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ABSTRACT. As a natural example of a 1-random real, Chaitin proposed the
halting probability ©Q of a universal prefix-free machine. We can relativize
this example by considering a universal prefix-free oracle machine U. Let
(1 be the halting probability of U4; this gives a natural uniform way of
producing an A-random real for every A € 2*. It is this operator which is
our primary object of study. We can draw an analogy between the jump op-
erator from computability theory and this Omega operator. But unlike the
jump, which is invariant (up to computable permutation) under the choice
of an effective enumeration of the partial computable functions, 0 can be
vastly different for different choices of U. Even for a fixed U, there are ora-
cles A =" B such that Qf and Q8 are 1-random relative to each other. We
prove this and many other interesting properties of Omega operators. We
investigate these operators from the perspective of analysis, computability
theory, and of course, algorithmic randomness.

1. INTRODUCTION

We begin with a brief review of algorithmic randomness, focusing on Chaitin’s
halting probability £2. For a more complete introduction, see Li and Vitanyi
[15] or the upcoming monograph of Downey and Hirschfeldt [4].

A partial computable function M : 2<% — 2<% ig called a prefiz-free machine
if whenever o, 7 € domain(M), then o is not a proper prefix of 7. There is a
universal prefix-free machine, i.e., a prefix-free machine U such that for each
prefix-free machine M there is a string 7 € 2<% for which (Vo} U(7ro) = M (o)
(or both U(ro) and M{o) diverge). We say that U simulates M by the prefix
7. The importance of prefix-free machines to algorithmic information theory
is well established, originating independently in the seminal work of Levin [14]
and Chaitin [2]. They modified Kolmogorov complexity to capture effective
randomness for real numbers (an earlier approach is described in Levin [13]).
For any prefix-free machine M, define Kpr{o) = min{|7| | M(7) = ¢}. I U is
universal, then for each partial computable prefix-free M, there is a constant ¢ €
w such that (Vo) Ky(o) < Kp(o)+c. We write K for Ky and call this prefiz-
free Kolmogorov complezity. Note that, up to a constant, K is independent of
the choice of U. We say that A € 2 is 1-random iff (¥n) K(A [ n) > n—O(1).
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Schnorr observed that this definition of randomness is equivalent to an earlier
definition given by Martin-Lof [16] (see the next section).

Following Chaitin, if M: 2<% — 2<% ig a prefix-free machine, we consider
the probability Qs that M halts on {(a prefix of) an infinite input string.
Formally, Qar = > M{o) 27191, Such halting probabilities define reals which
are the limits of monotonically increasing computable sequences of rationals.
These are called c.e. (or left computable} reals. Furthermore, every c.e. real is
the halting probability of some prefix-free machine.

Chaitin {2] proposed the halting probability ©) = Qy as a natural example
of a l-random real, where U is any universal prefix-free machine. It is not
hard to prove that Q is 1-random; a straightforward generalization is proved
in Proposition 3.1 below. Note that we call {1 the halting probability, even
though the definition is machine dependent. This is akin to the situation in
computability theory where the halting problem #' also depends on the choice
of universal machine. In that case, the machine dependence of (' is entirely
superficial; Myhill’s theorem [17] states that it is always the same up to a com-
putable permutation of the natural numbers. Here a similar situation occurs:
any two versions of {} are Solovay equivalent [26)].

For X,Y € 2¥, which we can think of as reals in [0, 1], we write ¥ <g X (Y is
Solovay reducible to X) to mean that there is a ¢ € w and a partial computable
w: Q — Q such that if ¢ < X, then p(g)| < Y and ¥ — ¢{g) < (X — g).
The idea is that given any sequence of rationals approximating X from below,
we can generate a sequence of rationals approximating ¥ from below that
converges no slower. We say that a c.e. real X is Solovay complete f Y <g X
for every c.e. real Y. It is not difficult to prove that ) is Solovay complete [26],
which implies that € is well-defined up to Solovay equivalence.! Two further
theorems should be mentioned.

Theorem 1.1 (Calude, Hertling, Khoussainov, Wang [1]). If A € 2¥ is a
Solovay complete c.e. real, then A = Qp for some universal prefiz-free machine
U.

Theorem 1.2 (Kufera and Slaman [10}}). Suppose that X € 2¥ is a 1-random
c.e. real. Then X is Solovay complete.

Together, these results imply that the l-random c.e. reals, the Solovay com-
plete c.e. reals, and the possible values of 2 all coincide. We will consider the
relativization of this class in Section 4.

Relativizing Q. As we have already indicated, one can draw an analogy be-
tween the (measures of ) domains of prefix-free machines in algorithmic random-
ness and the domains of partial computable functions in classical computability
theory. Let us consider this analogy in detail.

lgolovay reducibility implies Turing reducibility on the c.e. reals, so the Turing degree of
{2 is well-defined. Indeed, it is well known that 2 =¢ #'.
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(i) The domains of partial computable functions are exactly the c.e. sets,
while the measures of the domains of prefix-free machines are exactly
the c.e. reals.

(if) The canonical example of a non-computable set is the halting problem
', i.e., the domain of a universal partial computable function. The
canonical example of a l-random real is {1, the halting probability of
a universal prefix-free machine.

(iii) @ is well-defined up to computable permutation, while £} is well-defined
up to Solovay equivalence.

How much further can this analogy be taken? Relativizing the definition of
{ gives the jump operator. If A € 2¢, then A’ is the domain of a universal
A-computable machine. Myhill’s theorem relativizes, so A’ is well-defined up
to computable permutation. Furthermore, if A =7 B, then A’ and B’ differ by
a computable permutation. A fortiori, the jump is well-defined on the Turing
degrees. The jump operator plays an important role in computability theory; it
gives a natural, uniform and degree invariant way to produce, for each 4 € 2¢,
a set A’ with Turing degree strictly above A.

What happens, on the other hand, when the definition of  is relativized?
In some ways, the situation is as nice as one would expect. First, note that
for any oracle A € 2% there is an A-computable prefix-free machine which is
universal with respect to all such machines. We will find it convenient to use
a universal prefiz-free oracle machine U%: 2<% — 2<% which essentially gives
us a coherent choice of universal machines over all oracles {see Section 3). Let
Qf = 2 UA() 271l and K4(¢) = min{jr| | UA(r) = o}. By relativizing
Chaitin’s theorem, Qﬁ is A-random; in other words, (vn) K A(Qf‘, I'n) >
n — O(1). This much is well known. It is also clear that Qf} is an A-c.e. real
and well-defined up to A-Solovay equivalence. Furthermore, Theorems 1.1 and
1.2 can both be relativized (the latter requires care in the context of prefix-free
oracle machines and is Theorem 4.3 below).

What goes wrong? One might hope for Qﬁ to be well-defined, not just up
to A-Solovay equivalence, but even up to Turing degree. Similarly, we might
hope for Qy to be a degree invariant operator: in other words, if A =r B
then 0f =r QF. Were this the case, Qy would provide a counterexample to a
longstanding conjecture of Martin: it would induce an operator on the Turing
degrees which is neither increasing nor constant on any cone. But as we show
in Theorem 6.7, there are oracles A =* B (i.e., A and B agree except on a finite
set) such that Qﬁ and Qg are vastly different. In particular, we can ensure that
0f is a c.e. real while making Q5 as random as we like. It follows easily that
the Turing degree of Q’g generally depends on the choice of U, and in fact, that
the degree of randomness of Q{} can vary drastically with this choice.

If U is a universal prefix-free oracle machine, then we call Qy: 2% — [0,1]
an (Omega operator. Basic properties of Omega operators are discussed in
Sections 3 and 4. In Section 5, it is proved that the range of an Omega operator
has positive measure and that every 2-random real is in the range of some
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Omega operator. This is not true for every l-random real. Section 6 turns to
the question of degree non-invariance. We prove that every Omega operator
maps a set of positive measure to a c.e. real. The preimage of any non-c.e. real
has measure zero, so even for relativized halting probability the c.e. reals play
a special role. We also prove that for any Z € 2%, every Omega operator maps
a set of positive measure to the Z-random reals. It is now a simple consequence
of Kolmogorov’s 0-1 law (see next section) that there are reals A =* B such
that Qﬁ is a c.e. real and Qg is Z-random. Degree non-invariance is immediate.

In Section 7, we prove that A € 2* is mapped to a c.e. real by some Omega
operator iff Q is A-random. Such an A is called low for 2. (This property does
not depend on the particular choice of Q2.) More interesting is the characteri-
zation in Section 8 of the reals 4 € 2 which are mapped to c.e. reals by every
Omega operator. These are proved to be the K-trivial reals: reals which have
minimum prefix-free initial segment complexity. This class has been studied
thoroughly in recent work [6, 19]. We prove that the K-trivial reals are the
only reals for which the Turing degree of Q& does not depend on the choice of
U.

In the final section, we consider the analytic behavior of Omega operators.
We prove that Omega operators are lower semicontinuous but not continuous,
and moreover, that they are continuous exactly at the I-generic reals. We
also produce an Omega operator which does not have a closed range. On the
other hand, we prove that every non-2-random in the closure of the range of an
Omega operator is actually in the range. As a consequence, there is an A € 2¢
such that Qf = sup(range Qy).

2. PRELIMINARIES

We use “real” to denote a member of the Cantor space 2* equipped with
the standard product topology. When convenient, we also think of reals as
elements of {0, 1]. The basic clopen sets of Cantor space are of the form [¢] =
{oA| A€ 2¥}, where o € 2<%, Every open set is of the form [V] = | ¢y (2],
for some V C 2<%, Let u denote the standard Lebesgue measure on 2“; in
particular, p[o] = 2717, For o, 7 € 2<¥, we write ¢ < 7 to indicate that o is
a prefix of 7 and ¢ < 7 if it is a proper prefix. We write ¢ < A to mean that
o € 2<% is an initial segment of the real A € 2¥. It is natural to identify a
finite string o € 2<% with the dyadic rational having binary expansion 0%,

Before prefix-free Kolmogorov complexity was used to characterize random-
ness, Martin-Lof [16] defined the random reals as those that pass all “effec-
tively presented statistical tests”. Each test is given as a presentation of
the measure zero set of reals that fail the test. Formally, a Martin-Lof test
is a computable sequence {V;}ie,, of computably enumerable subsets of 2<%
such that u([V;]) < 27%. A real X € 2% passes the Martin-L&f test {Vi}icy if
X ¢ MNiewlVi]. A real which passes all Martin Lof tests is called Martin-Léf
random, which Schnorr proved equivalent to being 1-random.




RELATIVIZING CHAITIN'S HALTING PROBABILITY 5

To capture stronger notions of randomness, take the sets V; C 2<% to be
uniformly c.e. relative to an oracle A € 2¢. Then {V; }icw is called an A-Martin-
Ldf test and, relativizing Schnorr’s result, the A-random reals are exactly the
reals which pass every such test. Of special interest are the #(=1_random
reals, which are called n-random.

Next we recall some of the results which are needed below. We repeatedly
use the following elegant theorem of van Lambalgen [27] from the theory of
algorithmic randomness (see [5] for a short proof).

van Lambalgen’s theorem.

(i) Ae B is l-random iff A € 2¥ is l-random and B € 2% is A-random.
(i) If A € 2% is 1-random and B € 2¥ is A-random, then A is B-random.

We also require a few important theorems from classical measure theory.

The Lebesgue density theorem. If & C 2¥ is measurable, then for almost
every A e S,
nlingo2”u({A fnjNS) =1.

A proof of Lebesgue density can be found in [22]. We do not need the full
strength of Lebesgue’s theorem. Instead, we use the following corollary which
says that if a class has positive measure then there is a neighborhood in which
the local measure is arbitrarily close to one.

Corollary 2.1. Let & C 2% have positive measure. For every € > 0, there is o
o € 2<% such that 27lu(je]NS) > 1 —«¢.

This corollary easily implies another result which we use below. Recall that
for X,Y € 2%, we write X =* Y if X and Y agree on a cofinite set.

Kolmogorov’s 0—1 law. If § C 2% is a measurable class closed under =%,
then u(S) is either zero or one.

Proof. Assume that uS > 0. Take an £ > 0. By the Lebesgue density theorem,
there is a o € 2<% such that u([g]NS) > 27191(1 — ¢). But S is closed under
=*. So, for each 7 with |7| = |o| we have p{lr] N S) = p{[g] N &). Therefore,
uS > 1 —¢. But € > 0 was arbitrary, hence uS = 1. (]

Additionally, in Section 5 we use the theorem of Lusin that analytic sets
(i.e., projections of Borel sets) are measurable. See Sacks [25] for details.?

K-trivial reals. We finish this section by reviewing an important class of
reals: A € 2% is called K -trivial if

(Vn) K(A [ n) < K(n) + O(1).
The K-trivial reals are the central topic of Section 8 and are also useful else-
where. In [19] it is proved that A is K-trivial iff A is low for 1-randomness,

2Sacks actually proves that I} classes are measurable. But every analytic subset of 2* is
a 1 class relative to an appropriate oracle, so Lusin’s theorem follows by relativization.
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that is, each 1-random set is also 1-random relative to A. Another notion which
turns out to be equivalent is due to Kucera [9]: A is a base for 1-randomness if
A <7 Z for some Z which is 1-random relative to A. By the Kufera—Gacs the-
orem {12, 7], each set that is low for 1-randomness is a base for 1-randomness.
In [8] it is shown that in fact each base for 1-randomness is K-trivial.

3. OMEGA OPERATORS

In this section we introduce universal prefiz-free oracle machines and the
primary objects of study in this paper: the Omega operators. These are a
natural class of functions from 2% to [0, 1], each of which maps every oracle
A € 2% to an A-random A-c.e. real.

A partial computable oracle function M4 : 2<% — 2<% ig a prefiz-free oracle
machine if M4 is prefix-free for every A € 2%, A prefix-free oracle machine U
is unsversal if for every prefix-free oracle machine M there is a prefix pps € 2<¢
such that

(VA € 2¥)(Vo € 2<%) U4 (pmo) = M2 (0).

In other words, U can simulate any prefix-free oracle machine by prepending
an appropriate string to the input. Note that this condition is much stronger
than the requirement that U4 is a universal A-computable prefix-free machine
for all A € 2% The existence of universal prefix-free oracle machines can
be verified by a standard construction. It is not difficult to see that there is
an effective enumeration {M;};c, of prefix-free oracle machines. Given such
an enumeration, we can define a universal prefix-free oracle machine U/ by
UA(0'1e) = M o).

For a prefix-free oracle machine M, let Qﬁr be the halting probability of M4.
Formally, Q4 = 3 MA()] 27191, This defines an operator f23: 2 — [0,1]. If
U is universal, then we call 0y an Omega operator. We will make frequent
use of stage notation. In particular, we write M“(c)[s] | to indicate that the
prefix-free oracle machine M with oracle A € 2% converges on ¢ € 2<% by stage
s € w. Similarly, Qf[s] = 3 prapy 2710

Now that we have defined Omega operators, we make a few simple but
important observations. Fix a universal prefix-free oracle machine /. The
following proposition is a straightforward relativization of the 1-randomness of

Q.

Proposition 3.1. There is a constant b € w such that, for each A € 29, Qé
is A-random with constant b, in other words, (¥n) KA(Qf In) > n—b.

Proof. We define a prefix-free oracle machine M as follows. For any 4 ¢ 2¢
and ¢ € 2<¢, first calculate 7 = U#(g). Then wait for a stage s such that
Qfs] > 7 — 27171, If such an s is found, then let M4(c) converge to a string
longer than any in domain(U4[s]). Note that the convergence of M# (o) cannot
already be taken into account in the calculation of Qf}[s]. Now assume that U
simulates M by the prefix p € 2<%, So, either Qf < 7 — 2711 or Qf > Q4[s] +
o-leol > 7 — 9=I7l 4 2~1rol Assume, for a contradiction, that there is an n € w
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such that K4(QA [ n) < n~|p|~1. Letting o be a minimal program for QOf} | n,
so that 7 = Qf | n, we have proved that either {} — (924 1 n) < —27™, which
is absurd, or Qff — (Qf [ n) > =277+ 2707l 5 277 L 2=+l = 277 which is
also impossible. This is a contradiction, so (¥n) K4(QA [n) 2 n—lp/-1. O

It is clear that (YA € 29) (Vo € 2<%} K(0) > K4(o) — ¢, for some ¢ € w not
depending on A. This proves that all reals in the range of {}y are l-random
with constant b+ ¢. In other words, the range of (y; is contained in the closed
set {X | (vn) K(X | n) = n—b—c}. In particular, every real in (range Qy)°,
the closure of the range of Qy, is 1-random. We will discuss the range of Qy
and its closure in more depth in Section 9.

Next we consider the complexity of Q{}. Call A € 2% an A-c.e. real if it is
the limit of an increasing, A-computable sequence of rationals. The following
observation is immediate.

Proposition 3.2. Qf is an A-c.e. real.

Every A-c.e. real is computable from A’, hence QLA, <7 A’. Note that it
is not usnally the case that Q‘[“} =r A’. To see this, let A be l-random. By
van Lambalgen’s theorem, A is Qﬁ—random. Hence A #r Q. Therefore,
Qft =r A’ only on a set of measure zero. (We strengthen this in Theorem 8.3
below: Qff =p A’ iff A is K-trivial, thus only for countably many choices of
A € 2%} On the other hand, the fact that @ =7 ' has a natural relativization
in the following simple result.

Proposition 3.3. Qf @ A =1 A/, for every A € 2¥.

Proof. 1t is clear that Qé @ A <p A’. For the other direction, define a prefix-
free oracle machine M such that M4(01) | iff n € A, for all 4 € 2¥ and
n € w. Assume that U simulates M by the prefix 7 € 2<“. To determine if
n € A, search for a stage s such that Qff — Qfi[s] < 2-U"+7+1), This can be

done computably in Qf} @ A. Note that U# cannot converge on a string of
length |7| -+ n + 1 after stage s, so

ned e MA0")| < UAF0")| < UAT0™1)[s]] .
Therefore, A’ <r Qff ® A. [
Recall that B € 2¢ is called generalized low (GL) if B <r B V.

Theorem 3.4 (Nies and Stephan). If a A set A € 2¥ is B-random, then B
15 GLl

Proof. Let f(n) = (us)[(¥t > s) A¢ [ n= A [ n), so that f <7 0. Let R, be
the interval [As [ e+ 1] when ®2(e) converges at s, where &, is the eth Turing
functional. Clearly, if R; = Uezi Re, then {R;}icw is a Martin-Lof test relative

to B. Since A ¢ [, Rs, A is only in finitely many Re’s. So, for almost all e
such that ®53(e) converges, f(e) > (us) ®Z(e)]s]|. Hence B’ <¢ B 0. O
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In [20, Definition 3.1|, the following notion is introduced: B € 2% is low for
Q if 1 is B-random. It is shown that this property does not depend on the
particular version of () used. We will see in Section 7 that the low for ) reals
are exactly those which can be mapped to a c.e. real by some Omega operator.

Applying Theorem 3.4 with A = (1, one obtaing the following corollary.

Corollary 3.5 (Nies, Stephan, Terwijn [20]). If B € 2¥ is low for Q, then B
is generalized low.

Finally, Theorem 3.4 implies that the class of low 1-random reals is closed
under the action of every Omega operator.

Corollary 3.6. If A € 2 is A and 1-random, then Qé 15 generalized low. If
A€ 2¥ is a low 1-random, then Qﬁ is low.

Proof. Let B = Qﬁ. Clearly B is A-random, so by van Lambalgen’s theorem,
A is B-random and Theorem 3.4 applies. If in addition 4 is low, then Q‘é is
A3, hence low. O

4. ON A-RANDOM A-C.E. REALS

We can relativize Solovay reducibility as follows. For A, X, Y € 2%, we write
Y gg X to mean that there is a ¢ € w and a partial A-computable ¢: Q@ — @
such that if ¢ < X, then ¢(g) [< Y and Y — p{g) < (X — ¢). We say that
X € 2% is A-Solovay complete if Y <4 X for every A-c.e. real ¥ € 2¢.

Some bagic facts about Solovay reducibility relativize easily. For example:

Proposition 4.1. A-randomness is closed upward under Sé. In other words,
if Y is A-random and Y Sg X, then X is also A-random.

The relativization of Theorem 1.2 is also straightforward.
Theorem 4.2. If X is an A-random A-c.e. real, then X is A-Solovay complete.

On the other hand, a satisfactory relativization of Theorem 1.1 presents
some difficulty. The direct relativization states that if X € 2% is an A-c.e. real
and A-Solovay complete, then there is an oracle machine M such that M4 is
universal for A-computable prefix-free machines and X = Qj&d. It is not hard
to add the requirement that M be prefix-free for all oracles, but there is no
reason that M should be universal for oracles other than A, let alone be a
universal prefix-free oracle machine. However, with extra work we can satisfy
this stronger requirement.

Theorem 4.3. Suppose that X is an A-c.e. real and A-Solovay complete. Then
there is a universal prefiz-free oracle machine U such that X = Q’L“}.

Proof. Let V be a universal prefix-free oracle machine. Because ¢ is an A-
c.e. real, we have Q{} gg X. Choose n € w and a partial oracle-computable
function ©F: Q@ — Q such that 2" and ¢ witness this Solovay reduction. In
other words, if g < 4} is a rational, then p*(g) < Q& and

(1) Qf — (g) < 2M(X —q).
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We also require n to be large enough that 27" < X < 1 — 27" (clearly, no
computable real can be A-Solovay complete, so X # 0,1).

We now define another universal prefix-free oracle machine U. To make
U universal, let UB(0"s) = V®(g), for all ¢ € 2<¥ and oracles B € 2¥.
For convenience, we preserve the stage of convergence; i.e., UP(0%0)[t] | iff
VE(s)[t} |. The other strings in the domain of U are used to ensure that
Q8 = X. Let ®: w — Q be a partial oracle-computable function such that
{4 (s)}sew is a nondecreasing sequence with limit X. Fix an oracle B. We
add strings not extending 0" to the domain of U in stages. For each s,

(i) Compute gy = 12 (s).

(if) Compute rs = v=(gs).

(ili) Search for a ts such that Q{? [ts] = 7s.

(iv) If possible, add enough strings (not extending 0") to the domain of U

at stage t; to make Q5 [t] = gs.

Note that (if B # A) this procedure may get stuck in any of the first three steps.
In this case, UP will converge on only finitely many strings not extending 0™.
This completes the construction of U, which is clearly a universal prefix-free
oracle machine.

It remains to verify that Qff = X. By the definition of 9, we have ¢, =
¥A(s) |< X, for each s. Therefore, 75 = (g} | < Q. So, there is a stage s
such that Q{} [ts] = rs. Because g < X < 1 — 27", there are enough strings
available in step (iv) to ensure that Qf(ts] > gs. But lim, gs = X, so Of > X.
Now assume, for a contradiction, that f} > X. Because the strings extending
0" add at most 27" < X to Qﬁ, there must be some s that causes too many
strings to be added to the domain of U in step (iv). In other words, there is
an s such that Q{}[ts] = s and

Qflts] + 270 — Qfts]) > X.
So, Q4 — Qf[ts] > 27(X — g¢5). But in step (iii), we ensured that Q3 [ts] > rs =

©™(gs). Therefore, Qff — ¢4(gs) > 2*(X — q), contradicting (1). This proves
that Q‘{‘} = X, which completes the theorem. Cl

Combining Propositions 3.1 and 3.2 with Theorems 4.2 and 4.3, we get the
following corollary.

Corollary 4.4, For A, X € 2%, the following are eguivalent:
(i) X is an A-c.e. real and A-random.
(ii) X is an A-c.e. real and A-Solovay complete.
(i) X = Qf} for some universal prefiz-free oracle machine U.

5. REALS IN THE RANGE OF SOME OMEGA OPERATCR

We proved in the last section that X € 2 is in the range of some Omega
operator iff there is an A € 2% such that X is both A-random and an A-c.e.
real. What restriction does this place on X7 In this section, we show that
every 2-random real is an A-random A-c.e. real for some A € 2¥, but that not
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every l-random real has this property. Furthermore, we prove that the range
of every Omega operator has positive measure.

Theorem 5.1. If X € 2% is 2-random, then X is an A-rendom A-c.e. real for
some A € 2¥.

Proof. Let A = (1— X +€)/2. Then X = 1-2A+Q is an A-ce. real
In particular, take a nondecreasing computable sequence {{1,}sc. of rationals
limiting to Q. Then X is the limit of {1 — 2(A [ s) + Qs}secw, & nondecreasing
A-computable sequence of rationals. It remains to prove that X is A-random.
Because X is 2-random it is -random. Hence, by van Lambalgen’s theorem,
Q1 is X-random. But then 4 = (1 — X 4+ Q)/2 is X-random (because clearly,
O =% (1 — X +0)/2). Therefore, applying van Lambalgen’s theorem again, X
is A-random. O

As was mentioned above, the previous theorem cannot be proved if X is only
assumed to be 1-random.

Example 5.2. X =1 - is not in the range of any Omega operator.

Proof. The l-random real X = 1 — £ is a co-c.e. real, i.e., the limit of a
decreasing computable sequence of rationals. Assume that X is an A-c.e. real
for some A € 2. Then A computes sequences limiting to X from both sides;
hence X <p A. Therefore, X is not an A-random A-c.e.realforany 4 ¢ 2%, 0O

It would not be difficult to prove that 1 — £ cannot even be in the closure of
the range of an Omega operator. In fact, a direct proof is unnecessary because
this follows from Theorem 9.4 below.

There is more to be said about which reals can be in the range of an Omega
operator. For example:

Question 1. If X > @' is an A-random A-c.e. real for some A € 2, then is X
necessarily a c.e. real?

Consider a special case of the previous question: can Qﬁ >p @ for some
A € 2¥ (and some universal prefix-free oracle machine U')? Note that if such
an A exists, then it must be high (i.e., A’ > 0”). Which leads us to ask:

Question 2. Ts there a high A € 2 such that Qf >r 07

Now we consider a specific Omega operator. Let U be an arbitrary universal
prefix-free oracle machine. Recall that analytic sets are measurable and that
the image of an analytic set under any Borel operator—for example, Qy—is
also analytic.

Theorem 5.3. The mange of Qu has positive measure. In fact, if S C 2¥ is
any analytic set whose downward closure under <y is 2, then u(Qy[S]) > 0.

Proof. Let R = Qu[S]. Note that R is an analytic subset of 2¥. Hence u(R)
is defined. Assume, for a contradiction, that p(R) = 0. In particular, the
outer measure of R is zero. This means that there is a nested sequence Ify 2
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Uy 2 Uy D - of open subsets of 2% such that R C U, and u(l,) < 277, for
each n € w. Take a set B € & which codes {U,}new in some effective way.
Then {Up}new is & B-Martin-Lof test, which implies that Qf ¢ ), Un. But
R C N, Un, 50 QF ¢ R = Qu[S]. This is a contradiction, so u#(R) > 0. 0

The theorem implies that many null classes have Qy-images with positive
measure, for example § = {A | (Vn) 2n & A}
We finish with a simple consequence of Theorem 5.3.

Corollary 5.4. For almost every X € 2%, there is an A € 2% such that X =*
QA
U-

Proof. Let S = {X | (34 € 2¥) X =* Qfi}. Then S is ©}—hence measurable
by Lusin’s theorem—and closed under =*. But u(S) > u(rangeQy) > 0. It
follows from Kolmogorov’s 0-1 law that u(S) = 1. O

6. WHEN Q4 IS A C.E. REAL

In this key section, we consider reals A € 2¥ for which Q{} is a c.e. real. Far
from being a rare property, we will show that u{A | Qf} is a c.e. real} > 0 for
any fixed universal prefix-free oracle machine I/. On the other hand, only a
c.e. real can have an Qy-preimage with positive measure. So c.e. reals clearly
play an important role in understanding ;. Their main application here is in
our proof that no Omega operator is degree invariant. Recall that we want to
obtain reals A =* B such that Qf is a c.e. real while Qg is random relative to
a given (arbitrarily complex) Z. We show that each of these outcomes occurs
with positive measure in Propositions 6.4 and 6.5, respectively. Proposition 6.5
has no obvious connection to the c.e. reals, but in fact, Proposition 6.4—applied
to a modification of the universal machine I/—is used to prove it.

Theorem 6.1. Let M be a prefiz-free oracle machine. If P G 2¥ is g nonempty
I class, then there is a §'-c.e. real A € P such that Qf; = inf{QS, | C € P},
which is a c.e. real.

Proof. Let P C 2% be a nonempty I10 class and let X = inf{Q, | C € P}. Note
that X is a c.e. real because it is the limit of the nondecreasing computable
sequence X, = inf{Q{[s] | C € P,;}. We will prove that there is an A € P
such that Qf, = X. Choose a sequence {By}new such that B, € P and
ﬂﬂ%‘ ~ X <27 for each n € w. By compactness, {Bn}new has a convergent
subsequence {Ap new. Note that Qf,}‘ — X <2™. Let A =1limA,. Because
P is closed, A € P. Therefore, Qﬁ > X. Assume, for a contradiction, that
Q4 is strictly greater than X. Take m € w such that Q4 — X > 27™. Then
Q4 [s] — X > 27™ for some s € w. Let k be the use of Q4;{s] (under the usual
assumptions on the use of computations, we can take & = s). In particular,
if Bl k= ATk, then Q4 s] = QF[s]. Now take n > m large enough that
Ap k= ATk Then

2> — X > Qs - X = Qfls] - X > 27 =27
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This is a contradiction, proving that Qf/f =X.

Finally, we must prove that 4 can be a -c.e. real. Let S= {C e P | Qf, =
X}. Note that § = {C € 2¥ | (¥s) (C € P, and Qf[s] < X)}. The fact
that X <o @ makes S a II9[(¥] class. We proved above that S is nonempty, so
A = min(8) is a @'-c.e. real satisfying the theorem. a

We now consider reals X € 2¢ such that ;' [X] has positive measure.

Lemma 6.2. Let M be o prefiz-free oracle machine. If X € 2% is such that
p{A| Q4 = X} >0, then X is a c.e. redl.

Proof. By the Lebesgue density theorem, there is an o € 2<% guch that p{A >
o | Qf = X} > 2719171 In other words, Qs maps more than half of the
extensions of ¢ to X. So, X is the limit of the nondecreasing computable
sequence { X }sew, Where for each s € w, we let X be the largest rational such
that p{A =~ o | Qf[s] > X,} > 271, O

For X € 2%, let my(X) = u{A | Qf = X}. Define the spectrum of Qy to
be Spec(Qy) = {X | my(X) > 0}. By the lemma, the spectrum is a set of
1-random c.e. reals. We prove that it is nonempty.

Kurtz {11] defined Z € 2% to be weakly n-random if it is not contained in
a I class which has measure zero. He proved that this randomness notion
lies strictly between n-randomness and (n — 1)-randomness. In particular, an
n-random real cannot be contained in a null I class. We use this fact below.

Lemma 6.3. Let X ¢ 2% be a ce. real. Then my(X) > 0 iff there is a
l-random A € 2% such that Qff = X.

Proof. If my(X) > 0, then there is clearly a l-random A € 2* such that
QA = X, as the l-random reals form a class of measure one. For the other
direction, assume that A € 2¢ is a 1-random real such that ¢} = X. By van
Lambalgen’s theorem, the fact that X is A-random implieg that A is X-random.
But X =r I, because X is a I-random c.e. real, so A is 2-random. Note that
{B| Q8 = X} is a [1J class containing this 2-random. Hence my(X) > 0. O

Proposition 6.4. Spec(Qy) # 0.

Proof. Apply Theorem 6.1 to a nonempty II{ class containing only 1-random
reals. This gives a 1-random A € 2% such that X = Qﬁ is a c.e. real. Hence by
Lemma 6.3, X € Spec{Qy). O

We have proved that y maps a set of positive measure to the c.e. reals.
One might speculate that almost every real is mapped to a c.e. real. We now
prove that this is not the case. (However, in the next section we will see that
almost every real can be mapped to a c.e. real by some Omega operator.)

Proposition 6.5. There is an € > 0 such that
(VZ € 2“) u{B | QF is Z-random} > e.
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Proof. Let M be a prefix-free oracle machine such that Q% = B for every
B € w. Define a universal prefix-free oracle machine V by VZ(0¢) = U2 (o)
and VB3(1e) = MB(0), for all ¢ € 2<%. Then QF = (QF + B)/2. Apply
Proposition 6.4 to V to get a c.e. real X € 2% such that S = {B | Q8 = X}
has positive measure. Let € = uS.

Now take Z € 2¥. We can assume, without loss of generality, that Z >¢ .
Let B € S be Z-random. Then QF = 208 — B = 2X — B must also be
Z-random, because X <y Z. Therefore,

p{B €S| Q5 is Z-random} > u{B € S | B is Z-random} = uS =¢,
since the Z-random reals have measure 1.3 O

These results tell us that the Eg class of reals A such that Q’g is c.e. has
intermediate measure.

Corollary 6.6. 0 < u{A | Qf is a c.e. real} < 1.

The most important consequence of the work in this section is the following
resoundingly negative answer to the question of whether Qy is degree invariant.

Theorem 6.7.

(i} For all Z € 2%, there are A,B € 2% such that A =" B, Qf is a c.e.
real and Qf is Z-random.

(i) There are A,B € 2% such that A =* B and Qf |7 QB (and in fact,
Qf and QF are 1-random relative to each other).

Proof. (i) Let S = {A | Qf} is a c.e. real} and R = {B | Qf is Z-random}. By
Propositions 6.4 and 6.5, respectively, both classes have positive measure. Let
R ={A| (3B € R) A =* B}. By Kolmogorov's 0-1 law, pR = 1. Hence,
there is an A € SNR, completing the proof.

(i) By part (i), there are A, B € 2 such that A =* B, Q{} is a c.e. real and
QF is 2-random. Hence QF is Qf-random and, by van Lambalgen’s theorem,
O is 5-random. This implies that f} |7 QF. O

We close the section with two further observations on the spectrum.
Proposition 6.8. sup(range ly) = sup{Q} | A is 1-random} = sup Spec(Qy).

Proof. Let X = sup(rangeQy). Given a rational ¢ < X, choose ¢ such that
), > q. By the same proof as Proposition 6.4, there is a 1-random A - ¢ such
that 4 is a c.e. real. 0

Proposition 6.9. If p < ¢ are rationals and C = {A € 2% | Q8 € [p,q]} has
positive measure, then Spec(Qy) N [p,q] # 0.

3This simple construction shows more. Because OF = 2X — B for B € &, we know that
w{QF | B e 8} = u{2X — B | B € 8} = uS > 0. Therefore, the range of iy has a subsef
with positive measure. While this foliows from the most basic case of Theorem 5.3, the new
proof does not resort to Lusin’s theorem on the measurability of analytic sets.
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Proof. Note that C is the countable union of {g] N C for every o € 2<% such
that 2 > p. Because uC > 0, for some such o we have p{fc] NC) > 0.
But [6]NC = {A > o | 9 < ¢} is a I1Y class. Let R C 2 be a II{ class
containing only l-randoms with gR > 1 — u([g] NC). Then RN [o]NC is a
nonempty Hcl’ class containing only I-randoms. Applying Theorem 6.1 to this
class, there is a l-random real A € € such that X = Q{} is a c.e. real. Then
X € Spec(Qy) N [p, q], by Lemma 6.3 and the definition of C. O

7. ON THE LOW FOR {} REALS

We turn the question of the last section around: for which oracles 4 € 2¥ is
there a universal prefix-free oracle machine U/ such that Q‘{} is a c.e. real? We
show that this is true for almost every A. Recall from Section 3 that if €2 is
A-random for some—or equivalently any—version of {2, then A € 2 is said to
be low for 1.

Proposition 7.1. A € 2% is low for Q iff there is a universal prefiz-free oracle
machine U such that Qf is a c.e. real.

Proof. First assume that there is a universal prefix-free oracle machine U such
that X = Q# is a c.e. real. Then X <g Q, which means that X <2 Q. Both
X and ) are c.e. reals, hence they are A-c.e. reals. Applying Proposition 4.1,
because X is A-random, § is also A-random. Therefore, A is low for Q.

For the other direction, assume that A € 2¢ is low for Q. Then ) is A-random
and an A-c.e. real. By Corollary 4.4, {2 = Qf} for some universal prefix-free
oracle machine U. O

It follows from the proof and Proposition 3.3 that if A is low for Q, then
Q@ A=y A Therefore A’ =7 ' @ A, giving a second proof of Corollary 3.5:
low for £ reals are GL;.

Almost every real is low for £}; in particular, every 2-random real is.

Proposition 7.2 (Nies, Stephan, Terwijn [20]). A 1-random real A € 2 is
low for Q iff A is 2-random.

Proof. Assume that A € 2¢ is I-random. Recall that Q = @', So A is 2-
random iff A is Q-random iff €} is A-random, where the last equivalence follows
from van Lambalgen’s theorem. a

More evidence for the ubiquity of low for §2 reals is the following basis theo-
rem. It is an immediate corollary of Theorem 6.1 and Proposition 7.1.

Corollary 7.3 (The low for Q basis theorem). Every nonempty I19 class con-
tains a B'-c.e. real that is low for Q.

Every K-trivial real is low for 1-randomness, hence low for 2. However, by
the previous result applied to the I1{ class of completions of Peano arithmetic,
there is also a low for ) real that is neither 2-random nor K-trivial.

Although it is a digression from cur primary topic, we finish this section with
a. generalization of Corollary 7.3. The following result is a “low for X" basis
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theorem for every l-random real X € 2¥; it reduces to the corollary when we
take X = Q. This result was found independently by Reimann and Slaman
[24], for whom it is not a digression but a useful lemma.

Proposition 7.4. For every l1-random X € 2% and every nonempty I1{ class
P C 2¢¥, there is an X-c.e. real A € P such that X is A-random.

Proof. Let P C 2¢ be a nonempty II9 class. Our goal is to construct a Martin-
Lof test {V;}iew such that if X € 2¥ is not A-random for any A € P, then
X € (View Vi Fix a universal prefix-free oracle machine /. Whenever an s € w
and ¢ € 2<% are found such that

(VA € Po)(3r < o) K1) < || -4,

then put [¢] into V;. Clearly, each V; is a 9 class. Fix an A € P and note that
V; C{X | (3n) KH(X [ n) < n—i}. Therefore u(V;) < 274, so {Vi}iew is a
Martin-Lof test. Finally, assume that X € 2“ is not A-random for any A € P.
By compactness, for every i € w, there is an ¢ < X such that jo] C V;. Hence,
Xe ni&u Vi'

This proves that if X € 2¢ is I-random, then there is an A € P such that
X is A-random. We must still prove that A can be taken to be an X-c.e. real.
For every i € w, let S; = {4 € P | (Vn) K{(X [ n) > n—1}. Note that each S
is a I19[X] class. We proved above that S; is nonempty, for large enough ¢ € w.
So A = min(&;) is an X-c.e. real satisfying the theorem. a

8. 04 FOR K-TRIVIAL A

In the previous section, we considered the reals that can be mapped to c.e.
reals by some Omega operator. Now we look at A € 2% such that Q‘{} isace.
real for every universal prefix-free oracle machine V. We will see that these are
exactly the K-trivial reals.

The lemma below is a spinoff of the golden run construction from [19, The-
orem 6.2]. It actually holds for any prefix free oracle machine M in place of U.
That is, we do not use universality to prove the lemma.

Lemma 8.1. Let U be a universal prefiz-free oracle machine, and let A € 2¢
be K -trivial. Then there is a computable sequence of stages q(0) < q(1) < - --
such that

2y §= Z{'E(a:,r) | z is minimal s.t. Agiry1)(Z) # Agry2)(2)} < 00,
UA(a)lg{r + D] A }

where
Az,r)=) {2""" z < use(UA(a)[a(r + 1)]) < q(r)

Informally, &(z,r) is the maximum amount that Qf}[g(r + 1)} can decrease
by because of an A(x) change after stage ¢(r + 1), provided we only count the
U4(o) computations with use < g(r).

Proof. We refer to the proof of [19, Theorem 6.2] and use its notation. (For
more details, see [18].) By [19, Lemma 6.6}, choose a golden run Pi(p, o).



16 ROD DOWNEY, DENIS R. HIRSCHFELDT, JOSEPH $. MILLER, AND ANDRE NIES

Claim 8.2. For each stage s, there is o stage t > s such that, for all 0 < s,
if UA(o)[t] = y with use w < s, then a run Qi—1,6yw has returned by ¢t and s
not released yet, thot is, P; waits at (P2, ).

To see this, let r > s be the least stage by which A, | s has settled. A run
Qi—1,0,4w such that w < r is never canceled after stage r, therefore it returns
by the definiton of golden runs in [19, Lemma 6.6]. This proves the claim.

The least £ > s as in the claim can be determined effectively. Let ¢(0) = 0.
If s = g(r) has been defined, let g(r + 1) be the least ¢ such that the condition
of the claim holds. Let g € N be the number such that p/a = 29. We show
that § < 29. Suppose z is minimal such that Agrany (@) # Agir4n)(z). Then
A 1{z) # As(z) for some stage s with ¢(r+1) < s < g(r+2). No later than s,
the runs of procedures @Q;_1,0,y,y+1 With z < y < ¢(r) which are still waiting at
(P2,) are released. This adds a weight of at least ¢y (x,r) to C;. Thus § <9,
since otherwise the run of P reaches its goal. O

The following proof uses an alternative characterization of 1-randomness due
to Solovay [26]. A Solovay test is a computable sequence {I;}rew of intervals
with (dyadic) rational endpoints such that >, o, |1+] is finite. A real passes a
Solovay test if it is in only finitely many of the intervals. It is not difficult to
see that X € 2¥ is l-random iff it passes every Solovay test.

Theorem 8.3. Let U be a universal prefiz-free oracle machine. The following
are equivalent for A € 2¥:
(i) A is K-trivial.
(i) A is A and Qf is a c.e. real.
(i) A <p QF.
(iv) A" =p Qf.

Proof. (i) = (iii) follows from the fact that each l-random c.e. real is Turing
complete. (iii) = (i) because A is a base for 1-randomness; see the end of
Section 2. (iii) is equivalent to (iv) by Proposition 3.3.

(1) = (ii). Assume that A is K-trivial. As shown by Chaitin [3], A is AJ.
We show that there is an rg € w and an effective sequence {y, }rew Of rationals
such that Qf} = sup,s,, f4r, and hence Qf} is a c.e. real. Applying Lemma 8.1
to U, we obtain a computable sequence of stages ¢(0) < ¢(1) < --- such that
(2) holds. The desired sequence of rationals is

pr = {2711 UAo)g(r + DI A use(UA(0)a(r + 1) < ()}

Thus p, measures the computations existing at stage ¢(r + 1) whose use is
at most g(r). We define ro below; first we verify that Qff < sup,s,, pr for
any 7o € w. Given oy,...,0m € domain(U4), choose r; € w so that each
computation UU/4(c) has settled by stage g(r1), with use < g{rm). If r > ry,
then pir > 1 <j<pm 2719 Therefore, O < lim sup,e,, fr < SUDp3p, -
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Now define a Solovay test {I,}re, as follows: if z is minimal such that

Aq('r'+1) (m) ?5 Aq(T+2) (:L‘), then let
If‘ = [,LL-,- - E(SC,T‘), nu'?“]'

Then 3, ., || is finite by (2), so {I; }rew is indeed a Solovay test. Also note
that, by the comment after the lemma, min I, < maxI;; for each 7 € w.

Since Qﬁ is 1-random, there is an 7y € w such that Qf} ¢ I for all r > ro.
We show that u, < Qﬁ for each » > rg. Fix r > ro. Let £ 2> 7 be the first
non-deficiency stage for the enumeration ¢ — Agy1). That is, if z is minimal
such that Agy1)(2) # Agr2) (%), then

(vt' > t)(Vy < ) Ag4)(¥) = Ag41)(¥)-
The quantity g — &(z,t) measures the computations U4(c)[g(t + 1)] with use
< z. These are stable from ¢(¢+-1) on, so Qﬁ > min I;, and hence Qﬁ > max I;.
Now Qf} ¢ I, for u 2 ro and minl, < maxl,41 for any v € w. Applying
thistou=t¢t—1,...,u = 7, we obtain that Qé > max I, = pr. Therefore,
Qf > SUDp>rq fr- O
One consequence of this theorem is the fact that Omega operators are degree

invariant at least on the K-trivial reals. The next example shows that they
need not be degree invariant anywhere else.

Example 8.4, There is an Omega operator that is degree invariant only on
K -trivial reals.

Proof. Let M be a prefix-free oracle machine such that

qa _ [A A =0
M — .
0 if A(0) =1.

For any A € 2¢, define a real A by A(n) = A(n) iff n # 0. Let U be a universal
prefix-free oracle machine. Define a universal prefix-free oracle machine V' by
VA(000) = U4(o), VA(01le) = UA(c) and VA(la) = M4A(o), for all o € 2<¥,
Then |Qf — Q{E| = A/2, for all A € 2. Assume that Qé <7 % for some
Ae2¥ Then A STAQ{}, so A is a base for 1-randomness and hence K-trivial

by [8]. If Q& <7 Q¢, then again A is K-trivial. Therefore, if 4 € 2¥ is not
K-trivial, then Qf |7 Q2. O

The following corollary summarizes Theorem 8.3 and Example 8.4.

Corollary 8.5. The following are equivalent for A € 2¥:
(i) A is K-trivial.
(ii) Every Omega operator takes A to a c.e. real.
(iii) Every Omega operator is degree invariant on degy(A).

We have seen in Theorem 6.7 that no Omega operator is degree invariant. We
have also seen that if A € 2¢ is not K-trivial, then there are Omega operators
that are not invariant on degy(A). Can these two results be combined?
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Question 3. For a universal prefix-free oracle machine U and a real A € 2¥
that is not K-trivial, is there a B =p A such that QF #r Q47

Finally, a simple but interesting consequence of Example 8.4 is the following.

Corollary 8.6. Every K-trivial is a d.c.e. real (i.e., the difference of two c.e.
reals).

Proof. Let V be the machine from Example 8.4. Assume that A e 2¥is K-
trivial. Then Q¢ and Qff are both c.e. reals by Theorem 8.3. Therefore,
A= 2|04 — Q8 is a d.c.e. real. O

It is known that the d.c.e. reals form a real closed field [21, 23]. The corollary
gives us a nontrivial real closed subfield: the K-trivial reals. To see this, note
that the K-trivial reals form an ideal in the Turing degrees ([6] for closure under
@ and [19] for downward closure). Because a zero of an odd degree polynomial
can be computed relative to the coefficients, the K-trivial reals are also a real
closed field.

9. ANALYTIC BEHAVIOR OF OMEGA OPERATORS

In this section, we examine Omega operators from the perspective of analysis.
Given a universal prefix-free oracle machine U: 2<% — 2<%, we consider two
guestions:

(i) To what extent is Q¢ continuous?
(if) How complex is the range of Qg7

To answer the first question, we observe that Qp is lower semicontinuous but
not continuous. Furthermore, we prove that it is continuous exactly at 1-
generic reals. Together with the semicontinuity, this implies that Qg can only
achieve its supremum at a l-generic. But must Qy actually achieve its supre-
mum? This relates to the second question. Theorem 9.4 states that any real
in (range Q)¢ ~ range(§ly) must be 2-random. Because X = sup{range ly) is
a c.e. real-hence not 2-random, there is an A € 2¥ such that Q{} =X.

It is natural to ask whether range{Sdy) is closed. In other words, is Theo-
rem 9.4 vacuous? Example 9.6 demonstrates that for some choice of U, the
range of Qp is not closed, and indeed, that u(rangefly) < wp((rangeQy)®).
Whether this is the case for all universal prefix-free oracle machines is left
open. Furthermore, we know of no nontrivial upper-bound on the complexity
of range(Qyy), but we do observe that (range§y)° is a I3 class.

Recall that a function f: X — R is lower semicontinuous if {z € X | f(z) >
a} is an open set for every a € R. Here X is an arbitrary topological space.
We claim that for any prefix-free oracle machine M, the function Qs is lower
semicontinuous. Note that for any A € 2¥,

(3) (V6 > 0)(Im) Qfy — QiI™ < §
and hence (VX = A [ m) Q4 - Q% < 6.
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Proposition 9.1. Qy is lower semicontinuous for every prefiz-free oracle ma-
chine M.

Proof. Take a € R and assume that Q4; > a. Choose a real § > 0 such that
Q4 — 8 > a. By the observation above, there is an m € w such that X = A [ m
implies that 04, — Q% < 6. Therefore, ¥, = Q4 — 6 > a. So [4 | m] is an
open neighborhood of A contained in {X | Qﬁ,“} > a}. But A was an arbitrary
element of {X | Q% > a}, proving that this set is open. ]

Next we prove that Omega operators are not continuous and characterize
their points of continuity. Recall that an open set & C 2% is dense along
A € 2¥ if each initial segment of A has an extension in §. We say that A is
1-generic if A is in every I} class § that is dense along A. We prove that
Qy is continuous exactly on the 1-generics, for any universal prefix-free oracle
machine U,

Theorem 9.2. The following are equivalent for a set A € 2%:
(i) A is 1-generic.
(i) If M is a prefiz-free oracle machine, then Qar is continuous at A.
(i) There is a universal prefiz-free oracle machine U such that Qy is con-
tinuous at A.

Proof. (i) = (ii). Let M be any prefix-free oracle machine. By (3), it suffices
to show that

(Ve)(@n)(VX = A [ n) QO < Qf +&.
Suppose this fails for a rational £. Take a rational r < Qf,j such that Q‘f,,—r < E.
The following £ class is dense along A:

S={B1(3n) Q] >r+e}.
Thus A € S. But this implies that Q4 > r+¢ > 04}, which is a contradiction.
(ii) = (iii) is trivial.
(i) = (i). Fix a universal prefix-free oracle machine U. We assume that
A is not 1-generic and show that there is an £ > 0 such that

(4) (vn)(3B ~ A [n) QB > Qf +¢.

Take a 29 class S that is dense along A but A ¢ S. Define a prefix-free oracle
machine L% as follows. When (some initial segment of} X € 2 enters S, then
LX converges on the empty string. Thus L? is nowhere defined. Let ¢ € w be
the length of the coding prefix for L in U. We prove that ¢ = 27{¢+1) satisfies
(4).

Choose m. as in (3) for the given universal machine, where § = 2-(¢+1}, For
each n > mn, choose B = A [ n such that B € §. Since LE converges on the
empty string, QF > Qf — 27 poe=d 4 ¢ O

Let U be a universal prefix-free oracle machine.

Corollary 9.3. If Q’(} = sup(range{dy), then A is 1-generic.
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Proof. By the previous theorem, it suffices to prove that €y is continuous at
A. But note that the lower semicontinuity of 2y implies that

(X106 -9 <e} ={X | Qff > —¢}
is open, for every £ > 0. Thus, A is 1-generic. Ll

The corollary above does not guarantee that the supremum is achieved. Sur-
prisingly, it is. In fact, we can prove quite a bit more. One way to view the
proof of the following theorem is that we are trying to prevent any real which
is not 2-random from being in the closure of the range of Q. If we fail for
some X & 2¢, then it will turn out that X € range(f)yy). Note that this is a
consequence of universality; it is easy to construct a prefix-free oracle machine
M: 2<% — 2<% guch that Qps does not achieve its supremum.

Theorem 9.4. If X € (rangeQy)¢ ~ range(Qu), then X is 2-random.

Proof. Assume that X € (range Qy)° is not 2-random and let Rx = Q' [X] =
{A | Qff = X}. For each rational p € [0,1], define G, = {4 | Q8 < p}. Note
that every Cp is closed (in fact, a II{ class). For every rational g € [0, 1] such
that ¢ < X, we will define a closed set By & 2“ such that

(5) Rx= (BN () Cp

g<X p>X
where g and p range over the rationals. Furthermore, we will prove that every
finite intersection of sets from {B,; | ¢ < X} and {Cp, | p > X} is nonempty.
By compactness, this ensures that Rx is nonempty, and therefore, that X &€
range(Qy).

We would like to define B, to be {4 | Qff > g}, which would obviously satisfy
(5). The problem is that {4 [ Q# > ¢} is a £ class; B, must be closed if we
are to use compactness. The solution is to let By = {4 | Qf}[k] > ¢} for some
k € w. Then By is closed (in fact, clopen) and, by choosing k appropriately, we
will guarantee that Q¢ is bounded away from X for every A ¢ B,.

For each rational ¢ € [0,1], we build a prefix-free oracle machine M,. For
A €27 and o € 2<%, define M2 (o) as follows.

(i) Wait for a stage s € w such that Qf[s] > ¢.
(i) Compute 7 = U% (o).
(iii) Wait for a stage t > s such that Q] > 7.
The computation may get stuck in any one of the three steps, in which case
Mé‘*(a) T. Otherwise, let M (o) converge to a string longer than any in
domain(U4[#]). The value to which MQA(U) converges is only relevant because
it ensures that a U-simulation of M, cannot converge before stage ¢ + 1.

We are ready to define B, C 2¥ for a rational g € [0,1] such that ¢ < X.
Assume that U simulates M, by the prefix p € 2. Choose 0,7 € 2<% such
that U%(¢) = 7 < X and |7| > |po|. Such o and 7 exist because X is not
2-random. Choose k, € w large enough that U% (o) = 7 for all s > k,. Let
By = {4 | Q4lk;) 2 q).
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We claim that the definition of B; ensures that QLA, is bounded away from
X for any A ¢ B,. Let I, = min{g,7} and rg = 7+ 2-leal. Clearly I, < X.
To see that ry > X, note that X — 7 < 271"l « 2-lrol, Now assume that
A ¢ B, and that Qff > ;. Thus Qf > g but Qfi{ky] < g. This implies that
the s found in step (i) of the definition of M, is greater than ky. Therefore,
U%(a) = 7. But Qf > 7, so step (iii) eventually produces a t > s such
that Qf[t] > 7. This means that M/ (o) converges to a string longer than
any in domain(U4[t]), so U4(po) | sometime after stage ¢, which implies that
Qﬁ > Qﬁ[t] + 2-M0ol > 7 o-leol = rq. We have proved that

(6) Qf € [lgrg) => A€ B,

Next we verify (5). Assume that A € Rx. We have just proved that A € B,
for all rationals ¢ < X. Also, it is clear that A € C, for all rationals p > X.
Therefore, Rx C ﬂq <xBg N ﬂp:, x Cp. For the other direction, assume that
A€ Myex By N Npsx Cp- Thus if ¢ < X, then Qf > Qfifkg] > g Hence
Qﬁ > X. On the other hand, if p > X, then Qf} < p. This implies that
Qf < X, and so Qf} = X. Therefore A € Rx, which proves (5).

It remains to prove that Rx is nonempty. Let @ be a finite set of rationals
less than X and P a finite set of rationals greater than X. Define ! = max{{, |
g € Q) and r = min(PU{ry, | ¢ € @}). Note that X € (l,r). Because
X € (rangeQy)°, there is an A € 2 such that Qff € (I,7). From (6) it
follows that A € By for all ¢ € Q. Clearly, A € C, for every p € I°. Hence
MNgeq Bs NMpep Cp is nonempty. By compactness, Rx is nonempty. O

If X € range(Qy) is not 2-random, then an examination of the construction
gives an upper-bound on the complexity of Q7;'[X]. The II9 classes C, can be
computed uniformly. The B, are also 119 classes and can be found uniformly
in X @{'. Therefore, Q' [X] = Ny<x Ba NNy x Cp is 2 nonempty X & 0]
class.

The following corollary gives an interesting special case of Theorem 9.4. It
is not hard to prove that there is an A € 2% such that f} = inf(range Q) (see
Theorem 6.1). It is much less obvious that {0y achieves its supremum.

Corollary 9.5. There is an A € 2% such that Qff = sup(range Qy).

Proof. Note that sup(range{ly) is a c.e. real, hence not 2-random. So, the
corollary is immediate from Theorem 9.4. 0

No 1-generic is l-random, so u{A | Qff = sup(range$ly)} = 0. Therefore,
sup(rangely) is an example of a c.e. real in the range of {3y which is not in
Spec{Qy).

One might ask whether Theorem 9.4 is vacuous. In other words, is the range
of Qyr actually closed? We can construct a specific universal prefix-free oracle
machine such that it is not. The construction is somewhat similar to the proof
of Theorem 5.3. In that case, we avoid a measure zero set by using an oracle
that codes a relativized Martin-Lof test covering that set. Now we will avoid a
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measure zero closed set by using a natural number to code a finite open cover
with sufficiently small measure.

Example 9.6. There is a universal prefir-free oracle machine V' such that
p(rangey) < p((range Qy)°).

Proof. Let U be a universal prefix-free oracle machine. Let M be a prefix-free
oracle machine such that
Q#J:{l if | 4] > 1

0 otherwise.

Define a universal prefix-free oracle machine V by V4(00) = U4(c) and
VA(le) = MA(c), for all ¢ € 2<%, This definition ensures that 4 < 1/2
iff |[A] < 1. Therefore p(range(Qy) N [0,1/2]) = 0. We will prove that
{(range @y )° 0 [0, 1/2]) > 0
Let {®;}icw be an effective enumeration of all finite unions of open intervals
with dyadic rational endpoints. We construct a prefix-free oracle machine N.
By the recursion theorem for prefix-free oracle machines, we may assume in
advance that we know the prefix p by which V' simulates N.% Given an oracle
A € 2%, find the least n € w such that A(n) = 1. Intuitively, N4 will try
to prevent QA from being in O,. Whenever a stage s € w occurs such that
Qils] € On and (Vo € 2<%) VA(po) [s] N4(c)[s], then N4 acts as follows.
Let & be the least number such that Q£ [s]+¢ € On and note that ¢ is necessarily
a dyadic rational. If possible, N converges on additional strings with total
measure 21le. This would ensure that Q4 > Qf[s] +¢. If p@, < 271, then
N4 cannot run out of room in its doma,m and we have Q# ¢ O,,.
Assume, for the sake of contradiction, that u((range Qv)c n[o,1/2) = 0.
Then there is an open cover of (range v )® N [0,1/2] with measure less than
—lol. We may assume that all intervals in this cover have dyadic rational
endpoints. Because (range2y}° N[0, 1/2] is compact, there is a finite subcover
O,. But u0®, < 27l implies that Q%1% ¢ ©O,. This is a contradiction, so
p{{range Qv )N [0,1/2]) > 0. ]

Note that the proof above shows that if U is a universal prefix-free oracle
machine and A = {Q%'1},z,, then A° has positive measure and A° ~ A
contains only 2-randoms.

Having constructed a specific Omega operator whose range is not closed, it
is natural to ask if this is always the case.

Question 4. Is it true for every universal prefix-free oracle machine U that
range(§ly) is not closed?

In the other direction, we have no nontrivial upper-bound on the complexity
of the range of .

4The recursion theorem for prefix-free oracle machines is a straightforward application of
the relativized recursion theorem.
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Question 5. Is range(Qly) an arithmetical class (or even Borel) for a universal
prefix-free oracle machine U?

Related to both questions, note that (range ;)¢ is an arithmetical class.
Proposition 9.7. (range )¢ is o II§ class.

Proof. It is easy to verify that a € (range Qy)© iff

a
<w U[lal] >a—€N
(Ve > 0)37 € 2%) | (v > 1a)@r > 0) |7 = n A Q0] <ae |’
where € ranges over rational numbers. This is a IIg definition because the final
existential quantifier is bounded. O
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