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ABSTRACT

For stratified clinical trials with an ordinal response, this article considers two diagnostics

strategies for evaluating the heterogeneity of the ordinal odds ratios across multi-centers in

proportional odds models. The first strategy assumes multi-centers as a sample from a

population and then uses a proportional odds model allowing random effects to model the

heterogeneity among the ordinal log odds ratios. It gives an overall view of the heterogeneity

across multi-centers. The second strategy applies the influence measure to the Mantel-

Haenszel type estimators of the ordinal odds ratios. It shows the detail of heterogeneity in

each of the multi-centers. At the end, this article uses a multi-center clinical trials example

to illustrate both strategies.

1. INTRODUCTION

This article considers diagnostics methods for stratified multi-center clinical trials when

the response variable has a natural ordering (e.g., better, unchanged, and worse). For a

clinical trial study, the odds ratio is commonly used to describe the relationship between

treatments and response. When the response is ordinal, the ordinal odds ratios that sum-
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marize the relationship across different centers are considered based on a proportional odds

model.

Diagnostic methods play an important role in categorical data analysis. For instance,

Grizzle and Williams (1972) explored a general diagnostic approach to the analysis of cate-

gorical data for fitting a loglinear model. Pregibon (1981) developed diagnostic measures for

a maximum likelihood fit of a logistic regression model. Andersen (1992) discussed diagnos-

tics for categorical data in the Goodman association model. Wang, Critchley and Liu (2004)

considered the diagnostic method for a contingency table assuming a clustered sampling

model. A well known diagnostic measure, Cook distance, is widely used for linear regression

models (Cook and Weisberg, 1982) and multivariate analysis (Wang and Critchley, 2000 and

2003).

This article uses two diagnostics strategies for evaluating the heterogeneity of the or-

dinal odds ratios across multi-centers in proportional odds models. The strategies are the

following: (1) Using a proportional odds model (McCullagh, 1980) allowing random effects

that assumes the multi-centers as a sample from a population (Hartzel, Liu and Agresti,

2001). The model permits heterogeneity in the conditional associations between treatments

and response. The estimate of the mean for the association effects describes the average

relationship between treatments and response across centers. The variance estimate for the

association effects describes the heterogeneity of the relationship across centers. (2) Using

Mantel-Haenszel (Mantel and Haenszel, 1959) type estimators to evaluate the ordinal odds

ratios in a proportional odds model (Liu and Agresti, 1999; Liu, 2003). This technique

summarizes the association effects across the centers using ordinal odds ratios. Then, we

propose an influence measure to indicate the detail of the heterogeneity for the ordinal odds

ratio in each of the centers. When each center has very few observations, the second strategy

is better than the first one, because the model fitting algorithm for the proportional odds

model with random effects often has computational problems for sparse data. However, the

first strategy gives an overall view of the heterogeneity while the second gives the detail of

the heterogeneity in each of the centers.
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Section 2 introduces the proportional odds model used for fitting stratified clinical trials

data with an ordinal response. It also shows the Mantel-Haenszel type estimators of the

ordinal odds ratios that describe the conditional associations between treatments and re-

sponse. Section 3 discusses the first strategy that determines the level of heterogeneity using

a proportional odds model allowing random effects. Section 4 proposes the second strategy

where a influence measure is used to explore the detail of heterogeneity for the ordinal log

odds ratios across centers. Section 5 gives an example using these strategies.

2. ORDINAL ODDS RATIOS IN A PROPORTIONAL ODDS MODEL

When the response is ordinal (e.g., better, unchanged, and worse), the most popular

model uses logits of cumulative probabilities. The model is often called the proportional

odds model (McCullagh, 1980). For instance, in a clinical trial study, one can compare r

treatments on a c-level ordinal response for data from K clinical centers using the model.

Let πijk denote the probability that the response is at level j when a patient at center k

received treatment i, where πi1k + · · · + πick = 1 for all i = 1, . . . , r and k = 1, . . . , K.

The cumulative probabilities are denoted by π∗
ijk = πi1k + . . . + πijk for all i = 1, . . . , r,

j = 1, . . . , c − 1, and k = 1, . . . , K. The proportional odds model considered has the form

log

(

π∗
ijk

1 − π∗
ijk

)

= αj + γk + βi i = 1, . . . , r, j = 1, . . . , c − 1, k = 1, . . . , K, (1)

with a constraint γK = βr = 0. The model is simply a logit model when the response is

binary.

This article uses an example provided by Merck Research Laboratories for a double-blind,

parallel-group preliminary clinical study conducted at 21 centers, where patients suffering

from asthma were randomly assigned to 3 different treatments (2mg active drug, 10mg active

drug, and placebo). At the end of the study, the doctors described the patients’ change in

condition using an ordinal scale from better to worse (1 to 4). Table 1 shows the results of

the doctors’ evaluations associated with the treatments and is presented as 21 separate 3×4

tables. Such a study might use many clinics because of the time it takes each clinic center

to recruit many patients. Therefore, the three-way table might then have many strata but

3



few observations per stratum. It leads to a sparse data set.

In the proportional odds model (1), parameters {βi} describe the treatment effects given

clinics. For each clinic center, the odds that the evaluation for treatment i falls below any

fixed level are exp(βi) times the odds for treatment r. We refer to the ordinal odds ratio

exp(βi) as the cumulative odds ratio, since the model is based on the cumulative probabilities.

When fitting the model, the maximum likelihood (ML) estimators of {βi} perform badly for

sparse data. Liu and Agresti (1996) and Liu (2003) have shown that the ML method tends to

overestimate the effects. This is not surprising, because it also happens for a binary response

case (Andersen 1980, p. 244 and Ghosh, 1995). The standard asymptotic properties of ML

estimators fail when the number of nuisance parameters (such as {γk}) grows at the same

rate as the sample size (Neyman and Scott, 1948).

Alternatively, the Mantel-Haenszel (MH) type method provides better estimators for {βi}

(Liu and Agresti, 1996; Liu, 2003). Liu (2003) extended the ordinary MH estimator (Mantel

and Haenszel, 1959) for a common odds ratio for several 2 × 2 tables to the case of several

r × c tables. Like the ordinary MH estimator the extended MH-type estimator is consistent

under both the ordinary asymptotics in which the number of strata is fixed and also the

sparse asymptotics in which the number of strata grows with the sample size. The estimator

is referred to a dually consistent estimator.

We assume that each r × c table is formed by r independent multinomial samples (X1jk,

X2jk, . . ., Xrjk, j = 1, . . . , c) with sample sizes denoted by (n1k, n2k, . . ., nrk). The total

sample size in each stratum is denoted by Nk = n1k + . . . + nrk, for k = 1, . . . , K. Let

cumulative counts be X∗
ijk = Xi1k + . . . + Xijk and let Rih

jk = X∗
ijk(nhk − X∗

hjk)/Nk and

Sih
jk = X∗

hjk(nik − X∗
ijk)/Nk. Liu (2003) proposed the MH type estimator of βi as

L̄i =
1

r





r
∑

h=1,h6=i

Lih −
r−1
∑

h=1

Lrh



 , i = 1, . . . , r − 1, (2)

where

Lih = log





K
∑

k=1

c−1
∑

j=1

Rih
jk



− log





K
∑

k=1

c−1
∑

j=1

Sih
jk



 , i = 1, . . . , r, h = 1, . . . , r, and i 6= h.
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Furthermore, the dually consistent variance and covariance estimators for {L̄i} follow imme-

diately from Greenland (1989) and Liu (2003) as

ˆCov(L̄i, L̄h) =
1

r2
(U+

ih − U+
ir − U+

rh + U+
rr)

V̂ar(L̄i) =
1

r2
(Ui++ − 2U+

ir + Ur++) , (3)

where Uihg = 0 if i = h or g, U+
ih = Ui++ if i = h, and U+

ih = U+
hi = U+ih −Uih+ −Uhi+ + Uihh

if i 6= h. The form of Uihg is given in Appendix A. Liu (2003) gave the proof of dual

consistency for the variance and covariance estimators. For sparse data such as that in

Table 1, the MH-type estimators (2) of the cumulative log odds ratios {βi} perform better

than the ML estimators.

3. PROPORTIONAL ODDS MODEL WITH RANDOM EFFECTS

When comparing treatments on an ordinal response with stratified data, it is common to

use Model (1) that assumes a lack of interaction between the treatment effects and strata.

That is, the cumulative odds ratios used to describe the conditional association between

treatment and response are the same for each clinic center. To check the homogeneity

of cumulative odds ratios, we might use ordinary Pearson or likelihood-ratio goodness-of-

fit tests for the corresponding model. Such tests are appropriate only under the ordinary

asymptotics, which is not the case for Table 1.

In a clinical trial conducted to compare treatments among several clinical centers, the

true treatment effects might vary due to some other factors, such as age among subjects at

different centers. Therefore, it is plausible to estimate the degree of the heterogeneity for

the cumulative odds ratios across the centers. Hartzel, Liu and Agresti (2001) used random

effects terms to describe the variability for the cumulative log odds ratios for two treatments.

When the strata are a sample, such as a sample of clinical centers, it is natural to treat the

strata effects or the cumulative log odds ratios as random effects across strata. Consider a

proportional odds model allowing random effects terms as

log

(

π∗
ijk

1 − π∗
ijk

)

= αj + ck + bik i = 1, . . . , r, j = 1, . . . , c − 1, k = 1, . . . , K, (4)
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where brk = 0 for all k and {b1k, . . . , br−1,k} are a vector of correlated random effects. In

the model, {c1, . . . , cK} are independent observations from a N(γ, σc) and {bi1, . . . , biK} are

independent observations from a N(βi, σβi
) for all i = 1, . . . , r−1. The model is a special case

of a multivariate generalized linear mixed model for ordinal responses (Tutz and Hennevogl,

1996).

To obtain the likelihood function we construct the usual product of multinomials and

then integrate out the random effects with respect to the random effects distribution. Let

uk
′ = (ck, b1k, . . . , br−1,k) be the random effects having a multivariate normal distribution

with mean β = (γ, β1, . . . , βr−1) and the covariance matrix Σ. That is, uk ∼ N [β′,Σ].

Let g(u; β,Σ) denote the multivariate normal density function with mean β and covariance

matrix Σ. The likelihood function has the form

L(α, β,Σ) =
K
∏

k=1

∫ ∞

−∞
· · ·

∫ ∞

−∞





r
∏

i=1

c
∏

j=1

(πijk)
Xijk



 g(uk; β,Σ)duk,

where

πi1k =
1

1 + exp[−(α1 + ck + bik)]

πijk =
1

1 + exp[−(αj + ck + bik)]
−

1

1 + exp[−(αj−1 + ck + bik)]
, j = 2, . . . , c − 1

πick = 1 −
1

1 + exp[−(αc−1 + ck + bik)]

To fit Model (4), one can consider Hedeker and Gibbons (1994) procedures. They maxi-

mized the likelihood after approximating the integrals by Gauss-Hermite quadrature. Alter-

natively, the procedure PROC NLMIXED in SAS for fitting generalized linear mixed models

using adaptive Gauss-Hermite quadrature is also available to fit the proportional odds mod-

els with random effects. See Hartzel, Liu, and Agresti (2001) for the details of SAS codes.

However, fitting the proportional odds model with random effects may not be suitable for

highly sparse data. The fitting algorithm often fails to converge when the data are sparse

and when there are many random effects. In our experience, the fitting algorithm for SAS

PROC NLMIXED is often successful when the number of random effects is less than 3.
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For Model (4), we describe the conditional association between treatments and response

using the estimate of means {β1, β2, . . . , βr−1}. The degree of the heterogeneity for the

cumulative log odds ratios across the centers is given by the estimate of standard deviations

{σβ1
, σβ2

, . . . , σβr−1
}.

4. A DELETION INFLUENCE MEASURE

There are several ways to check for the homogeneity of cumulative odds ratios or to

describe the heterogeneity among them. For instance, we might use an overall goodness-of-

fit test to check the homogeneity. In the proportional odds model with random effects (4), we

can use the variance estimators to indicate the level of heterogeneity among the cumulative

log odds ratios across centers. When the homogeneity doesn’t hold, the next question that

arises is to identify which pieces of data contribute to the heterogeneity most. Sometimes,

even though the heterogeneity is minor in magnitude and perhaps not even significant in

the sample according to a statistical test, it is always interesting to get the detail of the

heterogeneity for the cumulative log odds ratios among multi-centers.

Suppose we replace {βi} by {βik} in the proportional odds model (1). This model al-

lows the cumulative odds ratio to vary among centers. The variability in {βi1, βi2, . . . , βiK}

indicates the heterogeneity of the conditional associations between treatments and response

across centers for all i = 1, . . . , r − 1. However, when there are few observations in a par-

ticular center (say center k), the ML estimate of {β1k, β2k, . . . , βr−1,k} is not reliable. The

estimate can approach to either negative infinity or positive infinity because of the many

zero counts within the center. A similar problem occurs if we use the Mantel-Haenszel type

estimator (2) to estimate the cumulative odds ratios for each center. For the example in Ta-

ble 1, each center has very few patients. It is not appropriate to estimate the center-specific

cumulative odds ratios in the sense that the treatment effects obtained separately from each

center provide little information. Consequently, the detail of heterogeneity is not available

based on the estimates of the center-specific cumulative odds ratios.

Instead, this article proposes an influence measure that determines the strength of the

heterogeneity of the cumulative log odds ratios across different centers based on the MH type
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estimators (2). The proposed influence measure has a similar form as the Cook’s distance

(Cook and Weisberg, 1982) for the ordinary linear regression models. For the linear regression

models, the Cook’s distance is a common diagnostics method used to detect a goodness-of-fit

of the model and also to identify possibly aberrant data points in multivariate analysis. In

general, the Cook’s distance Dk has the form

Dk = (θ̂ − θ̂(k))
T ˆ
Cov(θ̂)

−1

(θ̂ − θ̂(k))

where θ̂ is the vector of estimates based on all data points and θ̂(k) is the vector of estimates

when the kth data point is deleted.

For the stratified clinical trials, we are interested which clinical center has a strong influ-

ence to the treatment effects. A clinical center is said to be influential if its deletion has a

relatively large influence on the inference measure. For the multi-center clinical trials, if one

center (e.g., kth) is deleted, the effect of deleting the kth center on the estimates of {L̄i} is

to yield the estimates of {L̄i(k)}. The proposed influence measure is defined as

Ck = (L̄ − L̄(k))
T ˆCov(L̄)

−1

(L̄ − L̄(k)), k = 1, . . . , K, (5)

where the vector L̄ = (L̄1, L̄2, . . . , L̄r−1) is the MH estimates of the cumulative log odds

ratios and ˆCov(L̄) is the estimate of the covariance matrix of (L̄1, L̄2, . . . , L̄r−1). The form

of {L̄i} is given on (2) and their variance and covariance estimates are given on (3). The

effect Ck of deletion is a quadratic form measuring the overall difference between the vector

L̄ and the L̄(k). A relatively large value of Ck implies that the kth clinical center has a high

influence on the cumulative log odds ratios.

5. EXAMPLE

For the example in Table 1, we use an MH type method to estimate the cumulative odds

ratios. We also describe the heterogeneity for the cumulative odds ratios among centers

based on the two strategies discussed in Sections 3 and 4.

5.1. Cumulative Odds Ratios Estimates in a Proportional Odds Model
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Using the MH type estimates (2) to describe the conditional relationship between the

treatments and the patients’ change in condition given each center, we have L̄13 = 0.640

and L̄23 = 1.063 with standard error estimates of 0.333 and 0.357 respectively. That is,

the odds of improving using the active drug with dose 2mg (or 10mg) are estimated to be

exp(0.640) = 1.90 (or exp(1.063) = 2.90) times the odds for the placebo, given each center.

In comparison, the ordinary ML estimates of β̂1 and β̂2 for model (1) equal 0.797 with an

estimated standard error of 0.343, and 1.099 with an estimated standard error of 0.355,

respectively. We tend to obtain a larger parameter estimate from the ML fitting when the

number of observations in each center is small.

5.2. First Diagnostics Strategy Using a Random Effects Model

Using the proportional odds model with random effects (4), the fitting algorithm fails to

converge because of the sparseness of the data and more than 2 random effects in the model.

To illustrate the strategy discussed in Section 3 in this example, we combine the response

scales 3 and 4 to make the data less sparse. Since r = 3 in this example, there are 3 random

effects in model (4), including (ck, b1k, b2k). To reduce the number of random effects, we

let {b2k} degenerate to its mean β2. We treat {c1, c2, . . . , cK} as independent observations

from a N(γ, σc) and {b11, b12, . . . , b1K} as independent observations from a N(β1, σβ1
). The

random effects (ck, b1k) are correlated with covariance σcβ. Using SAS PROC NLMIXED,

the estimate of β1 is 0.517 with a standard error of 0.286 and the estimate for the variability

of {b11, b12, . . . , b1K} is σ̂β1
= 0.690 with a standard error of 0.595. Using the proportional

odds model with random effects, the odds of improving using the active drug with dose

2mg are estimated to be exp(0.517) = 1.68 times the odds for the placebo across centers.

Although the standard deviation σβ1
is not significantly different form zero, the strength

of heterogeneity is large compared to the level of β̂1. The estimate of β2 is 1.185, with a

standard error of 0.325, that is, the odds of improving using the active drug with dose 10mg

are estimated to be exp(1.185) = 3.27 times the odds for the placebo. Comparing to the MH

type estimates of the cumulative odds ratio, the model (4) produces similar estimates of the

conditional associations between treatments and response. Furthermore, the random effects
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model gives the overall estimate for the level of heterogeneity in the treatment effects, that

is σ̂β1
.

5.3. Second Diagnostics Strategy Using the Influence Measure

On the other hand, we can consider the influence measure (5) for the cumulative log

odds ratios in each center. Table 2 lists the influence measure Ck and the estimates of the

cumulative log odds ratios when each of the centers is deleted. The notations {L̄i(k)} denote

the cumulative log odds ratios when the kth center is deleted for i = 1, 2 and k = 1, . . . , 21.

It is clear from Figure 1 that clinical centers 13, 15, 3, and 17 have a larger influence measure

compared to the others. This might suggest that the cumulative log odds ratios for those

centers are different from the others. It could be due to error, or some other factors (e.g.,

age), which is worth investigation.
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APPENDIX A

The form of Uihg is as follows:

Uihg =























































1
θ̂2

ih

K
∑

k=1

c−1
∑

j=1

φ̂ih
jk

(θ̂ih)+2
∑

k

c−1
∑

j<s

φ̂ih
jsk

(θ̂ih)

[

K
∑

k=1

c−1
∑

j=1

Sih
jk

]

2 , if i 6= h = g

1
θ̂ihθ̂ig

K
∑

k=1

c−1
∑

j=1

φ̂
ihg

jk
(θ̂ih)+

K
∑

k=1

c−1
∑

j 6=s

φ̂
ihig

jsk
(θ̂ih,θ̂ig)

(

K
∑

k=1

c−1
∑

j=1

Sih
jk

)(

K
∑

k=1

c−1
∑

j=1

S
ig

jk

) , if i 6= h 6= g,

where θ̂ia = (
∑

k

∑

j
Ria

jk)/(
∑

k

∑

j
Sia

jk) for all a 6= i and

φ̂ih
jk(θ) =

1

N2
k

[(nik − X∗
ijk)X

∗2
hjkθ

2 + (nik − X∗
ijk)(nhk − X∗

hjk)

(X∗
ijk + X∗

hjk)θ + (nhk − X∗
hjk)X

∗
ijk]

φ̂ih
jsk(θ) =

1

N2
k

[(nik − X∗
isk)X

∗2
hjkθ

2 + (nik − X∗
isk)(nhk − X∗

hsk)

(X∗
ijk + X∗

hjk)θ + (nhk − X∗
hsk)X

∗
isk]

φ̂ihg
jk (θ) =

1

N2
k

[(ngkX
∗
ijkX

∗
hjk − nikX

∗
hjkX

∗
gjk)θ

+(nhkngkX
∗
ijk − ngkX

∗
ijkX

∗
hjk)]

φ̂ihig
jsk (θih, θig) =











nikθih

N2

k

[

X∗
hjk(ngk − X∗

gsk)
]

if j < s

nikθig

N2

k

[

X∗
gsk(nhk − X∗

hjk)
]

If j > s.
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Figure 1: Influence Measure for Table 1
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Table 1: Doctors’ Evaluations of patients suffering from asthma

Response Response
Center Drug 1 2 3 4 Center Drug 1 2 3 4

1 2mg 0 1 2 1 2 2mg 0 0 1 1
10mg 0 2 0 2 10mg 0 0 1 2

Placebo 0 0 0 4 Placebo 0 1 1 1

3 2mg 0 0 2 2 4 2mg 0 2 3 1
10mg 0 0 1 0 10mg 0 2 2 2

Placebo 0 1 4 1 Placebo 0 0 1 1

5 2mg 0 1 1 0 6 2mg 0 2 0 0
10mg 1 0 0 2 10mg 0 1 0 0

Placebo 1 0 0 2 Placebo 0 0 0 2

7 2mg 0 0 2 2 8 2mg 1 0 0 1

10mg 0 0 2 1 10mg 0 3 0 0
Placebo 0 0 2 1 Placebo 0 0 1 1

9 2mg 0 0 2 1 10 2mg 0 2 1 1

10mg 1 0 2 0 10mg 0 1 0 0
Placebo 0 0 1 0 Placebo 0 1 0 1

11 2mg 0 1 1 0 12 2mg 1 0 0 0

10mg 0 1 1 1 10mg 1 1 0 0
Placebo 0 0 0 3 Placebo 0 2 0 0

13 2mg 0 1 1 2 14 2mg 1 1 3 0

10mg 0 1 0 1 10mg 1 0 1 0
Placebo 0 0 0 5 Placebo 0 0 1 0

15 2mg 0 0 3 2 16 2mg 0 2 2 1

10mg 0 2 3 0 10mg 2 1 2 0

Placebo 0 1 2 1 Placebo 1 1 1 1

17 2mg 0 1 0 0 18 2mg 1 1 1 1
10mg 1 1 1 2 10mg 0 1 0 0

Placebo 0 1 1 3 Placebo 1 0 1 3

19 2mg 0 3 0 0 20 2mg 0 0 2 1
10mg 0 1 3 0 10mg 0 1 0 3

Placebo 0 1 1 1 Placebo 0 1 1 0

21 2mg 0 1 1 2
10mg 1 1 0 1

Placebo 0 1 0 0

Note: Response is scaled from better (1) to worse (4).
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Table 2: Influence Measure

center k Ck L̄1(k) L̄2(k)

1 0.12077054 0.5282153 0.9743305

2 0.09793579 0.7408020 1.1446891

3 0.30112743 0.7972340 1.2365672

4 0.04966114 0.5705335 1.0466812

5 0.08045233 0.6477367 1.1530978

6 0.13563627 0.5512686 1.0898087

7 0.09029371 0.6998710 1.0233371

8 0.09484786 0.5829268 1.1082610

9 0.11666712 0.6872194 0.9950723

10 0.03345109 0.6582769 1.0201875

11 0.15629901 0.5518062 0.9246463

12 0.10196999 0.5997148 1.1298268

13 0.39812785 0.5163253 0.8389362

14 0.02842851 0.6215989 1.1008199

15 0.35854960 0.7749191 1.0047930

16 0.11812639 0.7500024 1.1544630

17 0.26737486 0.5764530 0.8815465

18 0.01933118 0.6169018 1.0863282

19 0.05794393 0.5611022 1.0292188

20 0.08288072 0.7351112 1.1035303

21 0.12551658 0.7508712 1.0878349
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