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Abstract. Suppose F (ε), for each ε ∈ [0, 1], is bounded Borel subset of Rd and F (ε) → F (0) as ε → 0.
Let A(ε) = F (ε)4F (0) be symmetric difference and P be an absolutely continuous measure on Rd. We
introduce the notion of derivative of F (ε) with respect to ε, dF (ε)/dε = dA(ε)/dε such that

d

dε
P(A(ε))|ε=0 = Q(

d

dε
A(ε)|ε=0),

where Q is another, explicitly described, measure, although not in Rd.
We discuss why this sort of derivative is needed to study local point processes in neighbourhood of a

set: in short, if sequence of point processes Nn, n = 1, 2, . . . , is given on the class of set valued mappings
F = {F (·)} such that all F (ε) converge to the same F = F (0), then the weak limit of the local processes
{Nn(A(ε)), F (ε) ∈ F} “lives” on the class of derivative sets {dF (ε)/dε|ε=0, F (·) ∈ F}.

We compare this notion of the derivative set-valued mapping with other existing notions.
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§1. Introduction

Consider a set-valued mapping F (ε), ε ∈ [0, 1] such that each F (ε) is a
bounded Borel subset of Rd. Function-valued mappings, f(ε, ·), being for
each ε ∈ [0, 1] a function (from some measurable space X into, say, R), are a
very common object and we know, in particular, that the directional deriva-
tive in ε is again a function from X to R. We would like to be able to say that
the directional derivative of F (ε) in ε is again a set, although not perhaps
necessarily in Rd. Denote A(ε) = F (ε)4F (0). Given a measure, P , in Rd

we would like also to give meaning to the formal equality

d

dε
P(A(ε))|ε=0 = Q(

d

dε
A(ε)|ε=0),

where Q is some other measure depending only on P and on the initial set
F (0) but not on the choice of mapping F (ε) .

The theory of set-valued mappings has not been used much in a probabilistic
context so far 1. It has been used in the statistical context even less – we
know of no reference here. However, we will argue below that an extension
of a well-known class of the statistical problems pertaining to the so called
local empirical processes is essentially connected with the “local” analysis of
set-valued mappings and naturally leads to the notion of its derivative.

The theory of set-valued mappings, rapidly developing in recent times, in-
corporates several notions of the derivative of F (ε). Perhaps most general
is the one when the derivative is understood as a family of tangent cones to
the graph of the function F (ε), ε ∈ [0, 1], like contingent derivative of Aubin
([3]), Clarke derivative, and related notions. The corresponding theory is pre-
sented, e.g., in [3], Ch.4-5. Derivatives of a set-valued mapping when F (ε)
can be even a scalar function but ε takes values in, possibly, a complicated
subset of Rd or in infinite-dimensional spaces, are given in [23], Ch.8; see also
the fundamental survey paper [6].

In the papers [13] and [20] the notions of affine, semi-affine and ecliptic map-
pings are suggested in the role of differential mapping. In [26] the theory of
quasi-affine mappings, as generalizations of affine and semi-affine mappings,

1We refer to the papers [2],[4],[19] as to important exceptions we know of.
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was developed. The sets F (ε) there are convex and bounded and, moreover,
the graph of F (ε), ε ∈ [0, 1], is a convex set. A related but technically differ-
ent notion of multi-affine mapping was introduced and studied in [1].

Another very beautiful approach of [22] and [28] suggests measures on the
boundary ∂F , the Radon-Nikodym derivatives of µd(F (ε)) with respect to
dε, as the derivatives of F (ε). In [28] this approach is studied for the convex-
valued mappings, i.e. when all F (ε) are convex. It can be used in a more
general set-up, as can be seen, in particular, in Theorem 1 below (see also
short comments in §4 later).

The approach of the present paper is different from those mentioned above.
It is based on the local Steiner formula, which connects Lebesgue measure
of small “deformations” of a set F with so called support measures of the
boundary ∂F . In this respect our basic reference is [24].

Our interest in differentiation of F (ε) and the need to have a set as the deriva-
tive of F (ε) stems from our attempt to develop the theory of local empirical
processes in the neighbourhood of a given set, F = F (0). The local empirical
process in R1, that is, the empirical point process in the neighborhood of a
point c ∈ R1 (or at ∞) appears in a very large number of statistical prob-
lems and forms a classical object of statistics. In multidimensional spaces
the theory of local empirical process, again in the neighborhood of a point
(or outside a large sphere) is a relatively recent development and we refer to
the well-known papers [8], [9], [10], and, perhaps, [16], among others.

The local point process in the neighborhood of a set is a new object in statis-
tical theory. To the best of our knowledge, the paper [18] is the first step in
this direction. As far as a set is a more rich and diverse object than a point,
the theory of local point processes in the neighborhood of a set promises to
be more interesting and rich.

We describe these local processes and the need for set-differentiation in the
separate short section.

In this paper we consider the case when F (0) is convex body, whilst F (ε) are
more or less arbitrary. In particular, F (ε) can be a union of disjoint com-
ponents. Generalization to the case when F (0) is the finite union of convex
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bodies is more or less clear – see, e.g. [24], Ch.4.4. The extension to the case
when F (0) can be any bounded set with “smooth” boundary (in technical
terms – with a boundary of positive reach – see [12] or [24], p.212, or §2
below), or finite union of these, is immediate. The situation with arbitrary
bounded F we hope to consider in later publications. This hope is connected
with the recent results [14] on the existence of support measures and the
local Steiner formula for arbitrary bounded F .

§2. Local Poisson processes

Consider a sequence Nn, n = 1, 2, . . . , of Poisson point processes in Rd with
intensity measure ENn(A) = nP(A), where P is some given measure. As we
know, for any Borel subset A ⊂ Rd, Nn(A) counts the number of random
points in Rd that fall in A. Therefore as n → ∞ the number of points in
each given A of positive measure P grows unboundedly.
Let Vε(∂F ) be a neighborhood of the boundary ∂F :

Vε(∂F ) = {z ∈ Rd : ‖z − ∂F‖ ≤ ε}.

One can think of sets A ⊆ Vε(∂F ) as describing “small” deviations from F :
A = F ′4F with F ′ depending on ε and tending to F as ε → 0. Consider
now a restriction of Nn to Vε(∂F ),

Nnε = {Nn(A), A ⊆ Vε(F )},

and let n → ∞ and ε → 0 simultaneously. This sequence of processes one
can naturally call a local Poisson process in the neighborhood of the set F .
The question is what is the limit of this process and where does this limit
“live”? We will presently see that to think about the limiting process as
living on the boundary ∂F is not satisfactory.

Suppose that nP(Vε(∂F )) converges to a constant as n → ∞ and nε → 1.
Then, for a given choice of A(ε) ⊆ Vε(∂F ), it is natural to expect that
ε−1P(A(ε)) converges to a finite limit, say, l, and therefore Nn(A(ε)) con-
verges in distribution to a Poisson random variable N with intensity (ex-
pected value) l. However, it would be much nicer to be able to say that there
is a set, say, B, not necessarily in Rd as we will argue below, and such that
the limiting N is again a count of some other random points in this B, and
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that its intensity, being the limit l, is actually the value of some measure
Q on B, l = Q(B). For statistical applications we would need to consider
various classes of set-valued mappings F (ε). If we could say that each F (ε)
has the derivative set B at ε = 0, then we will obtain the counting process
N(B) living on the class of the derivative sets, with intensity measure Q(B),
and thus obtain the limiting object we would not have otherwise.

Existence of the limiting class of derivative sets is equally important for Gaus-
sian limit theorems for the processes Nnε, for laws of iterated logarithm and
for other limit theorems.

To describe our notion of derivative sets in a simple situation consider the
following examples of A(ε). For the planar case, with d = 2, suppose that the
boundary ∂F contains interval {a ≤ x ≤ b, y = 0} with some a < b. Suppose
the measure P is absolutely continuous and its density p(x, y) is continuous
in y at y = 0. Consider the sets

A(ε) = {a ≤ x ≤ b, 0 ≤ y < εg(x)},

as ε → 0, where g is, say, some positive bounded function. (We will con-
sider broader class of functions in §5.) It is straightforward to derive the
asymptotic

nP{A(ε)} ∼ ε−1

∫ b

a

∫ εg(x)

0

p(x, y)dxdy ∼
∫ b

a

g(x)p(x, 0)dxdy,

and therefore to conclude that the Nn(A(ε)) converges in distribution to
Poisson random variable with intensity equal to the right hand side above.
However, if we consider the set

A−(ε) = {a ≤ x ≤ b,−εg(x) ≤ y < 0},

the asymptotics for nP{A−(ε)} will be exactly the same. Since sets A(ε)
and A−(ε) are disjoint, the random variables Nn(A(ε)) and Nn(A

−(ε)) are
independent and converge in distribution to independent Poisson random
variables. Moreover, one can consider sets of the form Ak(ε) = {a ≤ x ≤
b, (k − 1)εg(x) ≤ y < kεg(x)} for different integer values of k and Poisson
random variables Nn(Ak(ε)) for these values of k will all be independent
and will converge to independent Poisson random variables with the same
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intensity. Therefore it will not be good to label all these limiting Poisson
random variables by one and the same label – their intensity. What this
paper says instead, however, is the following: there is a measure Q(dx, ds) =
p(x, 0)dxds, quite independent of the choice of Ak(ε), and sets,

Bk = {a ≤ x ≤ b, (k − 1)g(x) ≤ s < kg(x)},

completely specified by these Ak(ε), such that

ε−1P{Ak(ε)} ∼ Q(Bk).

These Bk we interpret as the derivatives of Ak(ε) at ε = 0.

So far the derivative sets belonged to the same R2 as the sets Ak(ε). However,
as soon as instead of the interval {a ≤ x ≤ b, y = 0}, we have a (segment
of) curve, it would not be really possible to stay in R2 and we would need
to create an additional dimension. Indeed, suppose that F is a unit ball and
suppose that x is a point on its boundary ∂F (which is a unit sphere). Let
A(ε) = {z ∈ F : ‖z−∂F‖ ≤ εT}. This is the set of the same nature as A−(ε)
above but with the function g equal to constant T . Now if we “stretch” the
A(ε), as we did in the previous cases, for the values T > 1 there will be
overlap, one-to-oneness will be lost, disjoint sub-sets will be mapped into
overlapping subsets and the whole situation will become unnatural. Instead,
the paper suggests to create “additional” dimension and consider the cylinder
R× ∂F and to map “stretched” subgraph on it. We will need to be slightly
more careful about which cylinder to use, as it is explained in §3 and §4.

As we noted earlier, local Poisson process in the neighbourhood of a set
was considered for the first time in [18] and for it the Poisson limit theorem,
among other things, was proved without any use of the derivative sets (which
the authors did not have at that time). This was possible because the process
Nnε was considered on the whole σ-algebra of Borel subsets of Vε(∂F ) and this
σ-algebra was mapped on the Borel σ-algebra of the cylinder R× ∂F (more
precisely - of the cylinder Σ – see below). In this way asymptotic behavior
of individual sequences Nn(A(ε)) and A(ε) becomes not very important and
not very visible. However, for the limit theorems on more restricted classes,
like, e.g., Gaussian limit theorem, it is, in our view, unavoidable to develop
the notion of derivative sets. In the last §6 we illustrate this type of limit
theorems also in Poissonian case.
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§3. Some preliminaries

Let F be a closed convex body in Rd, that is, a closed convex set with interior
points in Rd. Let ∂F denote the boundary of F and let P∂F (z) denote the
metric projection of z ∈ Rd on ∂F , that is, P∂F (z) is the nearest point to z
from ∂F :

||z − P∂F (z)|| = min
x∈∂F

||z − x||.

The skeleton of ∂F is the set S∂F defined as

S∂F = {z ∈ Rd : P∂F (z) is not unique}.

It is known that µd(S∂F ) = 0, where µd is Lebesgue measure in Rd (see [14]).

Let now Bd(z, r) denote the closed ball with centre z and radius r. We will
need to use the so called local (interior) reach r(x), x ∈ F ([12]):

r(x) = max{r : Bd(z, r) ∈ F, Bd(z, r) ∩ ∂F 3 x}.

If r(x) > 0, the outer normal u to F at x ∈ ∂F (with the norm ‖u‖ = 1) is
unique, and −u is its (unique) inner normal. Denote Reg(F ) the set of all
points of ∂F which have unique outer normal. In general, however, at each
x ∈ ∂F there is a bundle of unit length outer normals which we denote N(x).

The generalized normal bundle of F is defined as follows:

Nor(F ) = {(x, u) : x ∈ ∂F, u ∈ N(x)}.

We use it to construct the cylinder Σ = R×Nor(F ) along with its subsets

Σ+ = (0,∞)×Nor(F ) and Σ− = (−∞, 0]×Nor(F ).

For visualization purposes it will often be easier to consider the cylinder
Γ = R × Reg(F ) and to project sets of Σ onto sets from Γ by letting
(t, x, u) 7→ (t, x). For F with all its boundary points regular, Reg(F ) = ∂F ,
one could use Γ from the very beginning. However, for general F this will
be unsatisfactory as we need to control the contributions of “small” defor-
mations of F in vicinity of irregular points of its boundary (see §3 below).
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We define now the local magnification map τε. Denote d(z) the signed dis-
tance function

d(z) =

{
‖z − P∂F (z)‖, if z ∈ Rd \ F
−‖z − P∂F (z)‖, if z ∈ F.

Then any point z ∈ Rd \ S∂F can be represented as

z = P∂F (z) + d(z)u,

with u = (d(z))−1(z − P∂F (z)) if d(z) 6= 0. Now define

τε(z) = (
d(z)

ε
, P∂F (z), u), z ∈ Rd \ S(∂F )

Lemma 1. (i) τε(·) maps the set Rd \ F onto Σ+ :

τε(Rd \ F ) = Σ+

(ii) τε(·) maps the set F \ S∂F into Σ−:

τε(F \ S∂F ) = {(−r(x)
ε
, 0]× (x, u) : (x, u) ∈ Nor(F )} ⊆ Σ−

(iii) If S∂F is nowhere dense then τε(·) is piecewise continuous and hence
Borel measurable.

§4. Definition of differentiability

Consider a set-valued mapping F (ε), 0 ≤ ε ≤ 1, such that F (0) = F . With
F (ε) one can naturally associate “increments” A+(ε) = F (ε) \ F , A−(ε) =
F \ F (ε) and A(ε) = A+(ε) ∪A−(ε) = F (ε)4F . It is natural to expect that
the differentiability of F (ε) at F is equivalent to the differentiability of A(ε)
at (as we prefer to say) ∂F .
We will use notation τε(F (ε)4F ) for the image of the symmetric difference
F (ε)4F in the local magnification map:

τε(F (ε) \ F ) = B+(ε) ⊆ Σ+, τε(F \ F (ε)) = B−(ε) ⊆ Σ− (1)

and the other way around

F (ε) = F ∪ τ−1
ε (B+(ε)) \ τ−1

ε (B−(ε)).

The relationship between the subsets F (ε) in Rd and their images in Σ es-
tablished by (1) is shown in the following lemma.
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Lemma 2. Let F1, F2, F
′ be in Rd and B1, B2, B

′ be the images of the cor-
responding symmetric differences in Σ. If B′ = B1 ∪B2, then

F ′ = F ∪ τ−1
ε (B+

1 ∪B+
2 ) \ τ−1

ε (B−
1 ∪B−

2 ),

and if B′ = B1 ∩B2, then

F ′ = F ∪ τ−1
ε (B+

1 ∩B+
2 ) \ τ−1

ε (B−
1 ∩B−

2 ).

The other way around: if F ′ = F1 ∪ F2 then

B′ = (B+
1 ∪B+

2 ) ∪ (B−
1 ∩B−

2 ),

and if F ′ = F1 ∩ F2 then

B′ = (B+
1 ∩B+

2 ) ∪ (B−
1 ∪B−

2 ).

Heuristically speaking this means that the union of sets in Σ “squeezes F ′

out of F”, while the intersection of sets in Σ “pulls F ′ into F”.

According to the local Steiner formula for any function f integrable with
respect to the Lebesgue measure µd in Rd∫

Rd

f(z)µd(dz) =
d∑
j=1

(
d− 1

j − 1

) ∫
Nor(F )

∫ ∞

−r(x)
f(x+ tu)tj−1dtθd−j(d(x, u)).

(2)
Here θd−1(A), . . . , θ0(A) are finite Borel measures on Nor(F ) called support
measures of F (see [24] for the theory of support measures). In particu-
lar, θd−1(·) is Hausdorff measure on ∂F . For f(z) = IA(z) being indicator
function of a set A ∈ Rd we obtain

µd(A) =
d∑
j=1

(
d− 1

j − 1

) ∫
Nor(F )

∫ ∞

−r(x)
IA(x+ tu)tj−1dtθd−j(d(x, u)). (3)

Denote Fε and F−ε the outer and inner parallel sets to the set F :

Fε = F + εBd(0, 1) and F−ε = F
?
− εBd(0, 1)

(that is F−ε = {z ∈ Rd : z + εBd(0, 1) ∈ F}). Denote M the measure on Σ
defined as the direct product

M(ds, d(x, u)) = ds× θd−1(d(x, u)).
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Definition 1. Call the (Borel) set-valued mapping A(ε), 0 ≤ ε ≤ 1, differ-
entiable at ∂F at ε = 0 if for ε→ 0
(B) there exists finite T > 0 such that ε−1µd(A(ε)∩ (FTε \F−Tε)c) → 0 and
(D) there exists a Borel set B ∈ Σ such that M(τε(A(ε))4B) → 0.
Call the set B the derivative of A(ε) at ∂F .

Definition 2. Call the (Borel) set-valued mapping F (ε), 0 ≤ ε ≤ 1, differ-
entiable at F at ε = 0 if F (ε)4F is differentiable at ∂F . The derivative of
F (ε) at F is then defined to be the same as the derivative of F (ε)4F at ∂F .
In notations

d

dε
F (ε)|ε=0 =

d

dε
A(ε)|ε=0 = B.

The connection between the two definitions is, of course, the same as be-
tween the statements that f(ε, ·) is differentiable if and only if the increment
f(ε, ·)− f(0, ·) is differentiable and both have the same derivative.

Note that B is not unique, but can be changed on a set of M measure 0. It al-
lows, therefore, some manipulation with points on the boundary, for example.

The next lemma shows some algebraic properties of the differentiation.

Lemma 3. (i) If A1(ε) and A2(ε) are differentiable at ∂F and B1 and B2 are
corresponding derivatives, then A1(ε)∪A2(ε), A1(ε)\A2(ε) and A1(ε)∩A2(ε)
are also differentiable at ∂F and the derivatives are B1 ∪ B2, B1 \ B2 and
B1 ∩B2 respectively.
(ii) If F1(ε) is differentiable at F and A2(ε) is differentiable at ∂F and B1

and B2 are corresponding derivatives, then F1(ε) ∪ A2(ε) is differentiable at
F and the derivative is B with B+ = B+

1 ∪ B+
2 and B− = B−

1 \ B−
2 . At the

same time F1(ε) \ A2(ε) is also differentiable at F and the derivative is B
with B+ = B+

1 \B+
2 and B− = B−

1 ∪B−
2 .

(iii) For a ∈ R and B ⊆ Σ define aB = {(as, x, u) : (s, x, u) ∈ B}. Let f(ε)
be continuous increasing function differentiable at 0 and f(0) = 0. If F (ε) is
differentiable, then F (f(ε)) is also differentiable and the derivative is f ′(0)B.

Proof. (i) If T1, T2 are corresponding constants from condition (B) then
T = max(T1, T2) is a suitable constant for A1(ε) ∪ A2(ε) and A1(ε) ∩ A2(ε),
while T1 is a suitable constant for A1(ε) \A2(ε): for this choice of constants
the condition (B) will be satisfied. Consider condition (D). It is well-known
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(see, e.g. , [25], §2) that M(·4·) defines a (pseudo)metric in the class of Borel
subsets of Σ. Hence, the condition (D) states that Bi(ε) = τε(Ai(ε)) converge
to Bi, i = 1, 2, in this metric. However, τε preserves set-theoretic operations,
and these operations are continuous in the metric M(·4·). Namely, consider

τε(A
+
1 (ε) ∪ A+

2 (ε)) = B+
1 (ε) ∪B+

2 (ε)

and
τε(A

−
1 (ε) ∩ A−

2 (ε)) = B−
1 (ε) ∩B−

2 (ε).

If B1 and B2 denote the corresponding derivatives, then elementary inequal-
ities

|IB1(ε)∪B2(ε) − IB1∪B2| ≤ |IB1(ε) − IB1|+ |IB2(ε) − IB2|

and
|IB1(ε)∩B2(ε) − IB1∩B2| ≤ |IB1(ε) − IB1|+ |IB2(ε) − IB2|

integrated with respect to measure M(dt, d(x, u)) lead to the result. Consid-
erations for the difference A1(ε) \ A2(ε) are similar.
(ii) Consider (F1(ε) ∪ A2(ε)) \ F = (F1(ε) \ F ) ∪ (A2(ε) \ F ). Then from
the statement (i) it follows, that the difference on the left hand side has the
derivative B+ = B+

1 ∪ B+
2 . Similarly, the equality F \ (F1(ε) ∪ A2(ε)) =

(F \ F1(ε)) \ A2(ε) and statement (i) imply that the derivative of the left
hand side exists and is equal to B−

1 \ B−
2 . Also, for F1(ε) \ A2(ε) the equal-

ity F1(ε) \ A2(ε) \ F = F1(ε) \ F \ A2(ε) and (i) imply that the derivative
of the left hand side is B+

1 \ B+
2 while the equality F \ (F1(ε) \ A2(ε)) =

(F \ F1(ε)) ∪ (F ∩A2(ε)) and (i) implies that the derivative of the left hand
side is equal to B−

1 ∪B−
2 .

(iii) To prove this statement it is sufficient to note that

τε(A(f(ε))) =
f(ε)

ε
τf(ε)(A(f(ε))) =

f(ε)

ε
B(f(ε)).

Since f(ε) → 0 as ε→ 0 the set B(f(ε)) converges to B. �

Suppose P is an absolutely continuous measure in Rd and denote its density
by p. Suppose also that on bounded sets P is finite. We would like to
require that the density p(z) can be approximated in the neighborhood of
∂F by a function depending on P∂F (z) only. However, it is possible that the
approximating functions are different for z tending to P∂F (z) from outside
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F and from inside F (cf. §6 below). Hence our formal requirement is that
there are two functions p̄+ and p̄− on ∂F , such that

1

ε

∫
Fε\F

|p(z)− p̄+(P∂F (z))|µd(dz) → 0

1

ε

∫
F\F−ε

|p(z)− p̄−(P∂F (z))|µd(dz) → 0 (4)

Now define a measure Q on Σ as follows:

Q(ds, d(x, u)) = ds× p̄+(x)θd−1(d(x, u)) for s ≥ 0,

Q(ds, d(x, u)) = ds× p̄−(x)θd−1(d(x, u)) for s < 0. (5)

Let θcd−j denote the part of θd−j absolutely continuous with respect to θd−1.
Recall that these measures “live” on the set Reg(F ).

Theorem 4. Suppose measure P satisfies condition (4) and suppose p̄+ and
p̄− are integrable with respect to θcd−j, j = 1, . . . , d. If

ε−1P(A(ε) ∩ (FTε \ F−Tε)c) → 0 as ε→ 0,

and if A(ε) is differentiable at ∂F (with derivative B ∈ Σ) then

d

dε
P(A(ε))|ε=0 = Q(

d

dε
A(ε)|ε=0)(= Q(B)).

Remark 1. It is interesting to note that, as it can be seen from the proof
below, the higher order measures tj−1dt× θd−j(d(x, u)), j = 2, . . . , d, do not
have to be finite on the derivative set B.

Corollary 5. Under conditions of the theorem

d

dε
P(F (ε))|ε=0 = Q(

d

dε
A+(ε)|ε=0)−Q(

d

dε
A−(ε)|ε=0).

Proof. It consists of establishing asymptotics for ε−1P(A(ε)). From the
condition of the theorem it follows, that in doing so we can assume that
A(ε) ∈ FTε \ F−Tε. We can also put T = 1. Consider an “intermedi-
ate” measure P̄ on FTε \ F−Tε with the density p̄+(P∂F (z)) or p̄−(P∂F (z))
according to z ∈ FTε \ F or z ∈ F \ F−Tε. Condition (4) implies that
ε−1[P(A(ε)) − P̄(A(ε))] → 0 uniformly in A(ε). Therefore we can consider
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now only ε−1P̄(A(ε)).
1) First consider ε−1P̄(A−(ε)). From the local Steiner formula it follows that

P̄(A−(ε)) =

∫
Nor(F )

∫ 0

−min(r(x),ε)

p̄−(x)IA−(ε)(x+ tu)dt θd−1(d(x, u))+

d∑
j=2

(
d− 1

j − 1

) ∫
Nor(F )

∫ 0

−min(r(x),ε)

p̄−(x)IA−(ε)(x+ tu)tj−1dt θd−j(d(x, u)).

The sum of the higher order terms here is negligibly small. Indeed, for each
integral we have

j

∫
Nor(F )

p̄−(x)|
∫ 0

−min(r(x),ε)

IA−(ε)(x+ tu)tj−1dt| θd−j(d(x, u))

≤
∫
Nor(F )

p̄−(x)(min(r(x), ε))jθd−j(d(x, u)) ≤ εj
∫
Nor(F )

p̄−(x)θcd−j(d(x, u))

and the integral on the right hand side is finite. Therefore the sum is O(ε2).
2) It remains to see what is the asymptotic expression of the first summand.
We have

ε−1

∫
Nor(F )

∫ 0

−min(r(x),ε)

p̄−(x)IA−(ε)(x+ tu)dtθd−1(d(x, u)) =

=

∫
Nor(F )

∫ 0

−min(r(x)/ε,1)

p̄−(x)IB−(ε)(t, x, u)M(dt, d(x, u)).

However, with B−(ε) = τε(A
−(ε)), the differentiability implies that the func-

tion |IB−(ε)(t, x, u)− IB−(t, x, u)| tends to 0 M−a.e. on Σ− and the Lebesgue
majorised convergence theorem implies that∫

Nor(F )

∫ 0

−1

p̄−(x)|IB−(ε)(t, x, u)− IB−(t, x, u)|M(dt, d(x, u)) → 0

3) Consider now ε−1P̄(A+(ε)). Again, from the local Steiner formula it follows
that

P̄(A+(ε)) =
d∑
j=1

(
d− 1

j − 1

) ∫
Nor(F )

∫ ε

0

p̄+(x)IA+(ε)(x+ tu)tj−1dtθd−j(d(x, u))

13



However, the sum of the higher order terms here is again negligibly small,
this time - without additional assumption on p̄+. Indeed,

ε−1

d∑
j=2

(
d− 1

j − 1

) ∫
Nor(F )

∫ ε

0

p̄+(x)IA+(ε)(x+ tu)tj−1dtθd−j(d(x, u))

≤ 1

d

d∑
j=2

(
d

j

)
εj−1

∫
Nor(F )

p̄+(x)θd−j(d(x, u)) = O(ε)

because again, each integral on the right hand side is finite: applying condi-
tion (4) and local Steiner formula to Fε \ F we obtain

P(Fε \ F ) ∼ P̄(Fε \ F ) =
1

d

d∑
j=1

(
d

j

)
εj−1

∫
Nor(F )

p̄+(x)θd−j(d(x, u))

and therefore all integrals indeed must be finite.
4) Asymptotic for the first summand follows in the same way as in 2). �
Let (x, u) ∈ Nor(F ). The section of a set A by the line z = x+ tu (for t ∈ R)
is the set

A(x,u) = {z ∈ A : P∂F (z) = x, z − x ∈ Ru}.

Similarly, the set
τε(A(x,u)) = τε(A)(x,u) = B(x,u)

is the section of B ∈ Σ by the line R× (x, u).

Definition 3. Call the section A(x,u)(ε) of A(ε) differentiable at (x, u) ∈
Nor(F ) at ε = 0 if for ε→ 0
(B) there exists T > 0 such that j = 2, . . . , d

ε−1

∫
(I(−r(x),−min(r(x),T ε)](t) + I[Tε,∞)(t))IA(x,u)(ε)(x+ tu)tj−1dt→ 0,

and
(D) there exists B(x,u) ∈ R× (x, u) such that∫ ∞

−r(x)/ε
IB(x,u)(ε)4B(x,u)

(s)ds→ 0.

14



Recall that r(x) is the local reach of F at x.
Equivalent form of (B) is, of course, that for j = 2, . . . , d

εj−1(

∫ −min(r(x)/ε,T )

−r(x)/ε
IB(x,u)(ε)(s)s

j−1ds+

∫ ∞

T

IB(x,u)(ε)(s)s
j−1ds) → 0.

Remark 2. The role of the boundedness condition (B) may look in this
definition somewhat peculiar. Indeed, let for simplicity A(x,u) be a subset of
the ray x + tu, t ≥ 0. For given x and u there is no sign of any presence
of the set F or any Steiner formula associated with it, and therefore it may
look strange to require anything except the proper differentiability condition
(D), saying that the set ε−1A(x,u)(ε) should “stabilize” as ε → 0. However,
we will need this condition later on when we “assemble” sections A(x,u)(ε) in
one set A(ε) around ∂F . Situation when (B) is not satisfied is discussed in
the following example.

Example 1. Let A(ε) be a “uniformly narrow” strip around ∂F , A(ε) =
Fα′(ε) \ F−α(ε) with α′(ε), α(ε) > 0. Then each of its sections is the interval

A(x,u)(ε) = {z = x+ tu : −min(r(x), α(ε)) < t ≤ α′(ε)}

while
τε(A(x,u)(ε)) = (−ε−1min(r(x), α(ε)), ε−1α′(ε)]× (x, u)

Therefore A(x,u)(ε) is differentiable if and only if ε−1α(ε) → a and ε−1α′(ε) →
a′, and the derivative set is B(x,u) = (−a, a′] × (x, u). The mapping A(ε)
itself is differentiable under the same condition and the derivative is the set
B = (−a, a′]×Nor(F ). Both statements can be proved formally by isolating
the set of (x, u) where the local reach r(x) is small enough - just as was
done in the proof of Theorem 4. The finite union of strips gives, in the
present context, little new, but let us consider the countable union of strips,
all outside F , say:

A(ε) = ∪∞i=1(Fa′iε \ Faiε)

with ai < a′i < ai+1, i = 1, 2, . . . . Then

A(x,u)(ε) = {z = x+ tu : t ∈ ∪∞i=1(εai, εa
′
i]}

and
τε(A(x,u)(ε)) = ∪∞i=1(ai, a

′
i]× (x, u)
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And this same set could be the derivative set, provided
∑∞

i=1 |a′i − ai| <∞.
However, it may well be that this condition is satisfied and yet, for j ≥ 2,

1

ε

∫
t∈∪∞i=1[εai,εa′i]

tj−1dt = εj−1 1

j

∞∑
i=1

|(a′i)j − aji | = ∞

and (B) is violated. The condition (B) of Definition 1 is then also violated
since

ε−1µd(A(ε) ∩ F c
Tε) =

= θd−1(Nor(F ))
∑
i:ai≥T

|a′i−ai|+
1

d

d∑
j=2

(
d

j

)
εj−1θd−j(Nor(F ))

∑
i:ai≥T

|(a′i)j−a
j
i |

= ∞.

So, although there is the “stable” first term, the contribution from the higher
order support measures is too high (infinite) and hence A(ε) is not called
here differentiable. This can not happen, however, if the sequence {a′i}∞1 is
bounded, i.e. A(x,u)(ε) ⊆ FTε.
The following theorem shows the connection between the differentiability
of A(ε) and of its sections in general. It is direct consequence of Fubini’s
theorem.

Theorem 6. Suppose each integral in (B) of the Definition 3 is majorised
by some function φj(x, u) integrable with respect to all measures θd−j. Then
A(ε) is differentiable (at ∂F at ε = 0) if sections A(x,u)(ε) are differentiable
at θd−1 -almost all (x, u) ∈ ∂F . The derivative of A(ε) is the set

B = ∪(x,u)∈Nor(F )B(x,u)

where B(x,u) is the derivative of A(x,u)(ε).

Proof. 1) For the inner integrals in (3) we obtain, from (B) of Definition 3,

ε−1

∫ ∞

−r(x)
IA(x,u)(ε)(x+tu)t

j−1dt ≤ ε−1

∫ Tε

−min(r(x),T ε)

IA(x,u)(ε)(x+tu)t
j−1dt+o(1)

≤ 1

j
εj−12T j + o(1) = o(1), j ≥ 2, ε→ 0.
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Since these integrals are also majorised by θd−j-integrable functions then

1

ε

d∑
j=2

(
d− 1

j − 1

) ∫
Nor(F )

θd−j(d(x, u))

∫ ∞

−r(x)
IA(x,u)(ε)(x+ tu)tj−1dt→ 0.

2) Since (B(ε)4B)(x,u) = B(x,u)(ε)4B(x,u) we have∫
IB(ε)4B(t, x, u)dtθd−1(d(x, u)) =

∫
θd−1(d(x, u))

∫
IB(x,u)(ε)4B(x,u)

(t)dt

and the inner integral → 0 because of the condition (D) of Definition 3.
�

Example 2. Let Qε be some positive definite matrix, which tends to the
identity matrix I as ε → 0 and consider ellipsoids F (ε) = {x : xtQεx ≤ 1}.
Then F = F (0) is the unit ball. Obviously, the normal at x ∈ ∂F is x itself.
To find t such that x+ tu = (1 + t)x ∈ ∂F (ε) we need to solve the equation
(1 + t)2xtQεx = 1. Suppose that Qε = I + εD + o(ε). Then

t = −1

2
εxtDx+ o(ε)

and therefore the derivative of the section A(x,x)(ε), or rather projection of
this derivative on Γ, is either (0,−xtDx/2]× x or (−xtDx/2, 0]× x depend-
ing on whether xtDx is negative or positive. Theorem 6 implies that F (ε) is
differentiable and its derivative is the union of the sections above.

Example 3. Let again F = F (0) be the unit ball, but this time assume that
with ε increasing new “flanks” can branch away from it. Let again d = 2.
We compare two cases, Fi(ε) = F (0)∪Ai(ε), i = 1, 2. In the first case we set
F (ε) = {x : (1− ε)x2

1 +x2
2 ≤ 1} and choose A1(ε) = F (2ε)\F (ε) as the strip

between the two ellipsoids, while in the second one A2(ε) = Bd((1 + ε)z0, ε)
is simply a shifted “small” ball. Here z0 is a fixed unit vector.
Then, as it follows from Lemma 3, F1(ε) is differentiable. The mapping F2(ε)
also is differentiable, but its derivative is set of measure 0. More precisely,
the set ({0} × ∂F ) ∪ ((0, 2]× z0) is (the projection of) the limit of τε(A2(ε))
in Hausdorff metric, but its M measure is 0. If we replace ε in A2(ε) by

√
ε

this will not improve the situation: the quotient ε−1µd(A2(ε)) will have a
finite limit, but there will be no limiting set for τε(A2(ε)) in metric M(·4·).
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Both F1(ε) and F2(ε) are differentiable at any other value of ε > 0.

§5. Further properties. Some discussion and examples.

“Deformations” A(ε) as subgraphs.
One class of “small deformations” of the set F is naturally based on the notion
of “small” functions, given on the normal bundle of F . Let hε, ε ∈ [0, 1], be
a family of the functions on Nor(F ), which we will later assume small for
small ε, and let h+

ε and h−ε be positive and negative parts of hε. Consider
the sets in Rd

A+(hε) = {z ∈ Rd \ F : 0 < d(z) ≤ h+
ε (x, u)}

A−(hε) = {z ∈ F \ S∂F : −h−ε (x, u) < d(z) ≤ 0}
A(hε) = A+(hε) ∪ A+(hε) (6)

where, as always, x = P∂F (z) and u is the outer normal at x. One could call
the set A(hε) a subgraph of hε, but we rather reserve this term for its image
τε(A(hε)). For a function g on Nor(F ), call the subsets of Σ defined as

g+
sub = {(t, x, u) : 0 < t ≤ g+(x, u)}, g−sub = {(t, x, u) : −g−(x, u) < t ≤ 0}

and
gsub = g+

sub ∪ g
−
sub

the subgraphs of g+, g− and g respectively. Then

τε(A
+(hε)) = g+

ε,sub, where g+
ε,sub = ε−1h+

ε

τε(A
−(hε)) = g−ε,sub, where g−ε,sub = ε−1 min(r(·), h−ε ). (7)

The next theorem connects differentiability of functions hε in ε with the dif-
ferentiability of sets A(hε).

Denote ‖h‖j the norm of h in the space Lj(θd−j),

‖h‖j = (

∫
Nor(F )

(h+(x, u))jθd−j(d(x, u)))
1/j+(

∫
Nor(F )

(h−(x, u))jθcd−j(d(x, u)))
1/j

We say that hε is L1-differentiable if there is a function g ∈ L1(θd−1) such
that ‖ε−1hε − g‖1 → 0.

18



Theorem 7. If ‖hε‖j = o(ε1/j), j = 2, . . . , d, then A(hε) is differentiable if
and only if hε is L1-differentiable. In this case

d

dε
A(hε)|ε=0 = gsub.

Remark 3. Similarly to Remark 1, we note that the conditions of the
theorem allow the norms ‖gε‖j to increase unboundedly although not too
quickly: ‖gε‖j = 0(ε−1+1/j). Consequently the limiting function does not
have to have higher order norms ‖g‖j, j = 2, . . . , d, finite. Actually, any
function from L1(θd−1) can be the limiting function.

Before we prove the theorem it seems convenient to single out the following
statement as a separate lemma.

Lemma 8. For g1, g2 ∈ L1(θd−1)

M(g1,sub4g2,sub) = ‖g1 − g2‖1.

Proof of Theorem 7. 1) According to (3)

ε−1µd(A(hε)) = ε−1

∫
Nor(F )

(h+
ε (x, u)+min(r(x), h−ε (x, u))θd−1(d(x, u))+R(ε),

(8)
where the reminder term satisfies the inequality

R(ε) ≤1

d

d∑
j=2

(
d

j

)
ε−1(

∫
Nor(F )

(h+
ε (x, u))jθd−j(d(x, u))

+

∫
Nor(F )

(h−ε (x, u))jθcd−j(d(x, u))) = o(1), as ε→ 0

2) The integral in (8) above can be written as M(gε,sub) where gε is the
function with positive and negative parts defined in (7). Now, if the limiting
function g for ε−1hε exists then

|M(gε,sub)−M(gsub)| ≤M(gε,sub4gsub)

and according to Lemma 8 (and triangle inequality)

M(gε,sub4gsub) = ‖gε − g‖1 ≤ ‖ε−1hε − g‖1 + ‖ε−1hε − gε‖1.
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The first norm on the right hand side tends to 0 by the condition and one
can show (see the proof of Theorem 4 that the second norm also tends to 0.
This ends the “if” part.
3) To prove the “only if” part we note that the differentiability of A(hε)
implies that the sets gε,sub form Cauchy sequence in the metric M(·4·).
Then, using Lemma 8, we see that the functions gε form Cauchy sequence:
‖gε,sub − gε′,sub‖1 → 0 as ε, ε′ → 0. But since the space L1(θd−1) is complete,
the limiting function g ∈ L1(θd−1) exists. �

Shifts.
Let F (ε) = F + εA,A - a convex body. This mapping is called the affine
mapping – see, e.g., [20]. Then F (ε) is differentiable at F with the derivative

B+ = s+
A(·)sub, B− = s−A(·)sub

where sA is the support function of A. A proof can be found, actually, in
[24] , Ch1.7. Let, in particular, F (ε) = F + εa be a shift of the set F . Then
again F (ε) is differentiable at F with the derivative

B = 〈a, ·〉sub.

More generally, one can formulate the following statement about the differ-
entiability of the “smooth” shifts of differentiable mappings.

Definition 4. Call the section A(x,u)(ε) of A(ε) regularly differentiable at
x ∈ Reg(∂F ) at ε = 0 if it is differentiable at (x, u) ∈ Nor(F ) and, for
z ∈ ∂F, the following sets

B̃(z,u)(ε) = {s ∈ R : z+εsu ∈ A(ε)} and B(x,u)(ε) = {s ∈ R : x+εsu ∈ A(ε)}

approximate each other:∫ ∞

−r(x)/ε
IB̃(z,u)(ε)4B(x,u)(ε)

(s)ds→ 0 as z → x, ε→ 0.

Call A(ε) regularly differentiable at ∂F (and the corresponding F (ε) regu-
larly differentiable at F ) if A(x,u)(ε) are regularly differentiable θd−1 -a.e. on
Reg(∂F ).
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Theorem 9. Suppose F (ε) is regularly differentiable at F with derivative set
B and suppose the shift a(ε) ∈ Rd is such that ε−1a(ε) → a′ ∈ Rd. Then the
mapping F (ε) + a(ε) is differentiable at F and the derivative is B̄ with

B̄+ = (B+ + 〈a′, ·〉)+ ∪ 〈a′, ·〉+sub \ (B− + 〈a′, ·〉)+

and
B̄− = ((B+ + 〈a′, ·〉)− \ 〈a′, ·〉−sub) ∪ (B− + 〈a′, ·〉)−.

In the proof of this theorem we will need the following lemma.

Lemma 10. Suppose A(ε) is regularly differentiable at ∂F with the derivative
B and suppose a(ε) ∈ Rd is such that ε−1a(ε) → a′ ∈ Rd. Then the mapping
A(ε) + a(ε) is differentiable at ∂F and the derivative is the set with the
sections B(x,u) + 〈a′, u〉 for x ∈ Reg(∂F ).

Proof. As we know, the set of points of the boundary ∂F which are not
regular have θd−1 - measure 0. Therefore, in view of Theorem 6, it is sufficient,
therefore, to define derivatives of sections (A(ε)+a(ε))(x,u) for x ∈ Reg(∂F ).
Suppose z ∈ ∂F is such that z + a(ε) = x + λu. For x ∈ Reg(∂F ) and
‖a(ε)‖ ∼ ε‖a′‖ → 0 this implies that λ ∼ 〈a(ε), u〉 ∼ ε〈a′, u〉. Since the
section we want is defined as

{y : y = x+ tu ∈ A(ε) + a(ε)} = {y : y − a(ε) = z + (t− λ)u ∈ A(ε)},

we see that
(A(ε) + a(ε))(x,u) = A(z,u)(ε) + 〈a(ε), u〉

where, however, u is the normal at x but not necessarily the normal at z.
Using regular differentiability condition we see that

τε((A(ε) + a(ε))(x,u) = B̃(z,u)(ε) + ε−1〈a(ε), u〉

can be approximated in measure by the set B(x,u)(ε) + 〈a′, u〉. �

Proof of Theorem 9. Since F (ε) = A+(ε)∪F \A−(ε) we have F (ε)+a(ε) =
(A+(ε)+a(ε))∪ (F +a(ε)) \ (A−(ε)+a(ε)). However, both the A+(ε)+a(ε)
and A−(ε) + a(ε) are differentiable at ∂F as it follows from Lemma 6, while
F + a(ε) is differentiable at F . Then Lemma 3 implies that F (ε) + a(ε) is
differentiable at F and the derivative is as stated in the theorem. �
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Sets defined through inequalities. Quasi-affine mappings.
Suppose F is a polytope defined through the following minimal set of linear
inequalities

F = {x ∈ Rd : 〈ci, x〉 ≤ bi, i = 1, . . . ,m}

and let Fi be the (d− 1)-dimensional face of F formed by the points x ∈ ∂F
such that 〈ci, x〉 = bi. Let F (ε) be also a polytope defined as

F (ε) = {x ∈ Rd : 〈ci, x〉 ≤ bi + εb′i, i = 1, . . . ,m}.

This F (ε) is an affine mapping, and hence quasi-affine mapping and hence
forms its own differential as it was defined in [26]. According to the definitions
of the present paper this mapping is differentiable as well and the derivative
is the set

B = gsub, where g(x) = b′i, x ∈ Fi
Consider now general perturbation F (ε) defined as

F (ε) = {x ∈ Rd : 〈ci(ε), x〉 ≤ bi(ε), i = 1, . . . ,m}

where we only assume that vectors ci(ε) and scalars bi(ε) are differentiable
at ε = 0: ci(ε) ∼ ci + εc′i, bi(ε) ∼ bi + εb′i. Although each F (ε) is convex, the
graph of it, (F (ε), ε), ε ∈ [0, 1], does not have to be and typically is not convex
in Rd+1 even in the neighborhood of (F (0), 0). Hence it is not quasi-affine. In
Example 4 below we see that F (ε) can not be approximated by a quasi-affine
mapping with accuracy o(ε) and therefore is not differentiable in the sense
of [26]. However, the derivative of F (ε) in the present meaning exists and
can be described as follows (see the proof in [17]). Let gi(x) = b′i−〈c′i, x〉 for
x ∈ Fi and gi(x) = 0 for all other x ∈ ∂F . Then

d

dε
A(ε)|ε=0 = ∪mi=1gi,sub.

Example 4. Let d = 2 and consider F (ε) = {0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1+ εx1}.
Certainly, each F (ε) is convex, but the graph (F (ε), ε), ε ∈ [0, 1], is not con-
vex and neither can it be approximated with accuracy o(ε) by a convex set.
However, the derivative according to Definitions 1 and 2 of F (ε) is gsub where
g(x1, x2) = x1 for x2 = 1 and g(x1, x2) = 0 for all other points of the bound-
ary of F (0).
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As to the inverse question whether quasi-affine mappings are differentiable
in the present meaning, the answer is positive as the following proposition
shows. One of the key points of the proof was actually proved in [26].

Let a quasi-affine mapping be defined as

F (ε) = ∩‖ψ‖=1{x ∈ Rd : 〈x, ψ〉 ≤ s(ψ) + εc(ψ)}

where s(·) is support function of the set F and c(·) is some positively ho-
mogeneous function. For a given quasi-affine mapping this function is not
unique and can be very different from ε−1(s(ε, ·)−s(·)), where s(ε, ·) denotes
the support function of the set F (ε) (cf. [26], Sec.2 and Lemma 2.14 in
particular).

Theorem 11. A quasi-affine mapping is differentiable in the sense of Defi-
nition 2.

Corollary. A set-valued mapping F (ε), ε[0, 1], differentiable in the sense
of Definition 3.1 of [26], i.e. such that there exists a quasi-affine mapping
F ′(ε), ε[0, 1], which approximates F (ε) in Hausdorff metric with the rate o(ε),
is differentiable in the sense of Definition 2.

Proof. We will construct sections of the derivative set at any regular point
of the boundary of F and then use Theorem 6. Denote c∗(ε, ·) = ε−1(s(ε, ·)−
s(·)). For x ∈ Reg(∂F ) let, as usual, u denote its (unique) outer normal,
and let λ be such that x + λu ∈ ∂F (ε). Since u is normal at x and hence
〈x, u〉 = s(u), the inequality 〈x+λu, u〉 ≤ s(ε, u) leads to c∗(ε, u) ≥ ε−1λ. At
the same time, there is a supporting hyperplane through x + λu and hence
ψ = ψε such that 〈x+ λu, ψ〉 = s(ε, ψ) and hence

ε−1λ =
s(ψ)− 〈x, ψ〉

ε〈u, ψ〉
+
c∗(ε, ψ)

〈u, ψ〉

Since 〈x, ψ〉 ≤ s(ψ) the latter equality leads to inequality

ε−1λ ≥ c∗(ε, ψ)

〈u, ψ〉
.

Now, as ε→ 0 , c∗(ε, ·) forms a non-decreasing (in ε) sequence of continuous
functions in ψ, bounded from above by c(·) (see Lemma 2.14 of [26]) and
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hence it converges to some function c∗(·) uniformly in ψ:

sup
‖ψ‖=1

|c∗(ε, ψ)− c∗(ψ)| → 0.

However, since ψ → u as ε → 0 we see that ε−1λ → c∗(u). Now note that
the interval (0, ε−1λ] (if ε−1λ > 0 and the interval (ε−1λ, 0] if ε−1λ < 0)
is the section B(x,u)(ε), and we proved that these sections converge at any
x ∈ Reg(∂F ). The rest follows from Theorem 6. �

As we said in the introduction, the notion of multi-affine mapping, in the
role of differential mapping, was introduced and studied in [1]. For one-
dimensional ε, it is the mapping defined as

F (ε) = ∪b∈B{εb+Db}

where Db, for each b, and B are subsets of Rd. According to Definition 4.1
of [1], the mapping F ′(ε) is directive (differentiable) if there exists a multi-
affine mapping F (ε) which approximates F ′(ε) in Hausdorff metric with the
rate o(ε) - the property, as Z.Artstein points out in §9 of [1], useful in various
applications of the notion. We do not go into study of this very attractive
notion in any significant detail here, but merely note that the similar property
can be noted about the mappings differentiable in the sense of the present
paper. Namely, let τ−1

ε (B) = {z ∈ Rd : τε(z) ∈ B}. Then, if A(ε) is
differentiable at ∂F and B is the derivative set, then

|µd(A(ε))− µd(τ
−1
ε (B)| = o(ε).

Derivatives as measures.
Let us make a brief comment on how the approach of [28] relates to the
present one. Condition (D) of Definition 2 implies, that µd(A(ε)) is abso-
lutely continuous in ε (at ε = 0), which is essential point used in [22] and
[28] as well. In particular, the function µ(B(x,u)) is the density function used
in [28], p.340. In the context of our problem with the local point processes,
one could, in principle, agree to label the limiting process by these density
functions, if not the following consideration: there are many different and
unrelated sequences of shrinking sets A(ε) which would lead to the same
density function. As we said in §2, let Nn(A), A ∈ Fε \ F−ε, be a “local”
Poisson point process, and suppose its intensity measure is nµd(A), and let
n ∼ ε−1. Take A1(ε) = τ−1

ε gsub and, to avoid technicalities associated with
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the local reach, assume that g(x, u) > 0. Let A2(ε) = τ−1
ε (2gsub \ gsub).

Then the limiting density functions for both cases will be the same and
equal to g(x, u). However, A1(ε) and A2(ε) are disjoint sets and with each of
them Poisson random variables, Nn(A1(ε)) andNn(A2(ε)), are associated and
these two random variables are independent. Moreover, one can construct
as many such independent random variables as one wishes by considering
Am(ε) = τ−1

ε (mgsub \ (m− 1)gsub) all with the same limiting density function
g(x, u). It will be unsatisfactory to “glue up” these random variables in the
limit. Definitions 1 and 2 allows one to avoid this and to separate the set B
and the measure M .

Derivatives as tangent cones. (Connections with contingent derivatives
of J.-P. Aubin and Clarke’s derivative.)
Definition of the derivative of a set-valued mapping through tangent cones to
its graph is, as we said in the introduction, very general and well developed.
It also is based on a lucid geometric idea. Namely, let {(ε, y) ∈ [0, 1] × Rd :
y ∈ F (ε)} be the graph of F (ε), ε ∈ [0, 1] and let x ∈ ∂F (0). Suppose T(0,x)

is a tangent cone to this graph at the point (0, x) (see Ch 5, [3]). Then the
set-valued mapping DF(0,x)(η), η ∈ [0, 1], defined as

DF(0,x)(η) = {y ∈ Rd : (η, y) ∈ T(0,x)}

is called derivative mapping of F (ε), ε ∈ [0, 1].
To illustrate the connections betweenDF(0,x)(·) and the derivative dF (ε)/dε|ε=0

suggested in this paper consider the following simple example. This example
will also show the difference between the two notions.
Let d = 2 and let F (ε) = {x = (x1, x2) : x1, x2 ≥ 0, ‖x‖ ≤ 1 − ε}. The
graph of this set-valued mapping has tangent cone at each boundary point
(ε, x), x ∈ ∂F (ε). Recall that this tangent cone is defined, say, for ε = 0 as

T(0,x) = {z ∈ R3 : ‖hz − (0, x)‖ = o(h), h→ 0}.

It is not very important now to stress that Clarke tangent cone, with more
stringent definition, also exists in this example at any boundary point. What
is probably more important is to note that T(0,x) is not a tangent hyperplane
alone. In particular, if x is regular point of ∂F (0), i.e. if there is unique
outer normal u, then for any η ∈ [0, 1)

DF(0,x)(η) = {y ∈ Rd : 〈y, u〉 ≤ 1− ε}
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(and not only {y ∈ Rd : 〈y, u〉 = 1− ε}).
The derivative set B for this mapping also exists and its sections B(x,u) at
these x can be connected with DF(0,x) as follows:

B(x,u) = B−
(x,u) = {h ∈ R : ηhu ∈ (F − x) \DF(0,x)(η)}.

(For the mapping defined as F (ε) = {x = (x1, x2) : x1, x2 ≥ 0, ‖x‖ ≤ 1 + ε}
we would have

B(x,u) = B+
(x,u) = {h ∈ R : ηhu ∈ DF(0,x)(η) \ (F − x)}.)

However, for non-regular points of ∂F (0), with more than one outer normal,
as, for example, for x = (1, 0), the situation is different. The sets DF(0,x)(η)
are still uniquely defined, while the sections of the derivative set B are not
defined, or not defined uniquely.
These non-regular points of the boundary can actually be most interest-
ing points in many optimization problems, and it is important to have a
notion of the derivatives, like DF(0,x)(·), equally applicable to regular and
non-regular boundary points. However, the fact that the derivative sets B
are formed basically by sections B(x,u) at regular points x comes not from
attempt to simplify or trivialize the approach. It stems from another fact
that linear changes of order ε in the neighborhood of all non-regular points
of the boundary lead only to changes of order ε2 or higher in the measure
and therefore are indeed negligible in the asymptotics of the first order.

We suppose that sets of non-regular points, to which higher order support
measures attach non-zero mass, will find a natural place as part of higher
order derivatives, whatever these derivatives may prove to be. The reader
may agree with this supposition observing that, for example, the second
derivative of Lebesgue measure of the set A+(ε) as defined in (6) naturally
would be

d2

dε2
µd(A

+(ε))|ε=0 =

∫
d2

dε2
h+
ε (x, u)|ε=0 θd−1(d(x, u))

+

∫
d

dε
h+
ε (x, u)|ε=0 θd−2(d(x, u))

and therefore incorporates the next support measure.
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§6. Convergence of the local Poisson process

Whenever in a problem of statistical inference a set becomes the parameter
of interest the local analysis with respect to this set will be needed. Indeed,
we know that asymptotic statistical theory is very much based on the local
behaviour of the likelihood process, both for the so called parametric prob-
lems, when the parameter of interest is a point in Rd (see, e.g., [15]), and for
semi-parametric problems, when the parameter of interest is a function (see,
e.g., [5]). It should be no less true when the parameter is a set.

As a particular example of such problems one can consider the class of so-
called change-set problems of spatial statistics. (These problems are also
connected with image analysis.) In a simple version of this problem, assume
that within a certain region (an “image”) K ⊂ Rd the intensity of Poisson
process Nn is nc1, while outside K it is nc0 with a different constant c0 (cf.,
e.g., [7], while the more general version with discontinuities in the so-called
regression function, although for one-dimensional time, can be found in [21]).
The region K is unknown and the inference about K should be made from
the “observation” Nn.

Suppose we wish to test the basic (null) hypothesis that K = F for some
given F = F (0), while under the alternative hypothesis K can be any mem-
ber of some given class F(ε) of “deviations” F (ε) from F . The basis for
discrimination between the two hypotheses is provided by the so-called log-
likelihood, which in this problem has the form

Ln = ln
c1
c0

[Nn(F (ε)\F )−Nn(F \F (ε))]−n(c1−c0)[µd(F (ε)\F )−µd(F \F (ε))]

For large n, discrimination between F and “quite” distinct F (ε) can become
easy and the theory should focus, as in parametric and semi-parametric cases,
on the asymptotics of Ln when F (ε) → F along with n → ∞. Thus we are
led not to one but to a class of set-valued mappings all converging to the
same F as ε → 0. Then Ln becomes simply a version of the local Poisson
process introduced in §2. This is, essentially, true for more intricate formu-
lations of the change-set problem (cf., e.g., [18]).

Suppose F(ε) = {Fγ(ε), γ ∈ Γ} is the alternative class of change-sets and let
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A(ε) = {Aγ(ε) = Fγ(ε)4F, γ ∈ Γ}. Slightly modifying the notation of §2 let

Nnε = (Nn,A(ε)) = {Nn(A), A ∈ A(ε)} (9)

and recall that ENn(A) = nP(A). Now suppose each Aγ(ε) is differentiable
at ∂F and denote

d

dε
A(0) = { d

dε
Aγ(ε)|ε=0, γ ∈ Γ}

On this class of sets, in Σ, introduce now the Poisson process

N = (N,
d

dε
A(0)) = {N(B), B ∈ d

dε
A(0)} (10)

with intensity measure EN(B) = c̄Q(B) with some constant c̄. Our aim is
to show that the current notion of differentiability naturally places N as the
limiting process for Nnε.

Theorem 12. If n → ∞ and nε → c̄ then all finite dimensional distribu-
tions of the process (9) converge in total variation to the corresponding finite
dimensional distributions of the process (10). In notation

(Nn,A(ε)) −→f.d.t.v. (N, d
dε
A(0))

Proof. Differentiability assumption on Aγ(ε) implies that, for every finite m,
we can assume that Aγj

⊆ VTε(∂F ) with one common T = T (m). Denote,
within this proof, A0(ε) = VTε(∂F ) \ A(ε) while A1(ε) = A(ε). Denote
Ωm = Ω collection of all vectors ω = (ω1, . . . , ωm) with each ωj being 0 or 1
and consider pairwise disjoint sets

Cω(ε) = ∩mj=1A
ωj
γj

(ε), ω ∈ Ω .

The distribution, in Rm, of {Nn(Aγj
(ε)), j = 1, . . . ,m} is uniquely deter-

mined by the distribution of {Nn(Cω(ε)), ω ∈ Ω}. Then the rest of the proof
follows from the two facts: Lemma 3 implies that each Cω(ε)) is differentiable
at ∂F with derivative Dω = ∩mj=1B

ωj
γj where B0 = ΣT \B and B1 = B, while

Theorem 4 implies that∑
ω∈Ω

|nP(Cω(ε))− c̄Q(Dω)| → 0 (11)
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Indeed, suppose Pnε,m and Pm are two Poisson distributions in Rm corre-
sponding to {Nn(Cω(ε)), ω ∈ Ω} and {N(Dω(ε)), ω ∈ Ω} respectively. Then
the distance in variation between Pnε,m and Pm is

E|dPnε,m
dPm

(N)− 1| (12)

where the Radon-Nikodym derivative is

dPnε,m
dPm

(N) = exp{Σω∈Ω[N(Dω) ln
nP(Cω(ε))

c̄Q(Dω)
− nP(Cω(ε)) + c̄Q(Dω)]}

and let N(Dω) ln Q(Dω) = 0 if Q(Dω) = 0. From (11) it can be easily
deduced that (12) converges to 0: in addition to (11) it is sufficient to notice
that

| exp{Σω∈ΩN(Dω) ln
nP(Cω(ε))

c̄Q(Dω)
}−1| ≤ exp{Σω∈ΩN(Dω)| ln

nP(Cω(ε))

c̄Q(Dω)
|}−1

and take the expected value. �

Let ψ(x), x ∈ R∞, be Borel measurable functional in R∞ and consider ran-
dom variables (or statistics) ψ(Nnε) and ψ(N), based on countably many
Nn(Aγj

) and N(Bγj
), respectively. Suppose ψ is such that for any δ, η > 0

there exists m = m(δ, η) and functional ψm(x) which depends on the first m
coordinates of x, such that

P{|ψ(Nnε)− ψm(Nnε)| > η} < δ and P{|ψ(N)− ψm(N)| > η} < δ . (13)

Theorem 12 implies that for any such functional we have convergence in
distribution

ψ(Nnε) −→d ψ(N)

(see, e.g., [25], Ch.II, §10). The class of functionals satisfying (13) can be
relatively wide. It certainly includes statistics of the form

∞∑
j=1

cjg(Nn(Aγj
), nP(Aγj

)) with
∞∑
j=1

|cj| <∞

as soon as

E|g(Nn(Aγj
), nP(Aγj

))| → E|g(N(Bγj
, c̄Q(Bγj

)| ≤ c <∞,
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but also may include the so-called Kolmogorov - Smirnov statistic

max
j
|Nn(Aγj

)− nP(Aγj
)| ,

as soon as the class {Aγj
(ε), j = 1, 2, . . . } is “appropriately” totally bounded

with respect to the semi-metric P(·4·). Assumption of the total boundedness
is commonly used in the theory of weak convergence of empirical processes
– see, e.g., [27]. We present it in full detail, for the case of Gaussian conver-
gence of the local process (Nn,A(ε)), in [11].
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