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Abstract

Local, or better, contiguous alternatives are the closest alternatives against which

it is still possible to have some power. With this in mind we would like to think of

goodness-of-fit tests as those which have some power against all, or a huge majority,

of local alternatives. Tests of that kind are often based on nonlinear functionals, with

a complicated asymptotic null distribution. Therefore a second desirable property of a

goodness-of-fit test is that its statistic will be asymptotically distribution free.

Goodness-of-fit testing of exponentiality has a very long history and has produced

a large number of papers. However, surprisingly many tests have been suggested based

on asymptotically linear functionals from the empirical process; hence they can not

be considered as goodness-of-fit tests. Such tests will have very low or no asymptotic

power against a great majority of local alternatives, although they may have good

power against some focused ‘cone’ of alternatives.

We suggest potentially a whole class of goodness-of-fit tests with both of the de-

sirable properties mentioned above, by constructing a new version of the empirical

process that weakly converges to a standard Brownian motion, under the hypothesis

of exponentiality. Any statistic based on this process will asymptotically behave as a

statistic from the standard Brownian motion and, hence, will be asymptotically distri-

bution free. The idea is not new, but the form of transformation is especially simple in

the case of exponentiality. As we note in the paper, this is not the only asymptotically

distribution free version of empirical process for this problem, but it is one with a most

convenient limit distribution.
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1 Introduction

There is no exact definition of goodness-of-fit tests, or goodness-of-fit test statistics. However,

intuitively such tests are supposed to be of omnibus nature and be able to detect ‘all sorts

of deviations’ from the hypothesis of interest. Consider one possible definition in the case of

testing a parametric hypothesis, of which testing exponentiality is a special case.

Given a random sample X1, X2, . . . , Xn, where each Xi has the same but unknown dis-

tribution function P , let Pn denote an empirical distribution function based on this sample.

Suppose we are testing the null hypothesis that P ∈ P where P = {Pλ, λ ∈ R
d} is a given

class of distribution functions, indexed by a finite-dimensional parameter λ. As the class of

alternative distributions we consider the class of all converging contiguous alternatives (as

opposed to chimeric contiguous alternatives; see Khmaladze (1981)), which are defined as

the class of all sequences of distributions An, for which there exists Pλ ∈ P and the function

h(·, λ) ∈ L2(Pλ) such that

(

dAn

dPλ

)
1
2

(x) = 1 +
1

2
√
n
h(x, λ) + rn(x), n

∫

r2
n(x)dPλ(x) → 0. (1)

The function h describes the ‘direction’ from which alternatives An converge to a particular

sub-hypothesis Pλ.

From a geometric point of view it is more or less clear that one should not be concerned

to detect alternatives which approach any particular Pλ from the direction tangential to P at

Pλ. Formally it means that in (1) the function h must be orthogonal to this direction, or:

∫

h(x, λ)
∂ ln p(x, λ)

∂λ
dPλ(x) = 0,

where ∂ ln p(x, λ)/∂λ is the score function under the null hypothesis. Then we call ψn(Pn,P) a

goodness-of-fit statistic, and we call the test based on it a goodness-of-fit test, if

(a) the asymptotic distribution of ψn(Pn,P) under any P ∈ P does not depend on P, and

(b) the asymptotic distribution of ψn(Pn,P) under any sequence of contiguous alternatives

An to P is different from its asymptotic distribution under the hypothesis, or, in other

words, the test based on ψn(Pn,P) has some power against any sequence of contiguous

alternatives.

Goodness-of-fit statistics are typically based on the following version of empirical process,

often called the parametric or estimated empirical process: choose P̂ = Pλ̂ from P which fits
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the sample ‘best’ and study the normed difference,

vn(x,P) = v̂n(x) =
√
n{Pn(x) − P̂ (x)}.

We also denote the empirical process, vn(x) =
√
n{Pn(x) − P (x)}. The ‘usual’ property of

v̂n is that under any P from the hypothetical P, it converges in distribution to a zero-mean

Gaussian process, while under any sequence of contiguous alternatives it converges to the

same Gaussian process, but with a non-zero shift. From this stems the requirement (b),

which says that if ψn(Pn,P) is some functional from v̂n, which typically it is, then it should

‘react’ to the presence of any non-zero shift. One can take the Kolmogorov-Smirnov statistic,

sup
x

|v̂n(x)| =
√
n sup

x
|Pn(x) − P̂ (x)|,

as an example of such a statistic. However, the requirement (a) may still be a problem.

A widely used counterpart of goodness-of-fit statistics is formed by so called asymptoti-

cally linear statistics. These are statistics of the form

ψn(Pn,P) =

∫

g(x, λ̂)v̂n(dx) + op(1), (2)

for some deterministic function g, usually with certain square-integrability requirements.

While converging to a zero-mean Gaussian random variable under the hypothesis (i.e. under

any Pλ ∈ P), these statistics converge to the same Gaussian random variable plus the shift,

∫

h(x, λ)g(x, λ)dPλ(x) (3)

under any sequence of contiguous alternatives An satisfying (1); see, e.g., Khmaladze (1979),

Janssen (2000). We see that, although for h(x, λ) = const · g(x, λ) the shift (3) can be quite

large, for h(·, λ) ⊥ g(·, λ) this shift is simply zero and hence any asymptotically linear statistic

under all these alternatives will have the same limiting distribution as under the hypothesis.

So for this very wide class of alternatives, a test based on any of these asymptotically linear

statistics will have asymptotically no power at all.

The term ‘goodness-of-fit tests’ has been taken to cover a wider class of tests than just of

the types already described above. For example, many tests, each based on several asymp-

totically linear statistics, say,
∫

gj(x)v̂n(dx), j = 1, . . . , k, have also been considered and

are perceived as goodness-of-fit tests. The chi-square test is probably the most prominent

such example. Tests of this type do not have the property (b) formally. However, for such
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tests to have no power asymptotically, the function h would need to be orthogonal to each

gj, j = 1, . . . , k, which can rarely occur in practice.

We comment on a selection of asymptotically linear statistics in the next section, including

in each case the explicit demonstration of their linear form. Of considerable interest is the

fact that different well known statistics are all effectively the same, asymptotically. Hence if

any of the linear statistics considered are such that the shift (3) is very small or zero, tests

based on all of these similar statistics will have asymptotically very small or no power. We

give an example that illustrates this situation.

Section 3 contains the key elements of this paper. Namely, we present a particularly

simple transformation of the parametric empirical process for the case of exponentiality, from

which a variety of test statistics can be calculated. All such statistics are distribution free,

and asymptotically behave, under the hypothesis, as statistics from a standard Brownian

motion. This makes asymptotic theory of such statistics convenient and relatively simple.

We demonstrate good finite sample convergence properties of representative test statistics

calculated from our transformed empirical process in section 4, while in section 5 we give

some brief concluding remarks.

2 Comments on linear statistics

It is remarkable that many papers explicitly or implicitly devoted to goodness-of-fit testing

of exponentiality are actually based on a single asymptotically linear statistic. Before we

consider examples of such usage we need to make one observation. Suppose g⊥(·, λ) is the part

of g(·, λ) orthogonal to the hypothetical score function ∂ ln p(x, λ)/∂λ. Since all functions

h(·, λ) are orthogonal to it we have
∫

h(x, λ)g(x, λ)dPλ(x) =

∫

h(x, λ)g⊥(x, λ)dPλ(x).

Therefore it will be inefficient to use the (asymptotically) linear statistics with g(·, λ) 6=
g⊥(·, λ): the part of it equal to

∫

{g(x, λ̂)− g⊥(x, λ̂)}v̂n(dx) will contribute to its asymptotic

variance but not to its asymptotic shift. Therefore, we will choose below kernels g such that

g(·, λ) = g⊥(·, λ). Further, it will be convenient to subtract
∫

g(x, λ)dPλ(x) from the kernel,

which we will do in each case without explicitly mentioning it. Since
∫

const · v̂n(dx) = 0

this does not change the linear statistic.

Given an average n−1
∑n

i=1 g(Xi, λ̂) =
∫

g(x, λ̂)dPn(x), to determine its asymptotic be-
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haviour under any sub-hypothesis Pλ it would be quite possible to centre it with
∫

g(x, λ̂)dPλ(x).

In this way we have

√
n

{
∫

g(x, λ̂)dPn(x) −
∫

g(x, λ̂)dPλ(x)

}

=

∫

g(x, λ̂)vn(dx) =

∫

g(x, λ)vn(dx) + op(1)

under mild regularity assumptions on g(·, λ) with respect to λ. However, the simple and

practical way to represent this average as an asymptotically linear functional with the kernel

g⊥(·, λ̂) is to centre it with
∫

g(x, λ̂)dPλ̂(x). Indeed, in this way we obtain:

√
n

{
∫

g(x, λ̂)dPn(x) −
∫

g(x, λ̂)dPλ̂(x)

}

=

∫

g(x, λ̂)v̂n(dx)

=

∫

g(x, λ)vn(dx) −
∫

g(x, λ)
∂ ln p(x, λ)

∂λ
dPλ(x)

√
n(λ̂− λ) + op(1).

If for the estimator λ̂ the asymptotic representation

√
n(λ̂− λ) =

{
∫

l(x, λ)
∂ ln p(x, λ)

∂λ
dPλ(x)

}−1 ∫

l(x, λ)dvn(x) + op(1)

is true, then eventually we obtain
∫

g(x, λ̂)v̂n(dx) =

∫

g⊥(x, λ)vn(dx) + op(1),

where

g⊥(x, λ) = g(x, λ) −
∫

g(x, λ)
∂ ln p(x, λ)

∂λ
dPλ(x)

{
∫

l(x, λ)
∂ ln p(x, λ)

∂λ
dPλ(x)

}−1

l(x, λ)

is the part of g(·, λ) orthogonal to ∂ ln p(·, λ)/∂λ as required.

Consider now several well known statistics. In what follows we denote by P the expo-

nential distribution function Pλ, Pλ(x) = 1 − e−λx, with λ = 1.

The papers of Deshpande (1983) and Bandyopadhyay and Basu (1989) are based on

testing whether 1−P (bx) = {1−P (x)}b, and the test statistic can be written as the integral

1

n(n− 1)

∑

i6=j

I{Xj > bXi} =

∫ ∞

0

{1 − Pn(bx+)}Pn(dx), (4)

where I{·} denotes the indicator function. This statistic is scale invariant and hence is

independent of the parameter of the exponential distribution. For any fixed b, statistic (4)

is, in fact, asymptotically linear:

√
n

{
∫ ∞

0

{1 − Pn(bx+)}Pn(dx) −
∫ ∞

0

{1 − P (bx)}dP (x)

}

=

∫ ∞

0

{exp(−bx) − exp(−x/b)}vn(dx) + op(1) =

∫ ∞

0

g⊥,D(x)vn(dx) + op(1)

(5)
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where

g⊥,D(x) = exp(−bx) − exp(−x/b) − (1 − b)/(1 + b).

Deshpande (1983) and Bandyopadhyay and Basu (1989) each suggest different choices of

b, but it is one fixed value of b in both cases. It may be natural to study the right hand

side of (5) as a process in b. Based on the combination of the Laplace transform of the

empirical process v̂n, this process in b will converge to a zero-mean Gaussian process under

the hypothesis, and will have non-zero shift under all contiguous alternatives An. Basically

such an approach was taken and extended in Baringhaus and Henze (1991), Henze (1993)

and Baringhaus and Henze (2000), where quadratic functionals from not only the Laplace

transform but also from the Fourier transform of v̂n were studied. Epps and Pulley (1986)

previously investigated ‘smooth’ functionals from the empirical characteristic function.

An interesting statistic known as the Gini index,

Gn =

∑

i6=j |Xi −Xj |
2n(n− 1)X̄

,

received a thorough treatment in Gail and Gastwirth (1978). The Gini index is also scale

invariant, and can be rewritten as

Gn =
n

(n− 1)

1

2X̄

∫ ∫

|x− y|dPn(x)dPn(y).

After normalisation, it becomes evident that Gn is also an asymptotically linear statistic:

n

(n− 1)X̄

√
n

2

∫ ∫

|x− y|{dPn(x)dPn(y) − dP (x)dP (y)}

+

√
n

2

(

1

X̄
− 1

)
∫ ∫

|x− y|dP (x)dP (y)

=

∫
{
∫

|x− y|P (dy)

}

vn(dx) −
√
n

(

X̄ − 1

2

)

+ op(1)

=

∫

{x− 1 + 2 exp(−x)}vn(dx) −
∫

x− 1

2
vn(dx) + op(1)

=

∫

g⊥,G(x)vn(dx) + op(1)

(6)

where

g⊥,G(x) =
x− 1

2
− 1 + 2 exp(−x).

Here we also set the parameter of the exponential distribution to 1, so X̄ → 1, and we made

use of
∫

|x − y| exp(−y)dy = x − 1 + 2 exp(−x) and
∫ ∫

|x − y| exp(−x) exp(−y)dxdy = 1.

Therefore it is obvious that Gn is asymptotically normal, but Gail and Gastwirth (1978)
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contains much more: they show the exact distribution of Gn and demonstrate that the

convergence to the normal distribution is quick.

The so called Moran statistic, introduced in Moran (1951), has the form

Mn =
1

n

n
∑

i=1

ln
Xi

X̄
.

This is the statistic of the locally most powerful test against Gamma distributions with

the density a(x) = λ−αΓ−1(α)xα−1 exp(−x/λ) at α = 1. Indeed, the score function in this

case is ∂ ln a(x)/∂α = ln(x/λ) − Γ′(1)/Γ(1). Recently Tchirina (2002) studied the Bahadur

efficiency of a test based on the Moran statistic and some of its local properties. The statistic

is scale invariant and we can assume therefore that λ = 1. Following the method described

above, for the normalised form of this statistic we obtain

√
n

{
∫

ln
x

X̄
dPn(x) −

∫

ln x dP (x)

}

=

∫

g⊥,M(x)vn(dx) + op(1) (7)

where

g⊥,M(x) = ln x− γ − (x− 1)

and γ =
∫

ln x exp(−x)dx, so that −γ is Euler’s constant. This statistic is suggested as

an “omnibus” goodness-of-fit test by Stephens (1986), although he adds the caveat that its

use can be “risky”, due to problems if the data includes ties or zeros. For an omnibus test,

Stephens in fact restricts attention to alternatives with monotone failure rate.

One more statistic used for the same purpose and which is also asymptotically linear and

scale invariant is the statistic suggested in Cox and Oakes (1984),

Tn = n−1

n
∑

i=1

(1 − Xi

X̄
) ln

Xi

X̄
. (8)

Its representation as an asymptotically linear statistic, taking λ = 1, is
∫

g⊥,CO(x)vn(dx) + op(1) where g⊥,CO(x) = (1 − x)(ln x+ 1 − γ). (9)

Statistic (8) was introduced explicitly as a locally most powerful test against Weibull alter-

natives A(x) = 1 − exp(−x/λ)α at α = 1. Indeed, the function (1 − x/λ) ln (x/λ) + 1 is the

score function of the Weibull density a(x) = α/λ(x/λ)α−1 exp(−x/λ) with respect to param-

eter α at α = 1. Later however, see for example, Ascher (1990) and Henze and Meintanis

(2005), the Cox and Oakes statistic has been studied (and recommended) for goodness-of-fit

testing.
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Figure 1: The kernel functions of the four asymptotically linear statistics discussed in section
2: (a) Deshpande; (b) Gini; (c) Moran; (d) Cox-Oakes.

Considering the four asymptotically linear statistics above, it is possible to get an im-

pression that we have many different statistics, each capable of detecting deviations from

exponentiality in different directions. Thus it might appear important and interesting to

compare their asymptotic behaviour against various alternatives.

However, as far as local alternatives are concerned, all four statistics are extremely similar.

Though formally the corresponding kernel functions g⊥ are different they all have very similar

graphs, as shown in Figure 1, and all four statistics are very highly correlated. In particular,

the correlations between statistic (9) and (5), (6), (7) are 0.909,−0.936, 0.971; between

statistic (7) and (5), (6) are 0.909,−0.833; and between statistic (6) and (5) −0.865. Note

that, following the recommendation of Bandyopadhyay and Basu (1989), we use a value of

b = 0.44 in Deshpande’s (1983) statistic (4).

Therefore in reality all four statistics lead, asymptotically, to more or less the same test
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and it is of little importance to study their relative power, at least for local alternatives.

Furthermore, as noted above, no asymptotically linear statistic can provide a goodness-

of-fit test with property (b) or similar to it. To illustrate this we now provide an explicit

example of a local alternative for which all four above mentioned statistics have indeed very

low power, while the power of an omnibus test (calculated on the transformed empirical

process introduced in §3) is essentially higher. Perhaps somewhat unexpectedly, for such

an example we use the uniform distribution on [0, 1], against which the Cox-Oakes statistic,

for example, was reported to have high power (see Ascher (1990) and Henze and Meintanis

(2005)). Let us convert this uniform distribution into a local alternative by using the mixture

an(x) =

(

1 − c√
n

)

p(x) +
c√
n
q(x) = p(x) +

c√
n
{q(x) − p(x)}

where c is a scalar, p(x) is the exponential density with parameter λ = 1 and q(x) is the

uniform density on [0, 1]. Denote ‖g⊥,CO‖ =
(∫

g2
⊥,CO(x)e−xdx

)1/2
. One can check that the

value of the integral

1

‖g⊥,CO‖

∫

g⊥,CO(x){q(x) − p(x)}dx =
1

‖g⊥,CO‖

∫ 1

0

g⊥,CO(x)dx = 0.0138

is quite small. Hence the asymptotic shift of the standardized Cox-Oakes statistic under

alternatives an, being 0.0138c, is also small (for moderate c), which means that its power

against an will be very low.

Indeed, Figure 2 compares the distributions of the Cox-Oakes statistic and the Kolmogorov-

Smirnov statistic dn (see §4) calculated from the transformed empirical process wn given in

(11) below. The statistics are compared under the hypothesis and under the alternative an

above, using 20,000 replications of size n = 900 with c = 5. (That is, under the alternative,

150 of the 900 observations in each replicate sample come from the uniform distribution.) It

is very clear that the change in distribution of the Kolmogorov-Smirnov statistic is essentially

sharper, and the power of the Kolmogorov-Smirnov test based on the transformed version

of the empirical process is larger.

Another example was found in our recent research on certain historical data (Khmaladze

et al., 2005). Figure 3 shows the empirical distribution function of the durations of rule

for Chinese Emperors, as given in Encyclopaedia Britannica (2002), along with its exponen-

tial approximation. The approximation looks very good and the value of the standardized

Cox-Oakes statistic is 0.08, which is obviously close to the median of the standard normal

distribution. However, the value of the Kolmogorov-Smirnov statistic from the transformed
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Figure 2: The change in distribution of (a) the Cox-Oakes statistic and (b) the Kolmogorov-
Smirnov statistic dn from the transformed empirical process wn, calculated from 20,000
samples of size 900. Distributions are shown under the hypothesis of exponentiality (dashed
line) and under the local alternative mixture discussed in the text (solid line).

empirical process is equal to dn = 2.46, which corresponds to a p-value of 0.03. Hence the

hypothesis of exponentiality is rejected using the statistic based on the transformed empirical

process, as we know it should be from more detailed analysis reported in Khmaladze et al.

(2005).

3 Tests with a transformed version of empirical process

Although we mentioned the Kolmogorov-Smirnov test explicitly in the previous sections, in

this paper we are not suggesting or advocating any particular test. What we are suggesting

is a version of parametric empirical process wn, different from v̂n. This process wn, after the

time transformation

t = Pλ̂(x), (10)

converges in distribution under the hypothesis to standard Brownian motion and converges

to standard Brownian motion plus non-zero shift under any sequence of contiguous alter-

natives (1). Therefore any statistic that is invariant under the time transformation (10)
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Figure 3: The empirical distribution function of durations of rule of Chinese Emperors
(step function) along with an exponential approximation (solid line) and the compensator
K(x, Pn), introduced in §3 (dashed line).

is asymptotically distribution free, i.e. has property (a), and any statistic of omnibus na-

ture, like the Kolmogorov-Smirnov statistic or the Cramér-von Mises or Anderson-Darling

statistics, will also possess the property (b) from section 1 above.

The process wn differs from v̂n in the way one centres the empirical distribution function

Pn. The idea of this different centering was originally presented in Khmaladze (1981) and

is well known now, but for convenience we include a brief description. Namely, instead of

subtracting from Pn its expected value Pλ with estimated parameter, or, in differential form,

instead of considering v̂n(dx) =
√
n{Pn(dx) − Pλ̂(dx)}, one could instead use conditional

expected values and consider

√
n{Pn(dx) − E(Pn(dx)|Pn(y), y ≤ x, λ̂)}.

This centering of each increment, Pn(dx), by the conditional expected value will render wn

to be a martingale with respect to the filtration {Fx, x ≥ 0}, where each σ-algebra Fx is

generated by the ‘past’ of Pn and also the maximum likelihood estimator λ̂ = n/
∑n

i=1Xi, i.e.

Fx = σ{Pn(y), y ≤ x,
∑n

i=1Xi}. Although it may not be easy to calculate this conditional

expected value exactly, it is much easier to calculate the asymptotically equivalent expression

11



K(dx, Pn) such that

wn(dx) =
√
n{Pn(dx) −K(dx, Pn)} (11)

will be a process with uncorrelated increments. As the notation suggests, the centering

process K(x, Pn), x ≥ 0, is a certain modification of Pn. It is called the compensator (of

Pn) – it ‘compensates’ Pn to the process with uncorrelated increments. The form of the

compensator is suggested by the hypothetical family of distribution functions. Namely, let

{p(x, λ), λ ∈ Λ} be a family of corresponding density functions depending on some parameter

λ. Consider the vector-function

q(x, λ)T =

[

1 ,
∂ ln p(x, λ)

∂λ

]

with the first coordinate identically equal to 1 and the second coordinate being the score

function ∂ ln p(x, λ)/∂λ. Using this extended score function construct the matrix

C(z, λ) =

∫ ∞

z

q(x, λ)q(x, λ)Tp(x, λ)dx,

which can be called the incomplete Fisher information matrix. Then the compensator asso-

ciated with this parametric family is defined (see, e.g., Khmaladze (1981)) as

K(x, Pn) =

∫ x

0

q(z, λ)TC−1(z, λ)

∫ ∞

z

q(y, λ)Pn(dy)P (dz)

=

∫ ∞

0

{

∫ min(x,y)

0

q(z, λ)TC−1(z, λ)P (dz)

}

q(y, λ)Pn(dy).

To see that K(x, Pn) is really a ‘modification’ of Pλ̂(x), one can check that K{x, Pλ(x)} =

Pλ(x).

As our first observation in this section we note that the form of K(x, Pn) in the case of

exponential distributions is quite straightforward:

K(x, Pn) = λ̂

∫ ∞

0

(

2 +
λ̂

2
min(x, y) − λ̂y

)

min(x, y)Pn(dy)

= λ̂

∫ x

0

(

2 − λ̂

2
y

)

yPn(dy) + λ̂

(

2 +
λ̂

2
x

)

x{1 − Pn(x)} − λ̂2x

∫ ∞

x

yPn(dy)

or

K(x, Pn) =
λ̂

n

∑

i:Xi≤x

(

2Xi −
λ̂

2
X2

i

)

+ λ̂

(

2 +
λ̂

2
x

)

x{1 − Pn(x)} − x
λ̂2

n

∑

i:Xi>x

Xi .
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As our second observation we note that the rate of convergence of wn to a standard Brownian

motion seems quite good; at least, as good as the convergence of the uniform empirical process

to a Brownian bridge in the classical theory. We present some numerical results that support

this claim in Section 4.

For testing exponentiality there exists another interesting form of empirical process, which

is also asymptotically distribution free. In particular, using the equality 1 − Pλ(bx) =

{1− Pλ(x)}b more fully than via a single statistic (cf. Deshpande (1983) for the latter case)

one can consider the empirical process

αn(x) = −
√
n
(

1 − Pn(bx) − {1 − Pn(x)}b
)

and test if it is asymptotically a zero-mean process. It is easy to see that

αn(x) =
√
n{Pn(bx) − P (bx)} +

√
n
[

{1 − Pn(x)}b − {1 − P (x)}b
]

and hence,

αn(x) = vn(bx) − b{1 − Pλ(x)}b−1vn(x) + op(1). (12)

Following, e.g., Angus (1982) and Nikitin (1996), choose b = 2. After the time transformation

t = 1 − Pλ̂(x) the process αn will converge in distribution to the process β,

β(t) = u(t2) − 2tu(t), (13)

where u is a standard Brownian bridge on [0, 1]. Hence we obtain a standard, or distribution

free, process as the limit.

A more general version of this last process was studied earlier by Koul (1977, 1978).

Starting with the equality 1 − Pλ(x + y) = {1 − Pλ(x)}{1 − Pλ(y)}, Koul considered the

process

αn(x, y) = −
√
n [1 − Pn(x+ y) − {1 − Pn(x)}{1 − Pn(y)}] .

The asymptotic form of Koul’s process is

αn(x, y) = vn(x+ y) − {1 − P (x, λ)}vn(y) − {1 − P (y, λ)}vn(x) + op(1)

and therefore, after the time transformation t = 1 − Pλ̂(x), s = 1 − Pλ̂(y), it converges in

distribution to β∗,

β∗(t, s) = u(ts) − tu(s) − su(t), (14)

13



which is again a distribution free process (in t and s). We note that the process (14) is of a

very appealing structure: it can be written as Πu where, for a function f(t, s), (t, s) ∈ [0, 1]2,

Πf(t, s) = f(t, s) − tf(1, s) − sf(t, 1) + tsf(1, 1)

is the projection of f on the class of functions (on [0, 1]2) equal to zero everywhere on the

boundary of the unit square. This does not imply as yet, however, that Πu does not define

u uniquely, because in (14) Π is applied to a very narrow class of functions of t and s given

by f(t, s) = u(ts). However, we will presently see that the definition of u is not unique.

Indeed, we can clarify the situation with the processes αn(x) and αn(x, y) further, and

respectively with the processes (13) and (14), if we observe the following. As can be seen,

the relationship between v̂n and vn is given by

v̂n(x) = vn(x) − d

dλ
Pλ(x)

√
n(λ̂− λ) + op(1) = vn(x) + x exp(−λx) 1

λ

∫ ∞

0

xvn(dx) + op(1)

if λ̂ = 1/X̄. One can show that the main term on the right hand side above is a projection of

vn (see the general description of parametric empirical processes as projections in Khmaladze

(1979) and similarly for the parametric regression process in Khmaladze and Koul (2004)).

At the same time the functions const · dPλ(x)/dλ = const ·x exp(−λx) are annulated by the

transformation given by the right hand side of (12). These are the only functions which are

annulated by this transformation: for a function f(x),

if f(2x) − 2 exp(−λx)f(x) = 0, then exp(2λx)f(2x) = 2 exp(λx)f(x)

which implies that exp(λx)f(x) = const ·x and hence f(x) = const ·x exp(−λx). Therefore,

although the process αn looks like a nonparametric object, unconnected with and free from

any estimation of the parameter λ, asymptotically it is actually a one-to-one transformation

of v̂n. It follows that (14) annulates const · t ln t and β∗ is not a one-to-one transformation

of u.

Angus (1982) and Koul (1977) calculated some limiting critical values of Kolmogorov-

Smirnov statistics from αn(x) and αn(x, y) respectively. However, the distribution of the

processes (13) and (14) is rather complicated, or at least, is less convenient than the distri-

bution of a standard Brownian motion.
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4 Assessment of test statistics based on the process wn

It is not entirely clear how to best evaluate the convergence of distribution of a sequence of

processes – in our case, the sequence of wn – to the limiting process. We chose to consider

several statistics with different behaviour: one-sided and two-sided Kolmogorov-Smirnov

statistics,

d+
n = sup

0≤x<∞

wn(x), d−n = − inf
0≤x<∞

wn(x),

dn = max(d+
n , d

−
n ) = sup

0≤x<∞

|wn(x)|,

the Cramér-von Mises statistic,

ω2
n =

∫ ∞

0

w2
n(x)dPλ(x),

and a version of the Anderson-Darling statistic,

A2
n =

∫ ∞

0

w2
n(x)

Pλ(x)
dPλ(x) .

We evaluated the distribution functions of all five statistics for finite n and compared these

distribution functions with their limits in a simulation study.

The limit distribution function of d+
n and d−n is 2Φ(z)−1, where Φ is the standard normal

distribution function, which follows from the reflection principle; see, e.g., Feller (1971). The

limit distribution of dn is given, e.g., in Shiryaev (1999) and Borodin and Salminen (2002),

and was calculated by E. Shinjikashvili using the numerical method suggested and studied

in Khmaladze and Shinjikashvili (2001). Tables of the limit distribution of ω2
n were given

in Orlov (1972) and Martynov (1977). The limiting percentage points of A2
n are given in

Deheuvels and Martynov (2003). In fact, we have now made all these limiting distributions,

and others, available on the web site of the School of Mathematics, Statistics and Computer

Science, VUW:

http://www.mcs.vuw.ac.nz/~ray/Brownian/

Random samples of sizes 50, 100 and 200 were generated from the exponential distribution

with parameter λ = 1, such that P = exp(−x). We considered two situations: the less

realistic case with λ assumed known and the situation where λ was estimated, using the

maximum likelihood estimator, λ̂ = 1/X̄. Table 1 reports the empirical sizes of the five

named statistics above obtained from 50,000 replications, for nominal sizes of 5% and 10%,

with λ = 1 assumed. Table 2 gives the corresponding empirical sizes, obtained with λ = λ̂.
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Figure 4: Comparison of empirical distribution function (solid line) and corresponding limit
distribution (dashed line) for two goodness-of-fit test statistics based on the process wn,
calculated in each case from 50,000 standard exponential samples of sizes 50 or 100 with
estimated parameters: (a) size 50, dn; (b) size 50, ω2

n; (c) size 100, dn; (d) size 100, ω2
n.
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It is clear from the Tables 1 and 2 that all five statistics have accurate empirical sizes, both

when λ is assumed known and, more realistically, when it is estimated. Such performance is

required for a test statistic to be distribution-free. Figure 4 illustrates the good convergence

of the entire empirical distribution functions of two of the test statistics to their limits: we

present graphical comparisons for each of dn and ω2
n, for 50,000 samples of sizes 50 and 100,

with λ = λ̂. Convergence was comparable for the other test statistics, and slightly better

with λ = 1 assumed known.

We remark that calculation of Kolmogorov-Smirnov statistics d+
n , d

−
n and dn becomes easy

and quick, yet exact, if we note the following: within each interval (X(j), X(j+1)) formed by

adjacent order statistics the compensator K(x, Pn) is simply a quadratic function in x and

its minimum is attained at the point

x0
j =

∑

i:Xi>X(j)
Xi

n− j
− 2λ̂ =

∑

i:Xi>X(j)
Xi

n− j
− 2X̄,

while Pn(x) stays constant. It follows that the maximum or minimum of the difference

Pn(x)−K(x, Pn) on each such interval is attained either at the end-points or at x0
j , provided

x0
j ∈ (X(j), X(j+1)). In other words, d+

n = max(an, bn) where

an = max
j

{(

j

n

)

−K(X(j), Pn)

}

, and bn = max
j:x0

j
∈(X(j),X(j+1))

{(

j

n

)

−K(x0
j , Pn)

}

while

d−n = −min
j

{(

j − 1

n

)

−K(X(j), Pn)

}

.

5 Concluding remarks

In this paper we have demonstrated a simple transformation of the empirical process under

the hypothesis of exponentiality. Our transformed empirical process allows the construction

of a whole class of goodness-of-fit test statistics, which have the desirable poperties of power

against any local alternative and asymptotic distribution-freeness. An especially appealing

feature of our particular transformed empirical process is the convenience of the limit distri-

butions of any constructed test statistics, which are all simply functionals from the standard

Brownian motion.

We have also explored the asymptotically linear functional form of several well known

test statistics and shown that they are essentially equivalent. Some of these asymptotically
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linear functionals have been recommended by others as ‘omnibus’ goodness-of-fit statistics.

As we have shown, in fact such linear statistics can have almost no power against many local

alternatives. In contrast, true omnibus test statistics constructed from our transformed

empirical process demonstrate superior power, which further amplifies the value of that

approach when testing the hypothesis of exponentiality against general alternatives.
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Test Nominal Size of Empirical
statistic size sample size (%)

50 9.260
10% 100 9.700

d+
n 200 10.132

50 5.852
5% 100 5.850

200 5.794
50 9.204

10% 100 9.248
d−n 200 9.268

50 3.956
5% 100 4.036

200 4.268
50 9.810

10% 100 9.892
dn 200 10.062

50 5.562
5% 100 5.498

200 5.504
50 9.770

10% 100 9.918
ω2

n 200 9.962
50 4.954

5% 100 5.010
200 5.060
50 9.888

10% 100 10.064
A2

n 200 10.046
50 4.984

5% 100 5.128
200 5.152

Table 1: Empirical sizes for the test statistics considered, for various sample sizes, with
exponential parameter known. 50,000 replications for each sample size, with all statistics
calculated for each replicate.
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Test Nominal Size of Empirical
statistic size sample size (%)

50 7.428
10% 100 8.204

d+
n 200 9.220

50 4.468
5% 100 4.712

200 5.242
50 10.572

10% 100 10.420
d−n 200 10.090

50 4.430
5% 100 4.368

200 4.462
50 8.898

10% 100 9.086
dn 200 9.704

50 4.540
5% 100 4.790

200 5.094
50 9.618

10% 100 9.502
ω2

n 200 9.710
50 4.604

5% 100 4.662
200 4.870
50 9.772

10% 100 9.652
A2

n 200 9.778
50 4.786

5% 100 4.750
200 4.854

Table 2: Empirical sizes for the test statistics considered, for various sample sizes, with
exponential parameter estimated. 50,000 replications for each sample size, with all statistics
calculated for each replicate.
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