9|7 (x) |.

If there exist such sequences, then take the first such pair found, set 75, (8 * i) = 7; and set
U(T,s(8)) = Gy = H. (We assume that once n has chosen such a pair, it continues to chose
the same pair at future stages as long as the pair remains on Ty.) In all other cases, define
T,,s trivially above T, 4(5).

Third, a strategy n may redefine trees T, ; for R strategies u C n by stretching. n could
be an R or a P strategy, but in either case, n will have just moved the current path. Let §
be a string of long length such that T 4(d) is on the new current path. (Recall that Ty s
is the identity tree, so Th» 4(6) = ¢.) In particular, because § is chosen large, this node is on
all of the trees T, ; for It strategies ¥ C 7 and this node is in the low v state for all such ».
Furthermore, the current path goes through T (6 % 0} = 4§ % 0.

For each R strategy u such that p+«L C npor px N C 9, let 8, be the string such
that n moved the current path from T}, ;(5, 1 * 0) to T} (B * 1} or from T}, (8,1 * 1) to
T.t(Bur # 0). The procedure for redefining trees by stretching splits into two cases.

The first case is when there are no R strategies u such that p* H C 7. In this case, each
tree T, , remains the same and the stretching procedure has no effect. (The point in that
since there are no high splitting nodes, we do not need the stretching procedure to help us
define a wit computation of the form A <, [u]* for any of these strategies 1 at the end of
the construction. Therefore, the stretching will not be necessary in this case.)

The second case is when there is at least one R strategy u such that ux H C 7. Let
po © t1 © --- C g © 7 be the R strategies such that u; * H € n. Let 8, & be the longest
string such that T}, s(By,.z) is on the new current path and U(Ty, (8, x) = Gy » H.
That is, Tp;(By;,#) 18 the first node on the new current path with state G; » L. Because
U(T,;,s(Bu;,1)) = Gy, * L, we have

Tuk,S(ﬁ#k,H) - T#k—lns(ﬁ.u'k—laH) .- C Tuo.s(ﬁ.uo.ﬂ) C d.
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We want to redefine the trees T, ; for R strategies v C 1 such that the node T}, (8, #) is
stretched to have value Ty« +(6). The redefinition of T}, splits into three subcases.

First, if v C pg, then T, ; remains the same. Second, if v = puy, the let T‘M = Ty, and
we redefine T}, , as follows. For all « such that o & ;5 or o is incomparable with Gy, 1,
set Ty, s(a) = Ty, (@) and let U(T),; (@) = U(Ty(@)). Define Ty, 5(By;,zr) = Tows(6) and
U(Ty;,s(Bu;zr)) = all low states. Continue the definition of T, s trivially from Tﬂj above
Tpy,s(Bu;s H). Notice that Ty, o(8,, 1 # 0) = & % 0 and so the current path runs through this
node.

The third subcase is quite similar to the second subcase with a slight change in notation.
If none of the first two subcases applies, let 7 < k be the greatest number such that y; C v.
Set T, = T}, and let B be the string such that T,(8) = the value of T;,s(By;.1) before it
was redefined by stretching. For all a such that a & B or « is incomparable with 8, set
T,s(a) = T,(a) and U(T,s(a)) = U(T,(e)). Define T,4(8) = Tons(8) and U(T,s(8)) =
all low states. Continue the of T, trivially from T, above this node. This completes the
definition of redefining trees by stretching.

The construction proceeds in stages with the action at each stage s directed by the tree
of strategies. At stage 0, we begin with the current path Ay = Ay o = 0 and let A be eligible
to act. At the beginning of stage s > 0, we define the current path A, and Ay so that
As = Ay = Ays—1 where v is the last strategy which was eligible to act at stage s — 1.
We let X be eligible to act to start stage s. When a strategy n acts at stage s, it may move
the current path by explicitly defining A, , from A, . If it does not explicitly define a new
current path, then A,, = Ay, (That is, the current path does not change.}) Similarly,
any parameters not explicitly redefined or canceled by initialization are assumed to retain
their previous values. We proceed according to the action of the strategies until a strategy
explicitly ends the stage. When a strategy n ends a stage, it will either initialize all lower
priority strategies or it will initialize all strategies of lower priority than n* L (including #* L).
When a strategy is initialized, all of its parameters are canceled and become undefined. If
the strategy 7 is eligible to act at stage s, then s is called an 7 stage.

We need to clarify the definition of the functional I'. We make new definitions for I' at the
end of each stage s after we have initialized the appropriate strategies. For each = < s such
that z is not currently equal to z, for some P strategy n and such that z € B, set Iz) = 0.
If £ = z, for for some P strategy 7, then the construction takes care of the definition of I on
z.

Action for a P strategy n:

Case 1. 1 has not acted before or has been initialized since last action. Define p, large,
end the stage and initialize all lower priority strategies.

Case 2. p, is defined but o, is not defined. Let o be the unique string such that |a| =
Py and Ty s(a) C Ay Check if U(Ty (o)) = Gy. If not, then end the stage now and
initialize the lower priority strategies. If so, define o, = «, define z, to be large and set
[Trsr®(z ) = 0. End the stage now and initialize all lower priority strategies. (After
the construction we verify that T,y (o, * 0) € Ay s = Ap, and that this node remains on
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the current path at future n stages unless # is initialized or 1 moves the current path in the
verification procedure called in Case 3 below.)

Case 3. oy and x, are defined. Check if =, € W,. If not, then let n x W be eligible to act.
If so, begin a verification procedure with oo = ay. (The verification procedure is described
after the description of the action for an R strategy.) At each subsequent i stage until the
verification procedure concludes, the verification procedure will end the stage and initialize
the lower priority strategies. (If n is on the true path, then the action of the verification
procedure will be finitary.}

Case 4. The verification procedure called in Case 3 ends at this stage. Forbid all cones
that were 7 frozen by the verification procedure. Put z, into B. Let n be a large number.
For all strings v of length n which are not #» forbidden, define I'*(z,)) == 1. Declare n satisfied
and take outcome 7 * S. At future n stages, take outcome 7 * S.

Action for an R strategy n:

Case 1. 7 has not acted before or has been initialized since the last time it acted. In this
case, define p, large, end the stage and initialize all strategies of lower priority.

Case 2. n has defined p, but not «,. Let o be the unique string such that |o| = p, and
Ty sla) € Ay . If U(Ty (@)} = G, then define a; = a. Otherwise, leave a, undefined. In
either case, end the stage and initialize all lower priority strategies.

Case 3. a is defined and 7 is not challenged. Define T;, s by setting 75, s(A) = Doy o)
and searching for active splittings. If n finds a new high splitting along the current path, then
let n* H act. Else, let n* L act.

Case 4. n was challenged high at stage t < s. At stage ¢, n was given a number z, and
a string Bpn such that U(T;.(8, ) = Gy * H and T, (B ) was stretched at the end of
stage ¢ (and hence has all low states at the end of stage ). Let v denote the string such
that at stage t we had T5,,(8, u) = T (). After the construction, we verify the following
properties. Tn”,s(’Y) = Tn”,t(’Y) = Tn,t(ﬁ'r],H)w U(Tﬂ”,s('Y)) = GT} and Tn”,s('y * O) - An’,s- At
each 7 stage v such that t < u < s, T, was defined trivially from Tv,. If u < v are 7
stages such that ¢t < u < v < s, then T, (B 1) = Tnu(Bpu) = Tou(Bnn) and for i € {0,1},
Tt (B b %8) € Ty (O i %8) = Tpy0 (8,51 % 7). Because n was defined trivially at any such stage
u, we also have that Ty .(Bym * 2} = T ,(y % 4). Finally, when 1 was challenged high, the
challenging strategy defined [7n¢(fns*0 (7 ) = 0.

This case splits into the two subcases below. It is possible that n has also been challenged
low at some stage after ¢ and before the current stage. If this has occured, then n must be in
Subcase A.

Subcase A: n has not yet found a potential high splitting for 7}, (8, g). Check if there are
active strings 7o and 71 on Tp, (with 7o to the right of 71) such that T, .(v) = T5,4(Bna) <
70,71, U(T0) = U(m1) = Gy, Twy([n](wy,) |5 [7]5 (wy) |) and either 79 C Ay s or 7 C Ay .
If not and 7 is also low challenged, proceed to Case 5 below. If not and 7 is not low challenged,
then define Ty, trivially from T;» , and take outcome n+ L. 7 remains high challenged. If there
are such strings 7o and 73, then fix 75, 7 and w,, and consider the following two subcases of
Subcase A. (Because the current path goes through Tpn o(v#0) and T, (8, g #0) C Thp 5(y#0),
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we have that either T, (8, i 1) C 7 for i = 0,1 or T4 (B4, * 0) € 10, 71. Therefore, the two
cases below suffice.)

Subcase A(i): 75 and 71 satisfy T3, (8, g *4) C 7. Define Ty, from T, , by searching for
splittings, using 7o and 71 as the successors of 75 (G, m). 7 is no longer challenged high and
n* H is the next strategy eligible to act. Notice that we have T;,1(0n u * ¢} C Ty, s(By,m * 7).

Subcase A(il): Ty, .(Gyz *0) C 79, 71. Define Ty, , trivially from Ty 5. Freeze the cone above
T8y, e 0) and move the current path to be the rightmost active path through T3, o(5; z * 1).

Redefine the trees T, , for u C 1 by stretching. Furthermore, stretch T;, (8, % 1) to have
the same long length as the other stretched nodes. (That is, set T = T}, s and redefine T}, ; as
follows. For all o such that & C 8, g * 1 or « is incomparable to G, i % 1, set Ty, (o) = T(c)
and U(T,s(a)) = U(T(e)). Define T, (B, 1 # 1) = Thw 4(8) (where § is as in the stretching
process just completed) and U(Ty s(Bqm # 1)) = all low states. Extend the definition of T,
trivially from 7' above this node.) Define T'Tns(a.n*140) (7 ) = Q.

For each R strategy p such that p* L C 7, define X, to be the finite set of all  for which
4 has seen [u]™(z) converge for some 7 on T, s such that U(r) = G, and T, (B, %0) C T

but i has not seen [p]f"’sw“"")(x) converge. (3, is defined by the stretching process in the
previous paragraph.) For all g with g+ L C n, pass X, and §, 1 to u and challenge u low.
For all u such that pu % H C 1, challenge p high, pass 8, u to u and set z, = z,. (Buu is
defined by the stretching process in the previous paragraph.) End the stage and initialize all
strategies of lower priority than 7% L including n* L. At the next 7 stage (unless 7 has been
initialized), # will act in Subcase B below.

Subcase B. At the previous n stage, n acted in Subcase A(ii) or n acted in this subcase and
did not call a verification procedure. Let u < s denote the stage at which n acted in Subcase
A(ii). Define T), ; trivially from Top .. After the construction, we verify that T;,(8pz * 1) =
Tyu{By 1 1) and this string has state Gy, » L. Furthermore, Ty o (8q 5 % 1#1) C Ty (8,5 + 1%1)
and the current path goes through T, ;(8, u * 1 * 0). Because T, ,(8y u * 1) was stretched at

stage u, Ty s(Bn g * 1) has length longer than the [n] use on w, (which is the splitting witness

for 75 and 7y from Subcase A). Check if [n}f’“‘s(ﬁ”'ﬂ +) (wy) converges. If not, let n* N act. If so,

call a verification procedure with og = B,z * 1. At subsequent 5 stages until the verification
procedure finishes, it will end the stage and initialize strategies of lower priority than 7 * L
including 7 * L.

When the verification procedure finishes (abusing notation, at stage s), unfreeze the cone
above T, (8,1 * 0) (which was frozen in Subcase A(ii)). This action unfreezes the strings
75 and 71 from Subcase A(ii). Set 7 to be either 79 or 71, depending on which gives the
computation that differs from the computation given by T u(Byu * 1) on w, Move the
current path to be the rightmost active path through ¥. Forbid all remaining 7 frozen cones.
Define T;, . by searching for splitting, taking Ty, (8, 5+ 1} = Ty (B, u*1) and T, (B m +0) = 7
to make T}, s(3, 1) high splitting. When this definition is complete, redefine the trees T}, , for
© S n* H by stretching. (Notice that we stretch T, , as part of this stretching process.) Let
1+ H act and 7 is no longer challenged high.

Case 5. n was challenged low at stage ¢t < s and passed the set X, and a string G,,z. If
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X, = 0, then take outcome n # L and 7 is no longer low challenged. If X,, # @, then proceed
as follows.

1 was challenged low either by a verification procedure or by an R strategy acting in
Subcase A(ii) of its high challenge. In either case, £, is such that the current path was
moved from 75, (8,2 #0) to T,,.(5,, 1 *1) and the cone above T;, (5, 1 ¥ 0) was frozen at stage ¢
by the challenging strategy. After the construction, we verify the following properties. If v is
such that Tpw ;(v) = Do (Bn.1), then T o(v) = T 4 (). I w is an 7 stage such that ¢ <u < s,
then Ty :(Bpr) = Tpu(Bnr) and Tpi(Bpr * 4) = Tpu(fyr * 1) for i € {0,1}. (To be precise,
when n was challenged low at stage ¢, it is possible that the challenging strategy stretched the
node Tn,t(ﬁﬂ, £ * 1), Therefore, the reference to this node is to the stretched version, if such
stretching took place.) Finally, the current path continues to run through T, (G, 1 * 1).

By the definition of X,, for each z € X,,, there is a corresponding string y; on T, ; such
that T5,4(8y,1 * 0) C 7, and [n]/*(z) converges. Consider all nodes & such that T 4(8) is on
the current path, T5,,(8,1 * 1) C Ty s(0), [Ty s(d)| is greater than any of the [n] uses for
z € X, and U(T 4(d)) = G,,. If there is no such §, then define T, , trivially from T, and
take outcome n * N. Otherwise, let &, denote the shortest length such 4.

Consider each z € X, in sequential order and check whether {n]f’?""(a")(w) converges. If not,
then define T}, ; trivially from T, ; and take outcome n*N. If this computation does converge,
then check whether it equals [ (z). If so, then consider the next value in X,,. If not, then
unfreeze all cones frozen by the challenging strategy, so in particular v, is unfrozen. Define
Ty.s from Toy 5 by searching for splittings. -y, and T, 4(6,) will give a new high split on T, ; so
take outcome 7% H. (In this case, since the strategy which challenged n extends n=* L, it will be
initialized at the end of the stage.) If all of the elements of X, have convergent computations
which agree with their v, computations, then define 7, ; trivially from T3 5, declare the low
challenge met and take outcome 7 * L unless the challenging strategy established a link from
7 in which case follow the link.

Verification Procedure.

A verification procedure can be called either by a P strategy n or by an R strategy 7
acting in Subcase B of the high challenge. In either case, when 7 first calls the verification
procedure, it has just defined a string oo and it has a witness z,. (The string oy should
contain a subscript indicating that it is part of a verification procedure called by n, but we
omit this extra piece of notation.)

The verification procedure acts in cycles, beginning with the 0" cycle. When the n'®
cycles starts, we will have defined the string ¢,. If n > 1, then we will have followed a link
from the strategy pn—1 to n such that g, % L € n and p,_y is the lowest priority strategy
challenged low by 7 at the (n — 1)* cycle. (When the verification procedure is first called, we
begin with oo and have not followed any link. To make the notation uniform, we set u_; =19
and treat the 0" cycle like any other cycle.) The following is the action for the n' cycle of
this verification procedure.

At the start of the n'™® cycle, the current path goes through 7}, _, (o, * 0) and the node
Tyn_1,s(0n % 1) is active. (If n = 0 and the verification procedure was called by a P strategy
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pi—1, then we need to replace T),_, s by Ty s Similar comments apply throughout the rest
of this procedure. If n > 1, then p,.; is an R strategy, so no such replacement is neces-
sary.) PFurthermore, if n > 1 and ¢ < s is the stage at which the (n — 1)* cycle started,
then Ty, s(0n) = Tyori(on) and Ty i(on #4) C Ty, _y,s(0n % 4) for 4 = 0,1. During the
(n — 1)* cycle, we defined TTen-1:4(=*0) (3} — 0. If n = 0, then we have already defined
[Th-120000) (3 ) = 0. (We verify all of these properties after the construction.)

Move the current path from T),,_, (o, * 0) to be the rightmost active path through
Typn,s(0n x 1). If n = 0, then declare T),_, s(cp * 0) to be 7 frozen and if n > 1, then
declare T}, _, +(cn * 0) to be 5 frozen. (That is, we freeze the string that was used in the
' definition on z,.) For strategies g C ,_1, redefine the trees by stretching. For each R
strategy 4 such that u* L C py,—1, define X, to be the finite set of numbers x such that
has seen [u]"(z) converge for some «y on 1), ; such that Ty, (8.1 *0) C vy, U(y) = G * L and
1 has not seen [p]TesBui}(z) converge. (B, is defined by the stretching process.) If all the
X, sets are empty, then the verification procedure is complete and we return to the action of
the strategy that called the verification procedure.

If some X, # 0, then set u,, to be the lowest priority strategy such that X, # 0. (After the
construction, we verify that pn, C pn_1.) Let onyq denote the node such that T}, ;(ony1) Was
redefined to be equal to Ty« 4(6) by the stretching procedure in the previous paragraph. (That
is, T}, 5(0n+1) is the least node along the new current path in T}, s which was stretched.)
Because of the stretching, the length of T, ;(0n41) is large, the current path goes through
Ty, s(0ns1 % 0) and Ty, s(0nq1 * 1) is active. Define TTrnslons1:0 (g} = 0.

Place a link from pu, to n. For all v such that v * L C u, * L, challenge v low and pass
B, and X, to v. For all v such that v« H C p,, challenge v high, pass 8,5 to v and set the
witness z, = z,. (0, x was defined by the stretching process above.) If 7 is an R strategy,
initialize all strategies of lower priority than n # L including n % L. If  is a P strategy, then
initialize all lower priority strategies. End the stage. When 7 is next eligible to act, we begin
the (n + 1)* cycle of the verification procedure and check if the verification procedure is now
complete or if we need to go through the whole {n + 1) cycle.

This completes the description of the construction. Before we begin the sequence of lemmas
to prove the construction succeeds, we point out several features of the construction which
the reader can check by observation. First, the places where we may find new high splittings
are Case 3, Cases 4A(i) and 4B, and Case 5 of an R strategy. In Cases 3, 4A(i) and 5, one
half of the new high split is already on the current path. In Case 4B, we explicitly move
the current path so that one half of the new high split (namely 7) lies on the new current
path. Therefore, the only time the current path moves is when we explicitly move it. (That
is, we are not in the typical situation of a full approximation argument in which the current
approximation to the set being constructed is defined to be the rightmost path through the
tree. In that setting, the current approximation is implicitly changed by the addition of new
high splits.)

Second, the movement of the current path is only caused by a verification procedure or
by a high challenged R strategy acting in Subcase A(ii) or B. Whenever we explicitly move
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the current path in one of these cases, we also stretch nodes along the new current path.
Furthermore, these are the only times when we stretch nodes.

Third, if a node becomes frozen at a stage s, then some strategy must have moved the
current path below this node. This property follows because the only time nodes are frozen
is in Subcase A(ii) of a high challenge and in a verification procedure.

Fourth, links are only established by a verification procedure and these procedures are only
called by P strategies acting in Case 3 of the P action and by high challenged R strategies
acting in Subcase B of a high challenge.

Finally, the only time new challenges are issued is by a verification procedure or by a high
challenged R strategy acting in Subcase A(ii). In either of these cases, the strategy issuing
the new challenges ends the current stage. This fact implies that at any given stage, at most
one strategy can issue new challenges.

We say that the current path moves below a node T, () if there is a string § C « such
that either T, s(8) C A, but T (8) € Aus, or Tn(8) € Aps but T, 4(8) C A,y for some
strategy p and stage ¢ > s (with n C p if £ = 3). We say that the current path moves below
level | of T, s if the current path moves below T;, ;(c) for some string « of length [.

‘We present the series of lemmas to prove that our construction succeeds. We begin with
some terminology and properties of the links. If there is a link between strategies v and 7
such that ¥ C p C ¥, we say that the link jumps over p. If p+ L C ¥, then we say the link
lands above px L. If = H C D, then we say the link lands above p+ H. The idea is that a
link which jumps over 4 and lands above p* L (or px H) gives a way for a strategy extending
wx L (or u* H) to be eligible to act without y acting. The following lemma says that if u is
low challenged, then there cannot be a link jumping over p and landing above p * L.

Lemma 5.1. The following situation cannot occur at any stage: u has been challenged low
by v and there is a link from v to ¥ such that v C p and u*x L C 0.

Proof. Because p is challenged low by fi, we have p* L C . Because the link between v
and © can only be established when ¥ challenges v low, we have v x L C #. Furthermore,
v G uCPand v L C P together imply that v+ L C 4 and hence v = L C 4.

For a contradiction, assume that ji challenges p low at stage s and before this low challenge
is removed (either by being met or by 4 being initialized) there is a link between v and
(which may already be present at stage s). Furthermore, we can assume without loss of
generality that u is such that no strategy n C u is ever in the situation of being challenged
low with a link jumping over 7 and landing above n* L. (If there were such an n, we consider
it instead of p.) In particular, there is never a situation in which v is challenged low with a
link jumping over v and landing above v * L. We will refer to this assumption as our wlog
assumption about v. (This assumption is really about p but we will only apply it in this
special case concerning v ¢ u.)

First, we show that this situation cannot occur if & # . Consider when the link from v
to o is established. It cannot have been established at stage s since at any given stage, at
most one strategy issues new low challenges. Since we assume [ challenges p at stage s and
U # i, we cannot also have ¥ issuing low challenges and establishing a link at stage s.
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Assume that the link from v to I is established at © < s and hence v is challenged low
by o at stage u < s. In this case, consider how [ comes to be eligible to act at stage 5. If s
is a v stage, then the only possible outcomes for v are v * H and v * N since v cannot meet
its low challenge at s without following (and hence removing) the link. Because v * L C ,
there must be a link jumping over v and landing above v * L at stage s while v remains low
challenged. However, this contradicts our wlog assumption about v.

Assume that the link from v to © is established at u > s and that u is the first stage at
which a link jumping over u and landing above p * L is established. Because u is a  stage
and there is no link already jumping over p and landing above u % L, » must also be a u
stage. However, this is impossible since the only possible outcomes for p are px H and p+ N
unless p meets the low challenge issued by i to u at stage s. This completes the proof that
we cannot have U # 7.

Second, we show that we cannot have = . Assume [ = ». Then fi must issue the low
challenges to both v and p. Consider when [ issues the low challenge to v and establishes
the link from v to & = ji.

Assume the link from v to [ is established before stage s. In this case, by our wlog
assumption about v, there cannot be a link jumping over v and landing above v * L at stage
3. Therefore, since s is a [ stage and v * L C i, s must also be a v stage. At stage s, v
either takes outcome v % H or v * N (in which case i cannot act at stage s) or v follows the
link to £ (in which case the link is removed before & challenges p low). All cases lead to a
contradiction.

Assume the link from v to [ is established at stage 5. Then v must be the lowest priority
strategy such that [ calculates X, # §. Then [ only challenges a strategy v low at stage s if
v+ L C ji and v € v. This contradicts the fact that fi challenges p low at stage s since v C p.

Assume the link from v to [ is established at stage £ > s and ¢ is the first stage after s at
which such a link is established. ¢ must be a [ stage. If ¢ is a p stage, then either we take
outcome p* H or pu* N (which contradicts the fact that ¢ is a i stage) or we follow the link
from p to f and remove the low challenge to p (which contradicts the fact that p is still low
challenged when the link from v to ¥ is established). Therefore, ¢ cannot be a u stage and
so there must be a link jumping over x and landing above u * L established before stage ¢ by
some strategy other than f. In the first case, we showed that this situation is impossible. [

A case analysis similar to the one for Lemma 5.1 proves the following lemma.

Lemma 5.2, If u is challenged high, then there cannot be a link jumping over p and londing
above px H.

Lemma 5.3. If n is challenged low, then no strateqy p with n* L C u is eligible to act until
the low challenge has been met or is cancelled by initialization.

Proof. Assume that #n is challenged low by 7 at stage s {(and hence n« L C #). At every
n stage until the low challenge is met, 7 takes either outcome n * H (which causes 7 to be
initialized and the low challenge to be removed) or outcome 7 * N. Therefore, the only way
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for a strategy u with 7% L C u to be eligible to act while n remains low challenged is to have
a link jumping over 7 and landing above n * L. Such a link contradicts Lemma 5.1. (]

Lemma 5.4. A strategy 1+ can be challenged low by at most one strategy at a time.

Proof. Assume that u is challenged low by [ at stage s. The only strategies # which can
challenge p low satisfy pu* L C . By Lemma 5.3, no such strategy is eligible to act after stage
s and before the low challenge issued by /i is met or cancelled by initialization. Therefore p
can only be challenged low by one strategy at a time. O

Essentially the same proofs as for Lemmas 5.3 and 5.4 establish the following two lemmas.

Lemma 5.5. If n is challenged high by 7, then no strategy p with nx H C p is eligible to act
until the high challenge has been met or is cancelled by initialization.

Lemma 5.6. A strategy p can be challenged high by at most one strategy at a time.

It is possible for a strategy n to be challenged both high and low at the same time.
However, if n is challenged high at stage sq by 7, then n* H C 7} so any low challenges fo
issued before stage sy are removed by initialization at stage sg. (Also, there is no link jumping
over  and landing above n % L at the end of stage so.) As long as 7 acts in Subcase A of the
high challenge and fails to find a potential split, it takes outcome n* L. A strategy p with
n* L C u could challenge 1 low. Suppose this happens at stage s; > s¢. At 51, n must still
be acting in Subcase A of the high challenge and not finding a potential high split. If  ever
finds such a potential high split, then it acts either in Subcase A(i) or A(ii). In either of these
cases, p (which issued the low challenge to ) will be initialized. Furthermore, if  continues
to act in Subcase B of the high challenge, then it does not take outcome n % L and hence
cannot be challenged low again until it is either initialized or meets its high challenge. The
conclusion of this observation is that n can only be both high and low challenged if the high
challenge comes first and the low challenge comes while 7 is still acting in Subcase A of the
high challenge and has not yet found a potential high split. Therefore, in our construction,
we give all the necessary instructions for handling a strategy which is both high and low
challenged.

Lemma 5.7. If 5 calls a verification procedure, no strategy p with n C p is eligible to act
until the verification procedure is met or is cancelled by initialization.

Proof. Assume that 7 calls a verification procedure at stage s. n will end every stage after s
at which it is eligible to act until it is either initialized or the verification procedure is met.
Therefore, it suffices to show that there are no links jumping over 5 at the end of stage s. If
n is a P strategy, then 7 initializes all lower priority requirements at stage s and hence there
are no jumping links over n at the end of stage s.

If n is an R strategy, then n must be acting in Subcase B of a high challenge and the
verification procedure called by 7 initializes all strategies below n * L at s. Therefore it
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suffices to show that there is no link at stage s between strategies v and  where v+ L C 7
and nx H C 0. Suppose there is such a link. Since n ends stage s and does not take outcome
n * H until after the verification procedure for the high challenge is met, the link must have
been established before stage s. This means that v is low challenged by 2 before stage s.
Consider how 7 is eligible to act at stage s. There cannot be a link jumping over v and
landing above v * L at stage s by Lemma 5.1, so s must be a v stage. v either takes outcome
v+ H or v+ N (contradicting the fact that s is an n stage) or  meets the low challenge and
follows the link which jumps over n (again contradiction the fact that s is an n stage). O

Lemma 5.8. If n is challenged high, then this high challenge is part of a series of high
challenges started by some P strategy . Furthermore, if n moves the current path from
Ts(7 % 0) to T ey 1) or from Ty o(y * 1) to T, 4(y % 0) during this series of challenges as
part of either Subcase A(4i) or Subcase B (including any verification procedures called by this
subcase) of the high challenge, then |y| > pj.

Proof. Suppose that 1 is challenged high by ng at sg, so n% H C ng. If 0o is a P strategy, then
i = ny. Otherwise, 7y is an R strategy which is challenging # high as part of its own high
challenge. Therefore, 7y must have been high challenged by some n; at s; < sp, song*H & m
and hence n* H C n. If ny is a P strategy, then 7 = m. Otherwise, we repeat the argument
just given. It is clear that tracing this sequence of high challenges back in time must yield a
P strategy f = 1, such that n = H C 7 and 7 issued its original challenges at stage s,.
When 7 issues its challenges at stage s,, it moves the current path from Ty 5, (aj * 0) to
T s, (05 % 1). The string e has length p;. Therefore, for any R strategy u C 7, if -y, is such
that Ty s, (a) = Tirsn(0g), then || > ps. Also, if p (with p* H C #) is high challenged
during the sequence of high challenges initiated by the action of 7 and x moves the current
path at stage s > s, due to its action in Subcase A(ii) or Subcase B of the high challenge,
then this movement occurs above the place where # originally moved the path. The statement
of the lemma follows. O

Lemma 5.9. Let 7 be a strategy such that n defines p, at stage t. Unless n is initialized, the
current path cannot move below level p, + 1 of the tree defined by ' (if n is a P strategy) or
by n" (if n is an R strategy) before n defines ay,.

Proof. The analysis is the same regardless of whether 7 is a P or R strategy, with only a
change in notation between whether 7 works on the tree built by n' or n”. Rather than
repeating the argument twice, we give the proof in the case when 7 is a P strategy.

Assume that no strategy initializes n after stage ¢ and before 7 defines o,. Since no strategy
to the left of n in the tree of strategies can act without initializing 7, we can assume no such
strategy moves the current path before 1 defines a,. At stage ¢, 7 initializes all strategies of
lower priority, hence these strategies work at or above level p, + 1 in the tree defined by '
and cannot move the current path below level p, + 1 of the tree defined by #'. Furthermore,
by Lemma 5.8, no R strategy v C n can move the path below this level because of a series of
challenges started by a P strategy of lower priority than n. We are left to consider the other
possible actions of strategies v such that v C 5 at the stages before n defines ;.
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We split the proof into two cases based on the ways that the current path can be moved
after ¢ and before 5 defines o,. First, the current path could be moved by a P strategy v C 7
which calls a verification procedure in Case 3 of the P action. In this case, v initializes all
lower priority strategies including n contrary to our assumption.

Second, the current path could be moved by a high challenged R strategy v C 9 acting
in Subcase A(ii} or B of the high challenge (including the verification procedure called by
Subcase B). Let & denote the P strategy which called the verification procedure starting the
sequence of high challenges that led to this high challenge to v. As mentioned above, 7 must
have higher priority than n, so either & C n or # <z, n. If ¥ starts this sequence of challenges
at a stage > ¢, then 7 is initialized when  acts contrary to our assumption.

If U starts the sequence of challenges at a stage < t, the since 7 has not completed ifs
verification procedure, we must have ¥ <z 7 by Lemma 5.7. Because a high challenged
strategy in this sequence of high challenges only moves the current path when it issues new
high challenges in Subcase A(ii) or B of the high challenge, we can assume that v is already
high challenged at stage ¢. {Otherwise, tracing backwards in time from the stage at which v
is high challenged after ¢, we can find an R strategy which is high challenged at stage ¢ in
this sequence of high challenges and which later moves the current path to issue new high
challenges to continue this sequence leading to the high challenge of v. We work with this
strategy instead.) We must have either vx H Cnpor v« H <z 7 IfvxH Cn, then by
Lemma 5.5, n is not eligible to act until the high challenge is met or removed by initialization,
so 77 is not eligible to act at stage ¢ contrary to our assumption. If v H < n, then n has
lower priority than v % L and hence is initialized when v moves the current path by acting in
Subcase A(ii) or B of the high challenge contrary to our assumption. O

Lemma 5.10. Assume a P strategy n defines o, at stage s. Then Ty (o), Ty (o % 0) and
Toy s(an % 1) are all active at stage s and the current path runs through Ty (o 0). Ifn is an
R strategy that defines oy, at stage s, then the same statement is true when 7" is substituted

forn'.

Proof. As in the proof of Lemma 5.9, we give the proof in the case when n is a P strategy.
Let ¢ < s be the stage such that i defined p, at ¢ and 7 is not initialized between defining p;
at ¢t and defining o, at s. Let o be the string such that ja| = p, and T, (@) C Ay ;. Because
py is defined large and Ty () is active (as it is on the current path), T, (% 0) € Ay, and
both Ty, (0 * 0) and T, 4 (e, * 1) are active. By Lemma 5.9, the current path does not change
below level p, + 1 in the tree defined by 1’ between stages ¢ and s. Therefore, when 7 defines
vy, we still have T, ((a@) C A, ; and hence o, = o. Furthermore, Tpy o(a # 0) = Ty (e % 0) is
still on the current path (and hence is still active) and Tiy (1) = Ty o(cr, * 1) is still active
(because nodes can only become inactive when the current path moves below them). 0

The analysis given in Lemma 5.9 can be applied in a more general context. We say that
a node T), ;(¢) effects initialization if any number defined to be large after T}, ;(c) is defined
has to be larger than the length of 7}, ;(«). That is, either T} ;(¢) (or any longer node) has
been used as an oracle for any computation viewed in the construction or some parameter
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has been defined which is larger than T, ,(e). We will only apply Lemmas 5.11 and 5.12 in
situations in which « is equal to some parameter in the construction such as oy or 8, y.

Lemma 5.11. Let n be an R strategy, s be an n stage and « as string such that T, 4(o)
is defined and effects initialization. For each v such that v H C n, let v, be such that
T, o{v) = Tpsla). Assume that for all v C v, T,s(7v) ts high v splitting. Then, for all g
stages u > s, Tyu(a) = Ty, s(@t) unless n is initialized, 1 finds a new high split below T, ;(a) or
some strategy 1 such that n C p moves the current path below T, .(a) at a stage t such thal
s <t < u. Furthermore, if T, (o) C Ay ., then Tp 4(a) remains on the current path unless
n is initialized or some strategy p such that n C p moves the current path below T, {a) at a
stage t such that s < 1.

Proof. Unless 7 is initialized, the value of T, s() can only change if some R strategy u C 7
finds a new high split below T, (a) at a future stage or if T, (o) changes values due to
stretching. Because the hypotheses, no strategy v C 7 can find a new high split below this
node without moving the path in the tree of strategies to the left of # and initializing 7.
Therefore, only n can change the value of this node by finding a new high split. The value of
the node can only be changed by stretching if the current path moves below this node. Hence,
we can finish the proof by giving an analysis of which strategies i can move the current path
below this node without initializing n. This analysis is similar to the one given in the proof
of Lemma 5.9.

First, if & <z, 7, then u cannot act without initializing 7, so we can assume no such strategy
moves the current path below T, ;(«). Second, if n <, g, then p is initialized at stage s, so
it works higher on the trees than T, ,(c) at future stages. Therefore, no such strategy can
cause the path to move below T, ;(«) and by Lemma 5.8, no R strategy v C 7 can cause the
current path to move below T, ;(cr) because of a series of high challenges initiated by p such
that n <g p.

Third, suppose u C 1 moves the current path below T, ;(a) at a stage ¢ > s. Let /i denote
the P strategy which initiates the series of challenges leading to p moving the current path.
(As noted at the end of the previous paragraph, we know that /i is not to the right of » in
the tree of strategies.) If 4 C 7, then because s is an 7 stage, Lemma 5.7 implies that [ must
initiate this series of challenges after stage s. However, in this case, [ initializes 7 when it calls
its verification procedure to initiate the series of challenges. If i <, 5, then fi must initiate
its series of challenges before stage s and as in the proof of Lemma 5.9, we can assume that p
is challenged high at stage s. We split into the cases when p+ H C n and when pux H <p 7.
In the first case, Lemma 5.5 contradicts the fact that s is an 7 stage. In the second case, 1
has lower priority than u * L and hence is initialized when g moves the current path in either
Subcase A(ii) or B of the high challenge.

We now know that we cannot have n <g &, ## C n or ji <g 7. It remains to consider the
case when nn G fi. If /1 issues its challenges after stage s, then [ moves the current path after
stage s when it issues these challenges (and before u moves the current path). Therefore, we
have met the conditions of the lemma in this case. Otherwise, j calls its verification procedure
and issues its first challenges before stage s. In this case, since p is high challenged in the
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series of challenges started by ji, we have pux H C fi. Together with the case assumption that
u S nC i, we have o x H C . Since s is an 7 stage, 4 cannot be high challenged at stage
s by Lemma 5.5. We can assume that p is the first strategy such that x4 C 1 to move the
current path below T, ;(c,) after stage s. There must be a » such that v is high challenged at
s (in the series started by i) and such that » issues high challenges after stage s which lead
to the high challenge of u. By the comments above, we know that 7 C v. Therefore, when
v issues its high challenges after stage s (and before y moves the current path), » moves the
current path below T, ;(c,). Therefore, the conditions of the lemma are true in this case as
well. O

Lemma 5.12. Let  be an R strategy, s be an n stage and « be a string such that T, o(a) is
defined, effects initialization, has n" state G, and may or may not be n high splitting. For all
n stages u > 8, Tpu(a) = T s() unless n is initialized, n finds a new high split below T, o(c)
or some strategy p such that n C p moves the current path below T, s(c) at a stage t such that
s <t < u. Furthermore, if T, ;(c) C Ay, then T, (a) remains on the current path unless
n is initialized or some strategy u such that n C u moves the current path below T, s(c) at a
stage t such that s <.

Proof. This lemma follows immediately from Lemma 5.11. O

Lemma 5.13. Assume that an R strategy n defines o, at stage t. Unless 7 is initialized,
T ul0y) = T 1(atn) C Apr o, for all m stages u > t.

Proof. When 7 defines a,, at stage ¢, we have U(T, (o)) = G,. We apply Lemma 5.12 to
this node to show that it cannot change after stage ¢ unless n is initialized. By Lemma 5.12,
the only R strategy which could change the value of this node by finding a new high splitting
is n”. However, if " * H C n, then this node is already n” high splitting as are the nodes
below it on Tpwy. If " H < 9, then 7 is initialized when " finds a new high split below this
node. Therefore, unless 7 is initialized, the value of T, ((c,) does not change due to finding
a new high splitting.

Next, we consider how T ,(oy) could change values after £ because of stretching. If
this nodes changes values because of stretching, then the current path must move below it.
Therefore, we can finish the proof by showing that the current path cannot be moved below
Ty 1(0y) without initializing 7.

By Lemma 5.12, unless 1" (and hence 7) is initialized or a strategy u with " C 1 moves the
current path below T 4(a ), Ty 4(cvn) remains on the current path. At stage ¢, n initializes
all lower priority strategies, so each strategy p such that n C p works with strings which are
too long to move the current path below Ty (). If 7 moves the current path, then it does
so above Ty () (since i defines T, ;(A) = T s(0r) and n only moves the current path on
its own tree) and not below Tyw s(ay,). If 77/ moves the current path, then because 7' is a P
strategy, it initializes 7.

It remains to consider the case when 1" moves the current path below T} ;(0) after stage
t. Suppose n” moves the current path after stage ¢ because it is high challenged in a series
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of challenges started by some P strategy & with #” « H C fi. If the high challenge issued to
n" occurs before stage ¢, then " * H <, 1 by Lemma 5.5 and the fact that ¢ is an 7 stage.
Therefore, 7 is initialized when 1" moves the current path as part of its high challenge. If the
high challenge is issued after stage ¢, then we break into cases depending on whether n C
or i =1n'. (Since i is a P strategy and " C f1, these are the only possibilities.) In the former
case, the path is moved above T, ;(c,) and in the later case, 7 is initialized when /i initiates
the series of challenges by calling a verification procedure. a

Lemma 5.14. Assume that a P stralegy n defines o, at stage t.
1. Unless n is initialized, Toy (o) = Ty (o) € Ay for all n stages u > L.

2. Unless n is initialized or calls a verification procedure, Ty u(0 * 1) = Ty s(an * ) for
i=0,1 and these nodes remain active at all v stages u >t and Ty u(0g *0) C Apy.

Proof. We first, establish Property 1. Because U{T}; () = Gy, we can apply Lemma 5.12
to Ty +(a). The value of this node can only change if 7' is initialized, if 7’ finds a new high
split below this node, or if some strategy u such that #' C p moves the current path below
this node. We consider each of these cases separately.

First, if 7/ is initialized, then so is 7. Second, assume that 7’ finds a new high split
below Ty .(c,) after stage t. Toy:{c,;) must not be ' high splitting at stage ¢, so because
U(Tyy ¢(0)) = Gy, we must have ' * L C 5 or f * N C 5. Therefore, 7 is initialized when
7' finds the new high split. Third, assume that some p with %' C p moves the current path
below Ty :(c,). Because 7 initializes all lower priority strategies af stage ¢, v must be equal
to either n or n'. {If i is to the left of 5, then 7 would be initialized when p acts to move the
current path.) Suppose p = 7. In this case, p only moves the current path above Ty :(cy).
Suppose g = 7. In this case, since r' is an R strategy, it only moves the current path during
a high challenge. Suppose 7 issues the high challenge to 7, so '« H C 4. If ' # H is to the
left of 7, then 7 is initialized when 7’ moves the current path. If ' % H = 7, then 7 initialized
f at stage t and hence any movement in the current path caused by a series of challenges
initialized by 7 is above Tjy +(ay). This completes the proof of Property 1.

To establish Property 2, we cannot necessarily apply Lemma 5.12 since we don’t know
what the states of Ty 1(a, * %) are. However, we claim that we can use Lemma 5.11. To see
this fact, we split into two cases. If there is no strategy v such that v * H C 7, then we
can apply Lemma, 5.11 (since G, contains all low states) and the argument is just as before.
Otherwise, fix v to be the lowest priority strategy such that v+ H C n and let 7, be such
that Ty, +(v,) = Toy (). Since T,4(7,) is high v splitting and none of the strategies between
v and 7 are in the high state, we have Ty (o, * %) = T, 4(7, % 1). Since the v state of T, ()
is G, % H, we have the hypotheses for Lemama 5.11. The rest of the proof of Property 2 is a
similar case analysis to the analysis in the proof of Property 1, except we use Lemma 5.11 in
place of Lemma 5.12. O

We now consider the action of strategies which are high challenged or which call a ver-
ification procedure. Let 1 be a strategy and s be a stage such that 7 is either challenged
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high at s or n begins a verification procedure at stage s. Assume that # is not initialized
before the challenge or verification is met (if it is ever met) and that every strategy v+ L C n
(or v * H C 7) which is low (respectively high) challenged eventually meets its challenge.
Furthermore, assume that 7 is eligible to act infinitely often after stage s (or at least until
the challenge is met or the verification is complete). We prove the following two lemmas
simultaneously by induction on the length of  under these conditions.

Lemma 5.15. Let n be a strategy that calls a vertfication procedure at stage s under these
conditions. Let to be the stage at which n calls its verification procedure with oy and let t,
denote the stage at which we return to the verification procedure for the n'* time (and start
the n'* cycle). In the following two properties, we work with the notation o, and py, as in
the description of a verification procedure, we set p_y = n and we work with the notation as
though n is an R strategy. (Ifn is a P strategy, we need to replace T,_, by T,y cond Gy, * L

by Gp_,.)

1. When the verification procedure is called at stage to, we have T,,_, 4,(co % 0) € Ay, 4,
Ty140{00 % 1) 18 active, [ Dec1:to(70%0) (zy) = 0 and U(T,_, 4,(00)) = Gu_, * L.

2. Forn > 1, when we follow the link from u,_, ton at stage t, and begin the n'* cycle, we
have the following properties: T, ¢, . (0n) = Ty 14200}, UTpr_1 40 (0n)) = Gy, % L,
T pns (Onx8) T Ty (on%d) fori=0,1, Ty, 1.(0n%0) C A, ¢ and Ty, s (on*
1) s active.

Furthermore, there are only finitely many cycles before the verification procedure is complete.
When the verification procedure is complete, all the strings «v such that the verification proce-
dure defined I'"(x,) = 0 are currently n frozen.

Lemma 5.16. Assume that n is high challenged ot stage s under the conditions given above.

1. Unless n is initialized or meets its challenge, T,, (G, u) remains the same and on the
current path at future n stages.

2. At the first n stage so > 8, U(Ty00(Borr)) = Gy * L and Ty s(Bngr 1) C Ty s (B i * 1)
Jor i =0,1. The nodes remain the same and active with T3, o, (By & * 0) on the current
path at future n stages unless 1 acts to change them.

3. One of the following must occur.

(a) At all future n stages, n acts in Subcase A without finding a potential high splitting.
In this case, at every future n stage, n either takes outcome n x L or acts as in a
low challenged case if it is later challenged low.

(b) n eventually acts in Subcase A(i) and wins the high challenge.
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(c) There is an 7 stage s; > s at which n acts in Subcase A(ii). At the nest n
stage 82 > 81, U(Type(Bpmr # 1)) = Gy % L and this node remains unchanged and
on the current path at future n stages unless n acts to change this. Furthermore,
Tps:(Bopr % 1x 1) C Ty op (B L 8) fori = 0,1 and both of these nodes are active.
These nodes also remain the same with T, 4, (Bn i * 1 % 0) on the current path at
future n stages unless n acts to change this. Either n takes outcome n+ N at all
future n stages or n eventually meets its high challenge.

4. If n meets the high challenge at 83 > s, then Ty s(Bnu) = Tnsa(Bna); U(Tyss(Bnrr)) =
GnxH and T, s(Bp u 1) C Thy 55 (On,mr#1) fori=0,1. Furthermore, all strings -y such that
n defined I'(z,) = 0 in Subcase A(ii) or in a verification procedure called in Subcase B
are forbidden.

We prove Lemmas 5.15 and 5.16 simultaneously by induction on the length of . We begin
with Lemma 5.16. Let # be the strategy which challenges n high at stage s. When 7 issues
the challenge, it moves the current path and stretches T, (5, x) to have large length and to
have all low states. Furthermore, Ty, (B, x) and T, (G, zr % 0) are on the current path and
Toy.s{ B,z * 1) is active. 7} also challenges each strategy v such that v + H C n high (and by
induction Lemma 5.16 applies to these strategies). For each such strategy v, T, .(Bo,u) is
stretched and is equal to 77 (B, i)

Consider Property 1 in Lemma 5.16 and consider the value of T, ;(8,, &) after it is stretched.
For each v such that v H C 0, T,,s(Bu,a) = Tys(Bpn). Furthermore, T, .(8, 5) is high v
splitting. Therefore, we can apply Lemma 5.11 to Ty (8 5). Tn,s(8nx) can only change if
n is initialized,  finds a new high split below T}, (3, z) or some p with 7 € p moves the
current path below T;, o(8, ). Because T, 5(8; ) is already high 7 splitting, n does not find
new high splits below T, .(8,;). Because all strategies to the right of 7 * H are initialized at
stage s when 7 is high challenged, the only u # n with n C # which can move the current
path below T, (G, i) satisfy n+ H C u. However, none of these strategies are eligible to act
until 7 meets the high challenge or is initialized. Finally, n only moves the current path above
Tys(By,p) during the high challenge. Therefore, we have established Property 1.

Consider Property 2 in Lemma 5.16. By the next n stage sy > s each strategy v with
v+ H C n has met its high challenge. By Property 4 of Lemma 5.16, we have T, s(8,,z * 1) C
Toso(Boirx1) and U(T,, 5, (Bu.m)) = Gu* H. Also, if v is such that v« L C npor v« N C 7, then
v cannot have found a new high split along the current path without initializing 7, so v does
not change the values of nodes along the current path. Therefore, U(T} 5 (8nu)) = Gy * L
and Ty o(Bp.m * 1) C Ty e0(Bn 1 * 1)

We also have the hypotheses for Lemma 5.11 for T, 4 (B m * i) since for any v x H C 7
we have T,q,(8,,7) is high v splitting. Therefore, no strategy v & 7 can change the values of
Tp.s0(Bnmr 1) for i = 0,1 or move the current path from T;, (8,2 * 0) at any n stage after s
without initializing . Furthermore, until 7 mests its high challenge, it takes either outcome
n% L or 7+ N. Since all of the strategies of lower priority than 7 * L (including n * L) were
initialized at stage s, they all work higher on the trees than these nodes and hence cannot

44



move the current path below any of these nodes. Therefore, unless n moves the current path,
both Ty, s (By.zr # 0) and Ty, (B g * 1) remain active with T3, 5 (Beto,zr * 0) on the current path
at future 7 stages. Hence, we have established Property 2.

Once we begin Subcase A of the high challenge, one of three things must happen. Either
we never find a potential high split or we eventually find a potential high split and act in
either Subcase A(i) or A(ii). If we never find a potential high split, then at every future n
stage, we either take outcome n x L (if 77 is not also low challenged) or we act as in the low
challenge case (if 7 is also low challenged). This establishes Property 3(a). If we ever act in
Subcase A(i), then the high challenge is met and we clearly meet the conditions of Property
4 of Lemma 5.16. This establishes Property 3(b).

Consider what happens if 1 acts in Subcase A(ii) at some stage s; > so. In this case, n
moves the current path from T}, (8,2 * 0) to Ty, (Bn.u * 1) and stretches Tos, (Bpm * 1). 7
defines T'Tne1nii*120) (7} = 0 and performs the various calculations to issue its challenges.
We can apply the same arguments used to establish Properties 1 and 2 in Lemma 5.16 to
Tpsr (Bn.1r % 1) to get the following properties: T 5, (8,5 * 1) doesn’t change after this stage;
at the next 7 stage sy > 51, U(Ths, (Bpzr #1)) = G # L, Ty s, (Brtr % 1% 8) C Ty, (B 1 % 1 % 14),
these nodes remain active and these nodes will not change unless n later changes them in
Subcase B. Also, the current path runs through T3, ., (3, g * 1 % 0) and it will continue to run
through this node unless n changes this in Subcase B.

n acts in Subcase B at the next 7 stage s, and begins to wait for [n]Tm2(@na4D (1) to
converge. (Because T, 5, (B, * 1) was stretched, the length of T, 4, (8, 5 * 1) is longer than
the use of [] on w,.) If this computation never converges, then at all future n stages,  takes
outcome 1 * N. If this does eventually converge at stage tp > sq, then 7 calls a verification
procedure with og = B, 5 * 1. Notice that we have [Tnto(0*0)(z ) = 0, the current path runs
through 77, 4, (00 * 0), Tho(00 * 1) is active and U(Ty4,(00)) = Gy * L when the verification
procedure is called. {These facts verify Property 1 in Lemma 5.15 in the case when 7 is a high
challenged R strategy calling a verification procedure.) Technically, in our induction, we now
need to show that Lemma 5.15 holds. We do this below without assuming anything except
the properties just listed. Given that Lemma 5.15 holds for 7, we know that it terminates
after finitely many stages. When it terminates at stage s, 7 declares the high challenge won
and takes outcome 7 * H.

We need to see that the conditions in Property 4 hold in this case. The cone above
Try.s1 (8o g * 0) (which has remained frozen since stage s;) is unfrozen and 1 uses Ty, o (G 1 *
1) = Tys. By % 1) and either 7 or 7 (in the notation from the construction case for a
high challenged strategy) to make T, (8, ) high splitting. By Property 1, T s(Bpn) =
Typss(Bar). By Property 2 and the fact that n just found a high split for T3 4, (8ya), we
have U(Tys,(Bpr)) = Gy H. Since Tps(Bpn # 1) C Ty (Bpur % 1) = Ty 5(Bpg + 1) and
Thy.52(By % 0) C 70,71 (and the cone above T 5, (3, * 0) has not changed since it was frozen at
stage 82), To.s{Ona * 1) C Ty sy{Bnm *%) for i =0, 1.

Finally, all definitions of the form I'(z,) = 0 made by 1 are either made by the verification
procedure (in which case they are currently 1 frozen by Lemma 5.15) or made by the action

45



of 77 in Subcase A(ii). The only definition made in Subcase A(ii} is for v = T5, (8, * 1 % 0},
Since this node was frozen when the verification procedure was called with o = 5, = 1, the
oracle string used in each I definition made for =, by 7 in meeting its high challenge is frozen
when the verification procedure ends. Therefore, all of these oracle strings are forbidden by
7 in Subcase B when the verification procedure ends. The conditions of Property 4 are met
and we have completed the proof of Lemma 5.16.

Consider Lemma 5.15. To see that Property 1 holds at stage fo, we need to consider
separately the cases when the verification procedure is called by an R strategy in Subcase B
of a high challenge and when the verification procedure is called by a P strategy. If n is an R
strategy acting in Subcase B, then we have verified these properties above. If n is a P strategy
acting in Case 3, then 0y = @, and u’; = 7. By Lemma 5.14, Do 4 (0 % 0) = Ty 4, (0 % 0) is
on the current path and Ty 4 (ay % 1) = Toy 4, (09 * 1) is active when the verification procedure
is called. When a,, was chosen at u < to, U(Tyy u(cty)) = Gy. If any higher priority strategy
found a new high split to raise the state of some string below this node after u, then n
would have been initialized and a,, would have been redefined. Therefore, U(Ty ¢ (o)) = G-
Finally, when «, was defined at stage w < fg, 77 picked x, and defined I wlen O (g ) = 0.
Because Ty (0 % 0) = Ty 4o {ay % 0), we have all the required properties of oy = o, at stage
to.

At stage to, the verification procedure moves the current path from T, , . (o6 * 0) to
Ty 1to(00 % 1) and freezes the cone above T),_, ;,(c0 # 0). It redefines T, for v C p..1 by
stretching and defines X, for v L C p_;. Assume that not all of the X, are empty. (That
is, the verification procedure does not end at this stage.) We define o to be the least priority
strategy such that X, # 0 and define oy so that T, 4 (o) is the least node along the current
path on T, +, which was stretched. Because the length of T}, ;,(01) is long and T}, 4 (01) is
active, the current path runs through T, ; (o1 #0) and T}, 1 (o1 % 1) is active. We place a link
from po to 7, define [Troito{71%0) (x,) = 0 and issue the appropriate challenges. The stage ends
and either all lower priority strategies are initialized (if 9 is a P strategy) or all strategies of
lower priority than n * L are initialized (if n is an R strategy).

Consider the action of the R strategies v C pg between stages tg and £y. If v+ H C pp,
then v is challenged high at stage o and 8,y is such that T, ¢ (Bui) = Tpoue(01) (since oy
is the stretched node of T}, 4,). By our assumption, » meets its high challenge at some stage
u > to. By Lemma 5.16, U(T,.(By 1)) = Gy * H and 1,4, (8o gy % %) C Tpu(Bpr % 8).

HvxL Cnand v C pg, then by our assumption, v eventually meets its low challenge.
At each v stage u at which v is still low challenged, it defines T, trivially from T.» 4.
Furthermore, at stages u after v has met its high challenge, it defines T,,,, by searching for
high splittings and failing to find them. Therefore, it does not change any values on T, ,,.

If v* N Cn, then v must have been high or low challenged before stage gy by a strategy
to the left of 9 in the tree of strategies. v cannot meet this challenge without initializing 7,
and therefore v must take outcome v % N at every v stage between £y and £;. Hence, it defines
T, trivially from T, , at each v stage u between £, and t;.

When pg meets its low challenge and follows the link back to 1, we have the following
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properties. Tyo s, (01) = Ty (1) since the current path has not moved below here and no
R strategy has found a high split below here. Each v such that v« H C o has found a
v high split for T,;,(8,} = Tuto(01) and no v such that v+ L C po or v * N C g has
found a new high split below this node or changed the values of its nodes below here. Hence,
U(Tpot:(01)) = Gy * L. Furthermore, since the high splits found by strategies such that
v+ H C uy have the property that T, (Bem * 9) C T,u(B81 * 7) when they are found at
stage w and since the current path does not move below these nodes before stage ¢ (by a
case analysis as in the proof of Lemma 5.11), we have that T}, 4, (01 * 4} C Tz, (01 # ), that
these nodes are still active and that T, ; (o1 = 0) is still on the current path. Therefore, we
have established Property 2 of Lemma 5.15 in the case when n» = 1. Applying this reasoning
inductively gives the full version of Property 2.

It remains to see that the verification procedure only acts finitely often before ending. For
n > 1, consider the definition of u, at stage t,. Because we follow a link from p,—; to 7 at
stage £, and because this link is established at stage ¢,_;, none of the strategies v such that
pn—1 C v and v+ L C 7 is eligible to act between stages ¢,y and ¢,. Therefore, none of these
strategies has seen any new computations and X, = ( for all of these strategies.

Furthermore, we claim that X, _, = 0 at stage t,. To see this fact, we need to distinguish
Xy, as defined during the (n — 1) cycle, which we denote X, |, and X, _, as defined
during this n™ cycle, which we denote X,,, ;. Tp._ 1., (0n) was stretched at stage t,_; so
it has length longer than the [p,—:] use of any number z € XLR_I. Therefore, it,—1 never
looks above this node for computations on elements of X Ln_l between stages f,_; and £,.
Byn.., is defined at stage ¢, to be such that when the verification procedure moves the
current path from T}, 1 (0% % 0) to Ty, 4,(0n * 1), it moves from T}, _, 4. (Bun_y,z * 0) t0
Tovtn (B, * 1). Therefore, 8, . 1 is defined at stage ¢, to be equal to o,,. Because
Tinritn1(On) = Ty itn(0n) = Ty 40 {Bpn_1,L), Hn—1 has never looked at computations using
oracles above T, _, 4. (B, _.,z). 1t follows that X, _, is defined to be 0 at stage ¢, and hence
tin S pin_1. Therefore, we can only return to the verification procedure finitely often before
it discovers that all X, = 0 and ends.

Finally, we need to check that all " definitions made by the verification procedure are
frozen when the procedure terminates. In the n™ cycle, i defines I'Tenin{on+1¥0) (7 ) = (. In
the (n+1)% cycle, 7 moves the current path from T}, 4., (0541 %0) to Ty, 1,41 (0ns1 * 1). Since
Tt (Ont1) = Tpntn(Ons1) and Ty, 6 (Ong1 #3) © Ty t0y (Onga +4) for 4 = 0,1, the node
Tyt (Oni1 * 0) is frozen by . Therefore, at the start of the (n + 1)* cycle, the I definition
made by the verification procedure in the n'® cycle is frozen. This completes the proof of
Lemma 5.15.

Having gained some understanding of strategies which are challenged high, we turn to
strategies 7 which are challenged low. Assume 7 is challenged low by 7. This could happen
either because # calls a verification procedure or because 7 is challenged high and acting in
Subcase A(ii). We begin with the case when # calls a verification procedure. Assume that
n is challenged low by 7 at stage s as part of the n'® cycle of a verification procedure. By
setting p.1 = 7 and imagining a “trivial link” from g_; to %, we can treat the 0" cycle with
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the same notation as the n*® cycle. In this situation, we have just followed a link from u,_; to
f and 7 moves the current path from T, _, (o5 %0} to T}, _, s(0, *1). By the proof of Lemma
5.15, we know U(T),,_, s(0n)) = G, * L. (Technically, if 7} is a P strategy and n = 0, then
we have U(Ty | ;(00)) = G,._, instead. This minor change in notation is the only difference
between # being a P or R strategy and it does not effect the argument below.) Because 7
challenges 1 low during this cycle, we know 7 € u, and n* L C 7. G, is defined such that
the current path just moved from T5, s(Gy 1 * 0) to T, 5(8y,L * 1). 7 also redefines the tree T},
by stretching. In the argument below, we consider the trees before they are stretched by 9
and we make comments at the end of the proof to take into account the effect of stretching.

Lemma 5.17. Under these circumstances, U(T, s(0n1)) = Gp = L, even after 1) performs its
stretching.

Proof. We split into two cases: when there is an R strategy v such that v x H C u,1 and
when there is no such strategy. If there is no R strategy v with v+ H C pn_1, then G, contains
only low states, so U(Tys(Fy0)) = Gy * L.

Assume there is a strategy v such that v x H C p,—;1. In this case, we first need a
better understanding of where exactly the current path moves. Let v be the lowest priority
R strategy such that v x H C p,—;. Consider an R strategy & such that v« H C ¥ C pn_1
and how I’ defines its trees at o stages before u,,.; follows its link at stage s. Because v is the
lowest priority strategy with v+« H C p,_1, we know that either &% N C pp_q or &+ L C pp_g.
If 7% N C#, then T} , is defined trivially from Ty, because trees are always defined trivially
when a strategy takes the N outcome. If % L C 7, then ¥ cannot have found a new high
splitting along the current path, so & searches for new high splits and defines T} ¢ trivially
when it doesn’t find any. Therefore, all trees T ; for v * H € & € pin—q are defined trivially.

Let v be such that T,,5(y) = T}.._, s(0n). Because all the trees between v * H and i,y
are defined trivially, T}, , s(on * i) = T, (v * ¢). Because U(T,,_; s(0n)) = Gp,_, *# L and
vx H C pn_1, we know that U(T, s(v)) = G, x H. Let ¢t < s be the v stage at which T, ,(y)
becomes v high splitting. Because we chose high splitting extensions for T,,(y) at stage ¢,
the v state of each T,,;(y*1) is G,. A case analysis using Lemma 5.11 shows that the values
of T, :(v), Ty :(y*0) and T, ¢(7y * 1} do not change and the current path does not move below
these nodes after v’s action at stage ¢ and before we follow the link from u,..; to 7 at stage
s. Therefore, when we follow the link from u,..; to 7 at stage s, we have that the " state of
each T, s(y i) is G, {(and they may or may not be v high splitting).

At stage s, 77 moves the current path from T, , s(on * 0) to Tj,,_, s(on * 1) and hence
from T, s(v * 0) to T, s(y * 1). Gy is defined such that the current path just moved from
Tﬂ.s(ﬁﬂ,fa * 0) to Tﬂ,S(/Bﬂ,L * ].)

We break into cases depending on whether v« H C 5 or n C v. (Notice that 1 # v since
vxHChHandn+ L C#H.) If v« H Cn, then since all the trees between v * H and y,..; are
defined trivially at stage s, B, 1 is such that T, o(v) = T0s(0p,r) and T, s(v %1} = Ty 5 (B, * 7).
Because there are no high states between v and 7 (since v was lowest priority strategy with
vi H Cpn1), UTys(Byr)) = Gy * L as required.
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If n C v, then we may have T,4(v) C Tps(Oyz) because T, () is v high splitting.
However, we do have that T, (8,1 * 4} C T,¢(7 * 1) since v and §,; are such that the
current path just moved from T, (7 % 0) to T, s(y * 1) and from 15, (B, 1 # 0) to Tp (8L *+ 1).
Because U(T, s(7)) = G, * H, the v states of T, ;(y * 1) are G, and n C v, it follows that
U(Tys(By1)) = Gy * L as required.

Finally, when 7) redefines the trees by stretching in the verification procedure, it may be
that T,,4(0,z * 1) is stretched. However, if it is stretched, then it is the least node on Ty,
which is stretched, so the stretched value of this node extends the prestretched value. Hence
the state of T3, s(8,1) remains the same. (It is important that we considered the state of
T,s (7 * 1) before it is potentially stretched. T, s( * 1) may be the least node of T, s which is

changed by stretching, in which case, U(7}, s(v+1)) has all low states after it is redefined.) O

A similar argument proves the same statement in the case when 7 is challenged low by a
strategy 7 which is acting in Subcase A(ii) of a high challenge.

Lemma 5.18. Assume 1 is challenged low at stage s by a strategy i) which is acting in Subcase
A(ii) of a high challenge. Then U(Ty s(Bn,r)) = Gy * L.

Lemma 5.19. Assume that i is low challenged by 7 at stage s. Unless n is initialized, we
have the following properties.

1. At least until n meets its low challenge, T, s(By,1) remains unchanged af future n stages.
T.s (B % 1) may be stretched at stage s, but then remains unchanged and on the current
path at future n stages.

2. FEither n takes n * N at every future n stage or n eventually meets the low challenge or
N finds a new high split using a number from X,.

Proof. Property 2 follows immediately by inspecting the action of a low challenged strategy.
We show Property 1. By Lemmas 5.17 and 5.18, U(T}, s(B,,.)) = Gy, * L. By the definition
of 3,1, the current path just moved to T}, s(8y, 1, * 1) and this node may have been stretched.
Consider which strategies could change T, s(8y r * 1) or move the current path below this
node without initializing . Obviously nothing to the left of 7 can cause these changes and
because all strategies to the right of n are initialized by # when # is challenged, they work
higher on the trees. The only strategies v with n C v which are eligible to act before 77 meets
its challenge satisfy nn* N C v. Since n* L C %, these strategies are initialized by 7 at stage
s and work higher on the trees.

Consider a strategy v C 5. If v is a P strategy, then it initializes all lower priority strategies
including n when it moves the current path. If v is an R strategy and v+ L Cnor v+ N C 1,
then v cannot find high splits below T, (3, 1)} or move the current path without initializing n.
If v« H C 5, then T, s(3, 1) is already v high splitting since U(Ts(By,1)) = Gp* L. Therefore,
any new high splits would be above this node. Furthermore, v is challenged high by 7} at stage s
so if it moves the current path, it does so from T}, s(8, 5 *0) to T,,s(8., i *1). Because vxH C 7,
T,.s(By 5r) was stretched at stage s and so 1 5(8y,%1) € Tbs(By,1). Therefore, any movement
of the path caused by v will not effect T, (8, * 1). This establishes Property 1. O
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We define the true path in the tree of strategies as usual: an R, or P, strategy n is on the
true path if and only if n is the leftmost strategy acting for R, or P, which is eligible to act
infinitely often. We next show that various properties hold of strategies on the true path and
that the true path is infinite.

Lemma 5.20. Assume that n is on the true path.
1. n is initialized only finitely often.

2. If n is never initialized after stage t, then for all px L Cn, p meets all low challenges
issued after t and for all ux H Cn, u meets all high challenges issued after .

8. p, and o, are eventually permanently defined. Furthermore, if they are permanently
defined at stage s, then Ty o(an) (if 1 is an R strategy) or Ty o(a) (if 1 s a P strategy)
has reached a limit and is on the current path at all future stages. Therefore, T, o(\)
reaches its limit af stage s.

4. n has a successor on the true path.

Proof. We proceed by induction on the length of n. Let s be an 7 stage such that no strategy
1 C 7 is initialized after s, both p, and «, are permanently defined before stage s and no
strategy to the left of n in the tree of strategies is eligible to act after s.

To prove Property 1, we examine how strategies v C n could end a stage after s and
initialize n. If v C 7 is a P strategy, then v only ends a stage and initializes lower priority
strategies when it acts in Case 1 or Case 2 or calls a verification procedure in Case 3. Since
p, and «, are permanently defined by stage s, v does not act in either Case 1 or 2 after stage
s. Since s is an 7 stage, v cannot be in the middle of a verification procedure at stage s (by
Lemma 5.7). Suppose 7 calls a verification procedure after stage s. This means v has not yet
reached Case 4 of the P action at stage s, so v* W C 7. Applying Property 2 of Lemma 5.20
inductively to v and using the fact that v is not initialized after stage s, we conclude from
Lemma 5.15 that this verification procedure eventually ends and v acts in Case 4 of the P
action. After this stage, v takes outcome v x S contradicting the fact that n is on the true
path. Therefore, v does not initialize n after stage s.

If v C nis an R strategy, then v only ends a stage and initializes lower priority strategies
when it acts in Case 1 or Case 2 or Subcases A{il) or B of the high challenge R action.
As above, v does not act in Case 1 or Case 2 after stage s. When v acts in Subcase A(ii)
{and later in Subcase B) of a high challenge, it initializes all strategies of lower priority than
v x L {including v * L). Therefore, if v * H C 7, then # is not initialized by v after stage
5. Otherwise, suppose v * L. € n or v * N C 7 and consider what happens when v acts in
one of these subcases. Suppose v acts in Subcase A(ii) after stage s. v initializes n7 and ends
the stage. Applying Property 2 of Lemma 5.20 inductively to v and using the fact that v
is not initialized after s, we conclude from Lemma 5.16 that v either takes outcome v %+ N
at all future stages (and hence does not initialize 1 again) or v eventually calls a (finitary)
verification procedure in Subcase B and wins the high challenge. However, in the latter case,
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v takes outcome v * H which moves the path in the tree of strategies to the left of n after
stage s contrary to our assumption. Therefore, after stage s, v initializes 1 at most once.
This completes the proof of Property 1.

We show Property 2 by induction on g, Assume that g« L C 5. We inductively apply
Property 2 in Lemma 5.20 together with Property 2 in Lemma 5.19 to g. If p is challenged
low after stage s, then either u eventually meets this challenge or at all future u stages p takes
outcome u * N. Because there cannot be a link jumping over p* L while u is low challenged,
the latter situation contradicts the fact that 7 is on the true path.

Assume that @ * H C n and u is challenged high after stage s. We inductively apply
Property 2 of Lemma 5.20 together with Lemma 5.16 to p. If u fails to meet the high
challenge, then either p never finds a potential high split in Subcase A or it eventually acts
in Subcase A(ii). If 4 eventually acts in Subcase A(ii} but does not meet the high challenge,
then u remains high challenged forever and takes outcome e N at every future u stage. Since
there are no links jumping over p * H while g is high challenged, this contradicts the fact
that 7 is on the true path. If x never finds a potential high split in Subcase A, then at every
future u stage either u takes outcome px L (if 4 is not also low challenged) or x acts as in the
low challenge case. If y acts in the low challenge case, it cannot find a new high split (since
otherwise it would have found it when it looked in Subcase A in the high challenge action)
. 80 it either takes outcome p* L or w+ N. Since it is impossible for x to take outcome px H
in this situation and since there are no links jumping over % H when p is high challenged,
this contradicts the fact that # is on the true path. This completes the proof of Property 2.

To see Property 3, notice that p, is permanently defined at the first n stage after which 5
is never initialized again. 1 now begins to look for a node a of length p, such that Tpw 4(c) (if
n is an R strategy) or Ty () (if # is a P strategy) is on the current path and has state G,,.
Because p,, is defined to be large, this node starts out with all low states. If &G, contains all
low states, we pick a;, at the next 7 stage. Otherwise, GG, has at least one high state, so n ends
the stage and tries again at each subsequent n stage. Fach strategy v such that v = H C 7
finds a new high split along the current path each time it takes outcome v * . Therefore,
each time 7 is eligible to act, the state of some node on the current path has increased. Since
7 is eligible to act infinitely often and p, does not change, 7 must eventually see a suitable
node on the current path with state &, and define . The rest of Property 3 follows by
Lemmas 5.13 and 5.14. This completes the proof of Property 3.

Finally, we verify Property 4. Assume s is an 7 stage such that # has permanently defined
Py and ay, by stage s. If 7 is a P strategy, then 7 defines z, permanently at the same stage as
it defines cv,. Either z, eventually enters W, after stage s or it does not. If z; never enters
W, then 1 takes outcome 7 «+ W at every future 1 stage, so 7% W is on the true path. If x,
eventually enters W), then 7 calls a verification procedure at the next n stage. By Lemma
5.15 and Property 2 of Lemma 5.20, this verification procedure is finite. When it ends, 7 acts
in Case 4 of the P strategy and takes outcome 7% 5. At every future 7 stage, n takes outcome
n#* .8, s0o %5 is on the true path.

Assume that n is an R strategy. After stage s, n never acts in Cases 1 or 2 for an R
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strategy. Therefore, the only times that 7 ends a stage after s is when 7 acts in Subcase A(ii)
or in a verification procedure called by Subcase B of a high challenge. We split into three
cases depending on whether 7 is challenged infinitely often or finitely often and whether it
meets the last high challenge (if it is challenged high only finitely often).

First, suppose that there is a stage t > s after which 7 is never challenged high and that
7 has met its last high challenge by stage t. Because the only times that n can end the stage
are during a high challenge, n will take one of its three outcomes at every 7 stage after ¢.
Because 7 is eligible to act infinitely often, at least one of its successors must be eligible to
act infinitely often. The leftmost such outcome is on the true path.

Second, suppose that n is challenged high infinitely often. Let ¢; < #5 < -+ denote the
stages after s at which some strategy issues a high challenge to n. Because n can be high
challenged by at most one strategy at a time, 17 must either meet the high challenge issued
at £; before ;.1 or the challenge issued at #; must be removed by initialization before stage
tir1. Let i be the strategy that issues the high challenge at stage t;. We know n* H C 1} and
no strategy v with n« H C v is eligible to act until n meets the challenge or it is removed
by initialization. Because of these facts and because n* H is the left most outcome of 7, the
only strategies that could remove the challenge by initialization are those of higher priority
than 7.

Suppose v has higher priority than n and v initializes %. If v is to the left of nor v C n is
a P strategy, then v also initializes 7 contrary to assumption. If v C 7 is an R strategy, then
(since v doesn’t act in Cases 1 or 2 after stage s), v acts in either Subcase A(ii) or B of a
high challenge and initializes all strategies of lower priority than v+ L. Therefore, 7} has lower
priority than v * L. Because v C n C 7, we must have either v+ L C 7 or v % N C 7). Putting
together the facts that v C 5, n* H C 7 and either v % L C /) or v* N C 7 implies that either
v L Cnorwvx N Crn Therefore, when v initializes 7, it also initializes 1 contrary to our
assumption. Hence, the challenge issued by 7} cannot be removed by initialization after stage
5, so n must meet each of these high challenges. When n meets a high challenge, it takes
outcome 17 * H. Therefore, n * H is eligible to act infinitely often. Since 1 H is the leftmost
outcome of 7, it must be on the true path.

Third, suppose that 7 is only challenged high finitely often after s but it fails to meet the
last high challenge. Let ¢ > s be the stage at which this last high challenge is issued. We split
into cases depending on how 7 acts while trying (and failing) to meet this high challenge. 7
either acts in Subcase A at every future 7 stage (and fails to find a potential high split) or 7
eventually acts in Subcase A(ii). (n cannot act in Subcase A(i) since it would win the high
challenge in that subcase.} If n ever acts in Subcase A(ii), then by Lemma 5.16, 7 must either
win the high challenge or take outcome 7« N at every future 7 stage. Since 7 does not win
the challenge, n %« N is on the true path.

Suppose 7 never finds a potential high split in Subcase A of the high challenge. At every
7 stage after ¢, n either takes outcome 1 * L or acts as a low challenged strategy (if # is
also low challenged). The only possible outcomes for a low challenged strategy are L and N.
Therefore, at every future 7 stage, n either takes outcome 7 L or n* N, so one of these must
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be on the true path. U
Lemma 5.21. A =lim, 4, is a A) set.

Proof. Tet ng € m C 1y C --- be the sequence of R strategies on the true path and let
Sg < 51 < 83 < --- be a sequence of stages such that for all &, s is an 7, stage by which o,
has been permanently defined. By Lemma 5.20, Ty, 5, (M) = Ty 5, (an, ) has reached its limit
and is contained in the current path at all future stages. Therefore, A is determined up to
the length of this node at stage sy. (I

We know that for an R strategy n on the true path, T, ;(A) reaches a limit. We need to
show that various other nodes also approach limits.

Lemma 5.22. Letn be an R strategy with n* H on the true path. Let t be a stage such that
an is defined permanently by stage t (and hence 1 is not initialized after t). For eny o and
any s > t, if U(Ths(a)) = Gy * H and T, ;(a) becomes high splitting at stage s, then T, s(o)
has reached a limit.

Proof. By Lemma 5.12, T}, ;(c) can only change if it is stretched because the current path is
moved below T, ((a) by a strategy u such that n C u. However, if any such strategy moves
the current path below T, ;(a) at stage v > s and redefines T}, by stretching, then the least
stretched node on Ty, has state G, # L. Since T} ;(«) already has state Gy, * H, it cannot be
changed by stretching. il

Lemma 5.23. Letn be an R strategy on the true path. There is a sequence of strings a; and 7
stages t; indezed by j € w such that ap = X, a4 is either a; 0 or oy %1, T, 1, (o) has reached
its limit denoted by Ty (), U(Tyy, (05)) is either Gy x L or G+ H, Ty s (o) € Ay, and the
current path never moves below T,; (;) after stage t;. (Hence Ty (o) = Ty{oy) € A.) In
addition, the following properties hold.

1. U(T,s(a;)) may change at o later stage s > t;, but it reaches a limit denoted by
U(T,(0y)) which is either Gpx L or Gyx H. Furthermore both successor nodes T, ,(cx; %)
eventually reach limits.

2. If n= H is on the true path, then U(T,(c;)) = Gy = H.

3. If n = L is on the true path, then there is an n such that U(T,(a;)) = G, * L for all
ji>n.

4. If n+ N is on the true path, then there is a stage t such that T, s is defined trivially from
Ty s at all n stages s > t.

Proof. The proof proceeds by induction on 7 and for each fixed n by induction on j. Let £
be a stage such that o, is permanently defined by stage g and such that if n L (or n* N)
is on the frue path, then n * H (respectively n = H and n # L) is never eligible to act after
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stage to. By Lemma 5.20, Ty, 10 (A) = Ty so{cy) © Aps, has reached its limit, U(T5,(A)) = G,
(and may or may not be high [n] splitting), and the current path never moves below this node
after stage ¢y, Therefore, the statement in the main body of the lemma is true when j = 0.
Assume by induction that T, (cy) satisfies the conditions in the main body of the lemma.
‘We need to show that Properties 1-4 hold as well,

Before proving these properties, consider what changes can take place in Ty, ;. after stage ¢;.
No R strategy of higher priority can find a new high splitting at or below T, ;. (a;). Therefore,
these strategies do not cause a change in T}, (c; * ) after stage t;. Consider how the current
path could move below Ty, (o * 1) after stage t; (which must occur if these nodes change
value because of stretching). Let # be a P strategy which initiates a series of challenges (via
a verification procedure) that cause the current path to move below T ;. (o5 * 4) after stage
t;. We split into cases depending on whether ) calls its verification procedure at a stage < i;
or 2 tj.

Assume # calls its verification procedure before stage t;. We further split into cases
depending on the relative positions of 7 and # in the tree of strategies. If n <y, 7}, then since
t; is an n stage, 7} is initialized at the end of stage ¢; and its series of challenges is removed
by initialization. If 7 C n, then n is not eligible to act until the verification procedure is
complete. In this case, since ¢; is an 7 stage, the verification procedure must be complete
by stage t; and hence there are no challenges left to move the path. If n € 7, then all the
challenges issued to strategies v C n in the series initiated by 7 before £; have been met (again
since ¢; is an 7 stage). Therefore, we only need to consider the action of strategies v such
that n C v C 7 after stage ¢; (which we handle in a separate case below).

Finally, assume that # <, 7. In this case, let v be the highest priority strategy currently
challenged in the series of challenges initiated by #. In v is challenged low, then v * L C 7.
Since £; is an 7 stage, we cannot have v L C 7. Therefore, 7 is to the right of v L in the tree
of strategies. If v ever meets its low challenge or finds a new high split using a number from
X, then v will move the path in the tree of strategies to the left of n after stage ¢;, contrary
to our assumption. Therefore, this low challenge is never met or removed by initialization, so
the series of challenges issued by 7 never moves the current path after ¢;. If v is challenged
high, then v * H C #. Again, because t; is an n stage, n must have lower priority than v * L.
Therefore, if v ever moves the path in either Subcase A(ii) or B of the high challenge, it
initializes n after ¢; contrary to assumption.

We now have established that if 7 starts a series of challenges before ¢; that has not
terminated by ¢; and this series of challenges causes the current path to move below 75, (oj*i)
after stage ¢, then some strategy v such that n C v must move the current path. On the
other hand, if # does not start its series of challenges until after ¢; and this series of challenges
moves the current path below Ty, (a; * i) after stage ¢;, then 7 itself moves the current path
below Ty, (a; * i) after #;. The key point is that in either case, if the current path is moved
below Tmtj(aj 1) at a future stage ¢ > t;, then the movement is caused by a strategy v such
that 7 C v and hence the current path is moved on the tree T, ; at this future stage ¢. Because
the current path runs through T, (o;) permanently after stage ¢;, the only places where this

o4



movement can take place are from Ty, ,(cr; % 0) to Ty (@ % 1) or from Tz (o # 1) to T5 (e % 0).
Because the value of Ty;. (o) does not change after stage ¢;, the least nodes which could be
stretched in either of these cases are T ;(a; * 1) (in the first case} and Ty ¢{cy; * 0) (in the
second case). However, in either of these cases, the stretched value of T} .(cy; * i) extends the
prestretched value. Therefore, the state of T;4, (;;) cannot be lowered because of stretching.

Consider Property 1. By the comments in the previous paragraph, the state of T, (a;)
cannot be lowered because of stretching. Therefore, if 7 eventually finds a high split for
Ti;(cy;), then the final state of this node is G, * H and otherwise the final state is Gy * L.
Furthermore, the current path can only move between Ty, :(q; * 0) and Ty (cy; % 1) finitely
many times after ¢;. (Roughly, it can move back and forth between these nodes at most
once for each strategy v which is high challenged at ¢ > ¢; and has f§, 7 defined so that
Thi(ey) = T,4(Bsm).) Therefore, each of the nodes T3, (; * 1) can be changed at most
finitely often because of stretching and at most once by 7 finding a new high splitting after
stage t;. Hence, there is a stage s > ¢; at which these nodes have reached their limits and
the current path does not move again below them. Set a;4; == ¢; % 0 or o; * 1 depending on
which one the current path goes through permanently. Since Lemma 5.23 applies inductively
to the R strategies C 7, the state of T} ;(e;41) must eventually reach G, * L at some later
stage and we set ¢;51 equal to this stage. Notice that the hypotheses for the main body of
Lemma 5.23 are now satisfled for 57 4+ 1.

Comnsider the case when 7 H is on the true path. Because n#* H is eligible to act infinitely
often and each time n* H is eligible to act n finds a new high splitting along the current path,
n must eventually find a high splitting for T;,;,(c;). This establishes Property 2.

Consider the case when 7 * L is on the true path. By our assumption, n never takes
outcome 7 * H after stage t5. Therefore,  never finds a new high split along the current path
after this stage. Therefore, the only high splits which occur in the trees 7, , for s > £, are
the ones that are already present at stage tp. This fact implies Property 3.

Consider the case when #* IV is on the true path. Because n* IV is the rightmost outcome
of n, we are never to the left of 77+ N in the tree of strategies after stage ¢y. Therefore, n must
take outcome 7 * N at every future n stage. Property 4 follows from the fact that whenever
n takes outcome 1 x IV, it defines 17, ; trivially from Ty . C

Lemma 5.24. For all z, T*(x) = 1 if and only if = z, for some P strategy x which reaches
Case 4 of its action and hence x € B.

Proof. The only place where computations of the form I'"(z) = 1 are defined is in Case 4 of
the action of a P strategy. Therefore, if I'4(z) = 1, then z = =z, for some P strategy 1 which
acts in Case 4.

For the other direction, assume that n is a P strategy which acts in Case 4 with z, at
stage s. To get to Case 4,  must have called a verification procedure at some stage ¢t < s
which finished at stage s. When the verification procedure is called, the only I' definition
for x, is TTtln0(g, ) = 0. 7 sets og = o, when it calls the verification procedure, so this
procedure freezes T} .(cy, * 0). Because the verification procedure eventually finishes, all of
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the challenges issued by this procedure must be met {and all the challenges they issue must
be met, etc.) so Lemma 5.15 applies. Therefore, at stage s, all strings «y such that I7(z,) =0
are frozen by the verification procedure. 7 forbids all of these frozen strings, so the current
path will never again pass through any of these strings. Furthermore, it picks a large value
n and defines I''(z,} = 1 for all strings -y of length n which have not been forbidden by 7.
Whatever A turns out to be, it must contain one of these strings and therefore I' (z5) =1as
required. (N

Lemma 5.25. Let  be a P strategy which initiates a series of challenges by calling a verifi-
cation procedure. If v is an R strateqy which is challenged high in this series of challenges af
stage s and v is passed x, and By u, then T, = z, and TTw=Pus0) (g, ) = 0.

Proof. We proceed by induction on the depth in the series of challenges. (That is, a strategy
challenged high by 7 is challenged at depth 1. If & is challenged high at depth n by n and v
is challenged high by 2, then v is challenged at depth n - 1.)

The base case is when v is challenged high by the n*® cycle in the verification procedure
called by n. In this case, (following the notation of the verification procedure) 7 defines
[Tenstnlont1¥0} (3 ) = () and passes z, = z, and B, to v. Because B, x is the least node which
is stretched on 7),;, in this cycle, we have Ty, (Bo,g * 0) = T}, 1. (0n41 * 0). Hence the result
holds for this high challenge.

For the induction case, assume that 7 has been high challenged in the series of challenges
(say at stage u) and # challenges v high. By induction, z, = 5, and ['pw(@m30(z,) = 0. Let
sg be the next © stage after it is challenged high. By Lemma 5.16, T} (8o g %0) C T} 50 (85,5%0),
50 [Tous0Bo.%0) () = 0. In order to challenge v high, ¥ must act in Subcase A(ii) at a stage
81 > 8g. When ¥ challenges v high, it moves the current path to Tp 5, (85, * 1), stretches the
trees and defines ['7oe1 (o, m+1+0) (zs) = 0. It sets z, = zp = x, and passes f, y to v. Because
B..ur is the least node on T, 5, which is stretched, we have T, 5, (B * 0) = Tp5,(Bo,r * 1 % 0).
Hence the result holds for this high challenge.

If all the challenges issued by & at s; are met, then & begins to act in Subcase B of the high
challenge. Suppose I calls a verification procedure at stage s3. A similar argument shows
that the high challenges issued by each of the cycles of the verification procedure have the
required properties. Because a high challenged strategy 2 only issues more high challenges
through Subcase A(ii) and B, this step completes the proof. O

Lemma 5.26. For all z, if z € B, then I'*(z) = 0.

Proof. Because Case 4 of the P action is the only place that elements are enumerated into
B, we have that z € B if and only if z = z, for a P strategy » which reaches Case 4 of the P
action. Therefore, if z € B, either z is never equal to z, for a P strategy n or z is equal to
z, for some P strategy n but 7 is initialized before reaching Case 4 or z is permanently equal
to z, for a P strategy n but n never reaches Case 4.

First, suppose that  is never equal to z,. At the end of stage x, we define [?(z) = 0.
Second, suppose & = z, but 7 is initialized at stage s after z, = z is defined. Without loss of
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generality, assume s > z. At the end of stage s, 1 is initialized so z is not longer of the form
z,. Therefore, we define I'%(z) = 0. It is clear that in either of these cases, I'*(z) = 0.

Third, suppose that z, is defined to be z at stage s, 1 is never initialized after stage s
and 7 never reaches Case 4. In this case, o, is permanently defined at stage s and we set
[Trs(@n9)(3) = 0. By Lemma 5.10, Ty s(0 * 0) is on the current path. We split into two
subcases. For the first subcase, suppose 7 never calls a verification procedure. By Lemma
5.14, Ty s(cv, % 0) remains on the current path forever, so I'4(z) = 0.

For the other subcase, suppose that n does call a verification procedure with oy = a, in
Case 3 of the P action. Because 7 does not reach Case 4, this verification procedure does not
finish but also does not end because of initialization. Therefore, some challenge in the series
of challenges initiated by 7 is never met. We need to examine which strategies can move the
current path below Ty s(ca, * 0) and check that each time the current path is moved by a
strategy challenged in this series of challenges, the strategy moving the current path makes
new [’ definition for z,, = z which remains on the current path unless another strategy which
is also challenged in the series of challenges initiated by n moves the current path later. The
last such strategy to move the current path will put up a I’ definition for z, = z using an
oracle string which remains on the current path forever and hence is an initial segment of A.

When 7 calls the verification procedure in Step 3 of a P action at stage £ (to follow
the notation of the verification procedure) with the witness z,, no strategy to the left of n
is ever eligible to act again since we assume this verification procedure is not removed by
initialization. By Lemma 5.7, no strategy u such that n C u is eligible to act after ¢, since we
assume this procedure is never completed. Also, 7 initializes all strategies of lower priority,
so they work higher on the trees.

If 4w C 7 is a P strategy, then p cannot move the current path without initializing n
contrary to our assumption. An R strategy u with u with u+ L C 9 or p* N C n does not
move the current path, so we are left to consider R strategies g with p+ H Cn.

If u+ H C 7, then pu could move the current path in Subcase A(ii} or B of a high challenge
issued in the series of challenges initiated by 7. In this case, when u moves the current path,
it initializes all strategies of lower priority than u * L (including g * L). Therefore, these
strategies are again forced to work higher on the tree than the new I' definitions set up by u
(which we will examine below) and so they cannot move the path below the oracle string used
by i in its new I" definition. Finally, notice that by Lemma. 5.25, x, = x, so the I' definitions
made by u are for z,.

We split the remainder of the proof into two cases which correspond to the two ways the
current path can be moved below a string used as a I' definition on z,. Because one of the
cycles in the verification procedure called by 1 does not end, we assume it is the nt cycle.
(We follow the notation of the verification procedure and the notation used in Lemma 5.15.
In particular, we assume this n'® cycle starts at stage ¢, by following a link from p,—; and
that it defines 4, and continues the verification procedure.) The first case is when 7 moves
the current path in the n'® cycle but none of the strategies it challenges high move the current
path after stage t,. The second case is when at least one of the high challenged strategies
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such that v % H C u, does move the current path in Subcase A(ii) or B of the high challenge.

First, suppose that in the n®® cycle of the verification procedure called by 7, none
of the R strategies challenged high move the current path. For the n'® cycle, n defines
[intn (@n+130) (1) = 0 and initializes all lower priority strategies. We claim that the current
path continues to go through T, ;. (0n41 *0) at all future stages (and hence I'*(z,) = 0). The
strategies to the left of 17 are never able to act after stage t, (since they would initialize 1), the
strategies v such that v C p, do not move the current path by assumption and the strategies
v such that p, * N C v or v is to the right of p, in the tree of strategies are initialized at stage
t, by 1 and hence work higher on the trees than T, ;, (0nt1 * 0). Furthermore, because the
nt cycle for n never ends, one of the strategies v C u, never meets its low or high challenge.
Therefore, the only strategies eligible to act after stage t,, are to the right of u,, satisfy v C u,
or satisfy i, * N C v (since if p, ever took outcome un, * L, it would follow the link back to %
ending the n** cycle). None of these strategies move the current path below Ty, ¢, (0n41 * 0),
so it remains on the current path forever.

Second, suppose that some strategy v which is high challenged in the series of challenges
initiated by n does move the current path. By Lemma 5.25, when v is challenged high at
stage t > &, then [0 (z,) = 0 and z, = z,. (Remember that v is challenged high in
the series of challenges initiated by 7, so it may not have been directly challenged high by 7.)
Whenever v acts to move the current path, it puts up a new I' definition for z,.

In particular, if v acts in Subcase A(ii) at stage s; > ¢, it defines [Tws1(Buri*x0) (5} =
and issues high challenges to p such that u+ H C v. If one of these high challenged strategies
i moves the current path, it takes over the I' definition on z, = z, = z,. If we return to v at
stage sy > 51, then by Lemma 5.16, T, 5, (8o g ¥ 1%0) C T}, 5, (B, % 1% 0), Thy o (B # 1 % 0) is
on the current path and it remains on the current path unless v calls a verification procedure
in Subcase B of the high challenge. Therefore, if v never calls this verification procedure, the
computation TTwe2(Bvars1#0) (32 Y = 0 implies that ['*(z,) = 0 as required.

Suppose v does call a verification procedure in Subcase B of its high challenge. This
verification procedure takes over the I' definitions on z,. Either some cycle of this verification
procedure doesn’t finish or the verification procedure does finish. In the former case, suppose
the n*! cycle is started but not finished. If none of the strategies challenged high by this cycle
move the current path, then the argument given above in the similar case for n tells us that
the I" definition made by v for z, in the n** cycle implies ['4(z,) = I')(z,) = 0 as required. If
one of the strategies challenged high by the n' cycle in v’s verification procedure does move
the current path, then it takes over the I definition on 2, (and we repeat this argument for
that strategy).

Finally, consider the latter case in the previous paragraph: the verification procedure
called by v ends and v meets its high challenge at stage s3 > S2. In this case, the current path
is moved to pass through T, 5, (8,7 *0). By Lemma 5.16, T,,4(0y,1 % 0) € T,,.5, (80, +0) (recall
that ¢ was the stage at which v was challenged high), so we have [Twea{fui*0 (g, ) = 0. The
string T}, ¢,(By. i * 0) remains on the current path unless another strategy moves the current
path below this node. However, v takes outcome v+ H at stage s, so it initializes all strategies

o8



to the right of v #+ H and none of these strategies can move the current path below this node.
If v is the last strategy which is high challenged in the series of challenges initiated by # and
which moves the current path, then T, o, (6, g *0) remains on the current path forever and we
have ['*(z,) = 0 as required. Otherwise, the next strategy which is in this series and which
moves the current path takes over the I' definition on z,. The last such strategy to move the
current path leaves a I’ definition on z, for which the oracle string remains on the current
path forever. O

We get the following result as an immediate consequence of Lemmas 5.24 and 5.26.
Lemma 5.27. ['4 = B, so B <y A.
Lemma 5.28. All P requirements are met, so B is a noncomputable c.e. set.

Proof. Fix a P requirement and let 1 be the strategy on the true path for this requirement.
Let z,, be the final witness for 7 and assume it is defined by stage s. If z,, € W), then 7 takes
outcome 1 W at every 7 stage after s and 1 never acts in Step 4 of the P action. Therefore,
T, € B and P is won.

If z, € W, then there is an 7 stage after s at which 7 calls the verification procedure in
Step 3. This procedure ends after finitely many 1 stages so 7 eventually reaches Step 4 and
enumerates I, into 5 winning P. ([l

Lemma 5.29. If n* N is on the true path, then I'* is not total.

Proof. Fix an 7 stage s such that 1 takes outcome 1 * N at every 7 stage after s. Because i
takes outcome 7 * N at stage s, either n is acting in Subcase B of a high challenge or 7 is low
challenged. We consider each of these possibilities separately.

Assume that 7 has been high challenged by # before stage s and that n acts in Subcase B
of the high challenge for the first time at stage s. At the previous 7 stage ¢ < s, 7 must have
acted in Subcase A(ii) of the high challenge and defined the parameter w,. As in the proof
of Lemma 5.16, T;, o(Bym * 1 *0) C A, , and the length of this node is longer than the use of
[17] on w,. The current path is not moved below Ty, (g, * 1 % 0) unless 7 moves it because it
sees [n]TmetBa*1¥0) (14} converge. However, if 1 sees this computation converge, it moves the
current path and takes outcome 7 * H, contrary to our assumption. Therefore, n never sees
this computation converge and the current path never moves below Ty, ;(8y * 1 % 0). Because
the use of [1] on w, is less than the length of T, s(8ym * 1 # 0) and this node remains forever
on the current path, we have that [1]4(w,) diverges and hence [5]* is not total.

Assume that n is low challenged by # at stage ¢ < s and s is the first n stage after i.
By Lemma 5.19 (and because 1 never meets this low challenge), T3 s(83p,r * 1) remains on
the current path forever. By Lemma 5.23, there is a stage u > s and a string - such that
Bor * 1 C 7, Tyu(7y) has reached its limit, U(Tyu(y)) = Gy % L, Thu(y) € A and the length
of Ty, (7) is longer than the [1] use of any number in X,. If [y]™+")(z) converges for each
z € X, then eventually n sees these computations and either meets its low challenge (taking
outcome 7 * L) or finds a new high split (taking outcome n % H). Either option violates
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our assumptions and hence there must be at least one number z € X, for which [T (z)
diverges. Because T, ,(v) C A and the length of T}, () is longer than the [r] use of each
z € X,, there must be at least one number z € X, for which [7]4(z) diverges. Therefore, [n]4
is not total. O

Lemma 5.30. Let 7 be an R strategy such that nx L is on the true path. If [n]* is total, then
[?7]‘4 15 computable.

Proof. Let s be a stage such that o, is permanently defined by s and 7 never takes outcome
nx H after s. By Lemma 5.20 (since n* L is never initialized after s), n meets all low challenges
issued after stage s. Furthermore, if p % L C 1, then p meets all low challenges after stage s
and if u* H C 7, then & meets all high challenges after s.

To calculate [7]*(z), let o > s be an 5 stage and let = be a string such that n takes

outcome n* L at to, Th 40 (Vo) € Antgy U{Tnue(0)) = Gp* L and [n]ﬁ"‘t"(%)(m) converges. (Such

to and 79 must exist by Lemma 5.23 since []* is total.) We claim that []4(z) = [n]f;”‘*“(""’) (z).

To prove the claim, we need to examine how the current path could be moved below
Tyt0(70). Suppose p moves the current path below this node after stage ¢, We cannot have
1 <p, n {since these do not act after stage s), n <z ¢ or n* N C u (since these strategies are
initialized at ¢9). Suppose p C 7. u cannot be a P strategy, since it would initialize n when it
moved the path. If i is an R strategy, then it can only move the current path when it is high
challenged. If px L C nnor ux N C 5, then p would initialize # when it moved the current
path. Therefore, assume p* H C 7. By Lemma 5.2, u is not high challenged when # acts
at stage to. Therefore, it must become high challenged later before moving the current path.
However, if vy, is such that T (yu) = Th0(Y0), then T4 (v,) is already p high splitting.
Therefore, any movement of the current path by u in a high challenge would be above this
node. It follows that no strategy g ¢ n moves the current path below this node after stage
1o.

We also cannot have u = 7 since n can only be high challenged by strategies extending
7 * H and no such strategy is eligible to act after stage s. Therefore, the only strategies u
which could move the current path below T, (vo) after stage o satisfy n+ L C p.

Let u be the first strategy which causes such a movement in the current path below
Toto(70) after stage to and let uy > ¢y be the stage at which it moves the current path. To be
specific with our notation, we assume that u is a P strategy which is just calling a verification
procedure. However, similar arguments handle the cases when p is an R strategy acting
in Subcase A(ii) or B of a high challenge and when p is either a P or R strategy which is
returning to a previously called verification procedure.

In this situation, & moves the current path from Ty, (e, % 0) to Ty 4, (@, * 1) and defines
By to be the string such that the current path moved from T, ,, (8,1 % 0) to T, (Bn L * 1).
Because this movement is below Ty, 4, (7o), we have Ty,u, (By.r %0) C Ty (o). If [] T Brt) ()
converges, then we must have [n]Tru1(n)(z) = [n]T(1)(z) and hence this movement
of the current path does not effect our computation procedure. Therefore, assume that
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[g]Trwr Bnr)(g) diverges. In this case, z € X, so u challenges 1 low and any link which
is placed by p is from a strategy v such that n C v.

By the comments in the first paragraph of this proof, the challenges issued by u to higher
priority strategies than 1 are eventually met and n eventually meets the low challenge. Let
t; > u, be the stage at which n meets this low challenge. At this stage,  has found a string

y1 such that Tpe (71) € Agty, U(Tpu (1)) = G+ L and [n]z”'“(m(:c) converges and is equal

to [n]f;"“"h{’) (z). We can now repeat this argument. Let uy be the first strategy which moves

the current path below T4 (11) at some stage ug > t1. g must satisfy n* L C up. Just as
above, there would be a stage 5 > ¢; and a string o such that T4, (72) is on the new current

path Ay, U(Th4(12)) = Gy * L and [n]f;”""" (v2) (z) converges and is equal to [n]i”'“(fn)(m) =

[n]f;”‘“’ ('m}(:c). Because [n] is a wit procedure and because the current path settles down on

longer and longer initial segments, these path movements below the use of [5] on  can only
happen finitely often. Therefore, by induction we get that [n];‘r;”“"{%) (z) = [7)4(z). O

Lemma 5.31. Let n be an R strategy such that n + H is on the true path. If [n]4

then A <uu [7)?.

is total,

Proof. Fix n such that n* H is on the true path and [n]* is total. Let s, be a stage such that
Ty, () has reached its final value (and hence 7 is never initialized after s,) and U(T;,,(A)) =
G, * H. We have T, 5, (A} C Ays,. We define a Turing procedure A, for any oracle X, show
that if X = [5)4, then AY = A, and finally show that A, has computably bounded use for
any oracle and hence is a wtt procedure.

Fix any oracle set X. We define Aff by defining a (possibly finite} sequence of strings
A=o09 C oy C--- and stages s, = tp < t; < --- using oracle questions answered by X. At
each stage ¢; we will have the following properties: T, 4, (c:) C Apy, and U(Ty 4 (o)) = G+ H
(and hence Tj,;,(0;) has reached its final value by Lemma 5.22). The comments in the first
paragraph explain why these properties hold for oy and #;. Once ¢; and ¢; are calculated, let
l; = the length of T, (0:) and set AX [ 1; = Ty, (o).

Assume we have used X to calculate o; and t;. Because U(T,(0:)) = Gy x H, there
is a splitting witness z; such that [n]?j"*’(“"*ﬁ) (z;) and [n]z”’ti(a"*l)(mi) converge and are un-

equal. Check which computation agrees with X(z;) and set o;41 = o3 0 or o; * 1 s0
that [n]tTi""i(g“l)(a:i) = X(z;). Wait for a stage t;41 such that T4 (0i41) C Apy,, and
U(Ty i (i) = Gy * H. If we never see such a stage, then Aff diverges on all in-

puts > l;. If we do see such a stage, then let I,y = the length of T, (0:i41) and set
AY Vg1 = Ty, (0341)- This completes the description of A,
Next, we check that if X = [7]*, then AJ = A. To prove this fact, we show by induction

on i that o; exists and T},;,{0;) € A. When i = 0, this is clear. Assume that o; is defined and

T,:.(0i) C A. Let z; be a number such that [)74*0)(z;) and [n]z"'t"(a"*l) (z;) converge and

are unequal. By Lemma 5.22 and the proof of Lemma 5.23, we know that T, +, (o;) has reached
its final value. Furthermore, we know that the values of T}, (¢;%0) and T, (¢;*1) can change
at most finitely often after stage ¢;, that these changes are due to stretching, and that the
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stretched values of these nodes always extended their prestretched values. Therefore, one of
the strings T} 4, (0; % 0) or Ty, (03 1) has to be an initial segment of A and hence o1 must be
defined such that Ty, (0i+1) © A. Eventually, the current path has to run through T, (0:41)
(although this node may have been stretched by the time it does) and because n* H is on the
true path, there must be a stage ;11 > &; such that Ty 4, (0i41) € Tppa (0i41) € Apye., and
U(Ty 01 (0341)) = Gy * H. Therefore, we eventually define ¢;y, and have 7,4, (0341) € A as
required.

Finally, we show that the use of A, is computably bounded for all oracles and hence it
is a wtt procedure. To bound the use of this procedure on input m, calculate as follows.
Wait for a stage t > sy such that ¢ > m and there is a string o such that T:(0) G An,,
U(T,:(0)) = Gy * H, T,4(0) becomes high splitting at ¢ and the length of T;,(c) is greater
than m. (Because []# is total such a pair ¢ and ¢ must exist.) Let k& be the maximum of all
[7} high splitting witnesses seen by 1 during the course of the construction up to stage ¢. We
claim that the use of A, on input m for any oracle X is bounded by .

To prove our claim, let X be any oracle and let o; and ¢; be the last pair defined by the
procedure AnX by the stage ¢ indicated above for use calculation on m. (Because op and fg are
defined at stage sy and £ > sy, ¢ = 0 is defined.) Let z; be the splitting witness for this pair
of strings, let o;41 be either o; # 0 or o; * 1 depending on which gives the computation that
agrees with X (z;) and let [; denote the length of Tp s, (0y). Because the string o; is defined
by stage , we know k > ;. Furthermore, all the splitting witnesses which have been used to
determine o; are < k. If m < [;, then Af has already converged on m and has use < & since
the splitting witnesses (which are the only values of X which we consult) are all < £.

Assume m > [;. First, we claim that at stage t, U(T},:(0i+1)) = Gp*L. This follows because
we only look for high splits along the current path. Therefore, if U(T,,(0i41)) = Gp* H, then
at some stage u between f; and ¢, we had Tn,u(o-i_}_l) C A, and it became high splitting.
However, in this case, t;11 = u < ¢, contradicting the fact that £;;, is not yet defined at stage
t.

Second, we claim that at stage ¢, T, ¢(0i41) is not on the current path. This follows because
at stage t, we just found that a new node T;,;{c) on the current path which is high splitting.
Furthermore, T;,;{c) has length > m. Hence T;;(c) is not equal to T, 4(0;) (which has length
< m), so t > t;. Thus, if T}, ;(0;41) were along the current path as well, then it would be high
splitting and we would have defined £,,, by stage ¢.

Therefore, we know that at stage £, T, ¢(0s4+1) is not on the current path and it has state
G, * L. There are now two possibilities. First, it is possible that there is never a stage t;4.1.
In this case, /_\nX never consults the oracle again (and so has use bounded by k) and diverges
on m. Second, it is possible that there is a stage t;.1 > ¢. In this case, some P or R strategy
must move the current path so that it passes through 7} ,(0i41) at a stage u > t. Because ¢
is an i stage at which n takes outcome 7 * H, all strategies to the right of 7 H in the tree of
strategies are initialized at ¢t and work higher on the trees. By Lemma 5.2, if v * H C 7, then
v is not high challenged at stage ¢. Therefore, the first strategy to move the current path
so that it passes through T ;(o;y1) must satisfy n + H C p. Let u > £ be the stage when p

62



moves the current path. Because n+ H C p, U(Tyu(0y)) = Gy x H and Ty, u(0i41) = Gy * L
(before it is stretched), T}, (0341) is stretched to have long length when p moves the current
path. In particular, T, ,(oy41) has length longer than m. Therefore, when T, ,(0i41) later
reaches state G, * H and ;4 is defined, we set ;11 = the length of Ty 4., (0i41), 50 iy > m
and AX [ liyy = Ty, (0341). Furthermore, we know that Ty, (0; * 0) extends Ty, (03 * 0)
and Th;.., (; # 1) extends Ty, (o3 * 1). Therefore, z; < k is still a splitting witness for these
two nodes. Hence, we do not need any more of the oracle X to calculate AWX I l;y1. This
completes the proof that the use is bounded by £. a
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