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Abstract

We propose a general test of whether a time series model, with parameters estimated
by minimising the single-step forecast error sum of squares, is robust with respect to
multi-step estimation, for some specified lead-time. The test statistic is based on a score
function, defined as the derivative of the multi-step forecast error variance with respect
to the model parameters, and evaluated at parameters estimated using the single-step
criterion. We show that the test has acceptable size properties for higher lead times,
when applied to the exponentially weighted moving average predictor, and investigate
how its power varies with the lead time, under the simple ARMA(1,1) alternative. We
also demonstrate the high power of the test when it is applied to a process generated
as the sum of a stochastic trend and cycle plus noise, which has been modelled by a
high order autoregression. We use frequency domain methods which give insight into
the derivation and sampling properties of the test, but note that the test statistic may
be expressed as a quadratic form in the residual sample autocorrelations. The test is
illustrated on two real time series, which demonstrate its wide applicability.

Keywords: Diagnostic statistic; Model robustness; Multi-step prediction; Time series

1 Introduction

This paper addresses a dilemma that arises in the construction of multi-step predictions of

discrete time series. One approach is first to fit a parametric process model by minimising

the sum of squares of in-sample single-step forecast errors, or equivalently, by maximum

likelihood estimation, or one of the several, closely related, approximations to this criterion.

Multi-step forecasts, from the end of the series, are then derived from this model. For a

linear model the expected future value may be obtained quite simply, by successively using

the single step predictor, treating each prediction as if it were an observed value. This result
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is often termed the plug-in or iterated multi-step (IMS) prediction. A second approach is to

construct a direct multi-step (DMS) prediction as a specified function of the observations,

and to choose the coefficients in this predictor by minimising the sum of squares of the

multi-step forecast errors.

Bhansali (1999) reviews many of the earlier contributions to the analysis of this dilemma,

setting out the problem, and presenting the statistical issues. The most common DMS pre-

dictor, termed a non-parametric predictor, is of the autoregressive type, i.e. a linear combi-

nation of a finite set of recent process observations. However, every parametric process model

gives rise to an IMS predictor, for example the widely used multi-step exponentially weighted

moving average (EWMA) predictor may be viewed as the predictor from an IMA(1,1) model.

A parametric DMS predictor can therefore be constructed by using the IMS predictor of a

process model but with the parameters determined to minimise the sum of squares of in-

sample multi-step, rather than single step, forecast errors. Bhansali (1999) gave an example

of such a predictor (see also Stoica and Soderstrom, 1984), and Haywood and Tunnicliffe-

Wilson (1997) show how they can be constructed and their properties evaluated for a wide

range of parametric models.

The advantage of the IMS prediction is that one model suffices for all lead-times, and

whether one is forecasting a future level, trend or cumulative total. It is also more efficient

in the sense of mean square forecast error, provided the process model is correctly specified,

although the efficiency of DMS predictions can be restored if generalised method of moments

(GMM) is used in place of OLS for autoregressive predictors (Chevillon and Hendry, 2004).

The advantage of DMS prediction, as a robust method, is clear when IMS prediction is

applied using a mis-specified model, as discussed by Findley (1983) and for autoregressive

models by Bhansali (1996). See also Kang (2003) for a recent practical investigation, and Ing

(2003), for a comparative treatment of the asymptotics for stationary autoregressive forms of

IMS and DMS predictors. It is good practice in time series modelling to guard against model

mis-specification that might disadvantage the IMS predictor, by careful model selection,

prior to estimation by maximum likelihood, followed by diagnostic checking applied to the

estimated residuals. However, considerable attention continues to be devoted to resolving

the problem of choice between these two types of predictors. In a recent applied contribution,

Marcellino, Stock and Watson (2004) present the results of a large scale exercise to compare

the two approaches using out of sample assessment of the forecasts. They only considered

autoregressive predictors for both IMS and DMS methods, and examined cases where the
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number of terms in the predictor was fixed, or chosen by an information criterion. Two of

the points among their conclusions are, that the IMS method is preferred for a large class of

about 80% of their series, and that the DMS is preferred in the other cases when a low order

model has been used. However, “most if not all of the advantage” of the DMS is eliminated

if the number of terms in the model is increased. They indicate that a model including a

moving average term might be better in these cases.

In this paper we propose a general test of whether a time series model, with parameters

estimated by minimising the single-step forecast error sum of squares, is robust with respect

to multi-step estimation, for some specified lead-time. Such a test provides one solution to

the dilemma of choice between an IMS predictor based on a parametric time series model,

and its corresponding (parametric) DMS predictor. As with the portmanteau statistics, it

may be applied immediately following maximum likelihood estimation; our test statistic is,

in fact, a low rank quadratic form in the residual sample autocorrelations. However, the

test is valuable to the user because of its more specific nature. If the result of the test

is not significant, for a given lead time, it provides re-assurance of the adequacy of the

model parameters for prediction at that lead time, even if there is some evidence from the

portmanteau statistic, of unspecific model inadequacy. If the result is significant, the user

can expect an immediate gain in forecast accuracy, at that lead time, by re-estimation of

the model parameters. They may also be prompted to investigate ways in which the model

can be modified.

We now illustrate the test with two real examples, the first concerning a seasonal moving

average type of model; the second a non-seasonal autoregression. Consider first the familiar

monthly “Airline” series of Box and Jenkins. The logarithm of the series is shown in Figure

1 (a) and the sample residual autocorrelations shown in Figure 1 (b), following (approximate

maximum likelihood) estimation of the structural model with seasonal component described

by Haywood and Tunnicliffe Wilson (1997, page 249). See also Harvey (1989). There is some

evidence of model inadequacy in that the sample autocorrelations at lags 3 and 23 lie outside

the nominal 95% limits. Choosing a maximum lag of 25, the Ljung-Box portmanteau statistic

(Ljung and Box, 1978) was 31.6 on 22 d.f., corresponding to a p-value of 8.4%. Applying our

test for lead time 6 gave a highly significant result, with a p-value of 0.3%. From the value

of the test statistic we also estimate a potential reduction in forecast error variance of 12%

at that lead time, that may be achieved by re-estimation of the model parameters.
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(a) (b)

Figure 1: (a) The logarithm of the series of monthly airline passenger totals and (b) the
sample residual autocorrelations following estimation of a seasonal structural model.

(a) (b)

Figure 2: (a) The USA unemployment rate from 1948 to 1979, together with (b) the sample
partial autocorrelations of the square root transformed series.

For our second example we take the series of quarterly seasonally adjusted USA unem-

ployment rate for the period 1948 to 1979, shown in Figure 2, together with its sample partial

autocorrelation function, calculated following a square root transformation (a Box-Cox pa-

rameter of 0.48 was estimated by maximum likelihood). A third order autoregressive model

was selected for this series using the AIC (Akaike, 1973). The residual autocorrelation and

spectrum are shown in Figure 3. There is no obvious sign of model inadequacy, though the

Ljung-Box portmanteau test statistic for the first 20 residual autocorrelations is 25.98 on 17

d.f. with a p-value of 7.5%. On applying our test with a lead time of one year (four quarters),

we obtained a p-value of 4%, indicating a significant potential for forecast improvement.

We derive our test statistic, and its sampling properties, in the next section of this

paper. In Section 3 we carry out an empirical study of its size when applied to the IMA(1,1)

4



(a) (b)

Figure 3: (a) The residual sample autocorrelations and (b) the sample spectrum of the
residuals, from fitting an AR(3) model to the transformed USA unemployment rate series.

model, and its power against the alternative of an ARMA(1,1) process. This is motivated

by an original investigation by Cox (1961) into the robustness of the EWMA for multi-step

prediction, which was more recently taken up by Tiao and Xu (1993). They carried out a test

for a significant change in the moving average parameter when the model was re-estimated

to minimise the sum of squares of multi-step forecast errors. They show that their test

can have greater power than the Ljung-Box test in this context. However, the parameter

in this case is non-linear, and their test encounters a practical limitation when applied to

lead times of greater than two, because of the tendency of the multi-step estimate to take

the unit value on the boundary of the parameter space. Our test statistic is well defined

for higher lead times and we are able to illustrate the effects on the power, of the choice of

lead time. The investigation in Section 4 is motivated by the foregoing example of the USA

unemployment series and the use of autoregressive predictors. We seek to identify the model

mis-specification that might explain the significant result in that example. Based on this we

formulate a model for use in a simulation exercise to confirm the size properties of our test

in the context of a higher order autoregressive predictor, and its power against a realistic

alternative. We give some brief concluding comments in Section 5.

2 A score-type test

Haywood and Tunnicliffe Wilson (1997), hereafter referred to as HTW, presented a frequency

domain approach to estimating time series model parameters by minimising the multi-step

ahead prediction error sum of squares. The score statistic that we now investigate is proposed
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in the discussion of that paper. In recent years there has been renewed appreciation of

frequency domain methods for the estimation and testing of parametric time series models

(e.g. Harvey 1989, Section 4.3), using what is often termed the Whittle likelihood. HTW

show how these methods provide insight for the multi-step estimation problem, and we

exploit the asymptotic independence of sample spectral ordinates to derive the properties

of our test statistic, which may, however, also be expressed as a low rank quadratic form

in the residual sample autocorrelations. The score statistic is evaluated at the parameters

estimated by minimising the single-step forecast error variance, so that the model need not

be re-estimated by determining the parameters that minimise the multi-step forecast error

variance. We also find that the asymptotic distributional properties of the test, under the

null hypothesis, are reliable, even at higher lead times.

Standard score function test statistics that approximate likelihood ratio statistics, are

quadratic forms in the score, having chi-squared distributions, and being invariant to locally

linear parameter transformations. But, except in the case of a single parameter model, we

have a choice, in our context, of two distinct invariant statistics. One is formed from the

score and its asymptotic variance matrix, and approximates the Mahalanobis length of the

change in parameter values that results from multi-step re-estimation of the model. It has

an asymptotic chi-squared distribution. The other is formed from the score and the local

Hessian matrix, so as to approximate the proportional reduction in the multi-step error

variance that results from the re-estimation. Its asymptotic distribution is a weighted sum

of chi-squared variables on one degree of freedom. This is the test that we favour, for its

greater reliability and power.

We introduce the statistic by briefly reviewing and extending some of the methodology

and notation introduced by HTW. We assume that the time series under consideration, xt,

may be modelled as an (possibly) integrated process that requires differencing of order d ≥ 0

to yield a stationary process wt. Suppose that the model for wt has a spectrum S(f), for

0 ≤ f ≤ 1

2
, which has a linear form with coefficients β1, . . . , βk:

S(f) =
k

∑

i=1

βiSi(f) = Sββ, (1)

where Sβ is the row vector of component functions Si(f), and β is the column vector of

coefficients. This is easily extended to a wider class of spectra which are products or ratios

of this form, which encompasses all ARMA models.
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Let the infinite moving average representation of the model for wt be

wt = (1 + ψ1B + ψ2B
2 + · · ·)et = ψ(B)et, (2)

where et, with variance σ2, is the white noise linear innovation of wt. Then the model

spectrum for wt is given by

S(f) = σ2|ψ{exp(iω)}|2 = |ν{exp(iω)}|2, (3)

where ν(B) = σψ(B) and ω = 2πf . The infinite moving average representation of the

integrated process xt = (1 − B)−dwt is then given as

xt = (1 − B)−dψ(B)et
def
= Ψ(B)et. (4)

Now define the truncated operator

T (B) = σ
(

Ψ0 + Ψ1B + · · ·+ ΨL−1B
L−1

)

. (5)

Then the error et(L) in the multi-step prediction of xt+L made at time t, that results from

applying this model, may be expressed as

et(L) =
T (B)

ν(B)
wt+L. (6)

The mean sum of squares (MSS) of L-step ahead prediction errors then has the frequency

domain approximation

FL(β) = 2
∫

1

2

0

G(f)
S∗(f)

S(f)
df, (7)

in terms of the model spectrum, the gain function

G(f) = |T{exp(iω)}|2 (8)

and the sample spectrum of wt:

S∗(f) =
1

n

∣

∣

∣

∣

∣

n
∑

t=1

wt exp(iωt)

∣

∣

∣

∣

∣

2

. (9)

The minimisation of FL with respect to β requires the iterative solution of equations

Hδ = g, (10)

for the parameter corrections δ, where g is the negative of the derivative of FL with respect

to β, and H is an estimate of the Hessian of FL. Expressions for g and H are given in HTW.
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The test statistic which we propose, is

q = g′H−1g, (11)

evaluated at the (approximate MLE) parameters β̂ which minimise FL(β) for lead time

L = 1. (In HTW we in fact proposed 1

2
q). Let β̃ be the parameters which minimise FL(β)

for a specified value of L > 1. The value of 1

2
q is an approximation (under a locally quadratic

assumption) to FL(β̂)− FL(β̃), the reduction that may be achieved in the L-step prediction

error MSS, by re-estimation of the parameters. Expressions for g and H are given by first

forming the functions of frequency Y = S∗/S, Xi = Si/S and Zi = K(Xi), where K is

a linear operator, depending on the model parameters, that is defined in HTW. Then the

elements of g and H are

gi = 2
∫

1

2

0

Y (f)<Zi(f)df, Hi,j = 2
∫

1

2

0

Xi(f)<Zj(f)df. (12)

In practice these integrals are evaluated by finite sums over the discrete harmonic fre-

quencies fr = r/n, 0 ≤ r ≤ n/2. Retaining for notational convenience the same symbols,

we define the vector Y with elements Yr = Y (fr) and matrices X and Z with elements

Xr,i = Xi(fr), Zr,i = <Zi(fr). Then we take, with h = 1/n,

g = 2hZ ′Y, H = 2hZ ′X. (13)

We remark on a minor but useful modification, that terms in the finite sum that correspond

to frequencies f = 0 and f = 1

2
should be weighted by 1/2. This ensures that the finite sum

approximates the integral exactly for functions that are linear combinations of cos 2πκf/n

and sin 2πκf/n for κ = 0, 1, . . . , n−1. This modification is implemented by dividing the first

row, and the last row if n is even, of Y , X and Z, by
√

1

2
. This step also has the advantage of

ensuring that all elements of Y have the same asymptotic variance under the true parameter

values. We shall later use a vector of ones, modified in the same way.

To employ the statistic q, we shall need a consistent estimate of its distribution. First,

however, we must draw attention to the fact that H is singular, and explain how we overcome

this. In HTW we noted that β ′g = 0 and β ′H = 0 for the values of β used to construct

g and H. The solution of Hδ = g for the step δ therefore contains an arbitrary multiple

of β. The reason for this singularity is that F is invariant to any scaling of S, and hence

of β. In HTW we proposed a normalisation of β to obtain a unique estimate. However,
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because q = g′δ, and g′β = 0, the value of the score statistic is not changed by the addition

of any arbitrary multiple of β to δ. We therefore employ a generalised inverse of H in (11).

In terms of its eigen-decomposition H = WNW ′, we take H−1 = WMW ′, where for the

non-zero eigen-values, Mi i = 1/Ni i, but Mi i = 0 for Ni i = 0.

In the remainder of this section we investigate the sampling properties of q, and show

that it may be approximated as a weighted sum of (k−1) independent chi-squared variables

Ci on 1 degree of freedom

q ≈
k−1
∑

i=1

Di,i Ci. (14)

Our development begins by expressing, from (11),

q = 4h2Ŷ ′ZH−1Z ′Ŷ , (15)

where we have written Ŷ in place of Y , to emphasise that q is formed at β = β̂, so that

Y = Ŷ = S∗/Ŝ, the sample spectrum of the residuals from approximate maximum likelihood

estimation of the model. Thus q is a quadratic form in the residual sample spectrum and

hence also a quadratic form in the residual sample autocorrelations. We develop an approx-

imate formula for this residual sample spectrum, as follows. In large samples, for which

the likelihood may be accurately approximated by a quadratic about the true value of β, a

single iteration only, of weighted least squares, is required, starting from β, to obtain the

approximate MLE β̂. Thus β̂ = (X ′X)−1X ′Y , where Y is the sample spectrum S∗/S of the

true model innovations et. Consequently we can, in large samples, take the weighted fitted

values as
Ŝ

S
= X(X ′X)−1X ′Y

def
= UY. (16)

We further approximate

Ŷ =
S∗

Ŝ
= 1 +

S∗ − Ŝ

Ŝ

= 1 +
S∗ − Ŝ

S

S

Ŝ

= 1 + (I − U)Y
S

Ŝ
≈ 1 + (I − U)Y
= 1 + PY.

(17)

In (17) we have first substituted for Ŝ/S from (16), then approximated S/Ŝ by its limit

in probability, which is 1. The error in this approximation is neglected as being of second
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order. We obtain our final expression for q by noting, from HTW, that Z ′1 = 0, where 1 is

the modified vector of ones, and also P 1 = 0, giving

q ≈ 4h2(Y − 1)′PZH−1Z ′P (Y − 1) = (Y − 1)′ADA′(Y − 1), (18)

where D is a (k− 1)× (k− 1) diagonal matrix, and A is an orthonormal m× (k− 1) matrix.

These are constructed by using singular value decomposition to express 2hP Z = L∆R,

diagonalising the k × k matrix ∆R′H−1R∆ as EDE ′, and setting A = LE. The rank of D

is at most k − 1, by inheritance from H, so the conforming dimensions of D and A can be

correspondingly reduced.

Now D and A are functions of β̂. The diagonals of D will be consistently estimated con-

stants, and the columns of A are consistently estimated functions of frequency. Each element

of A′(Y − 1) is an orthonormal linear function of the mean-corrected spectral ordinates of

white noise with unit variance, and so by the central limit theorem is asymptotically standard

normal. The squares of these elements, Ci, are therefore each asymptotically chi-squared on

1 degree of freedom. A further statistic, mentioned above, is the invariant measure of the

magnitude of the parameter step δ. This is equivalently, and more conveniently, considered

as the invariant measure of the magnitude of the score g = 2hZ ′P (Y − 1). It is given by

r = g′W−1g, where W = var (g), and a generalised inverse is used for W . We can express

r = (Y − 1)′AA′(Y − 1), the same as for q, but without the weighting. Its distribution

is therefore chi-squared with degrees of freedom equal to the rank of A, which is at most

(k − 1).

3 Assessment of the statistic for the IMA(1,1) model

We here suppose that the series xt is fitted by an IMA(1,1) model, so that wt = (1 − B)xt

has spectrum parameterised as

S = β1 + β2(2 − 2 cosw), (19)

which corresponds to taking xt to be the sum of a random walk with innovation variance β1

and independent white noise with variance β2. In this case H is of rank 1, so the test statistic

q is simply of the form D1,1C1. We can therefore take q/D1,1 to be asymptotically chi-squared

on 1 degree of freedom. For the rank 1 case, q/D1,1 is the same as the r statistic. It may be

shown that for this example, the statistic is asymptotically the square of a linear combination
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of the sample residual autocorrelations, with the coefficient of the autocorrelation at lag j

being proportional to the coefficient of zj in

(1 − ηz)−1
{

(1 − η)(z + z2 + · · ·+ zL−1) + zL
}

, (20)

where η is the moving average parameter in the IMA(1,1) representation of the model. If η

is close to 1, most of the weight will be placed on residual sample autocorrelations around

lag L, but if η is close to 0, the weight will be spread out over the first L lags.

We carried out a simulation study to investigate the accuracy, under the null hypothesis,

of the distributional approximation we have presented for this statistic. Our aim was to assess

the reliability of the size of the test for a range of parameter values and lead times. Further,

we investigate the power of the test under the alternative hypothesis of an ARMA(1,1) model.

This exercise was motivated in large part by the original consideration by Cox (1961) of the

robustness of the IMA(1,1) model, for prediction of an ARMA(1,1) process, and the more

recent investigation by Tiao and Xu (1993), of a test based upon re-estimation of the model

parameters. For the combinations of nominal size, lead time, value of η and series length

given in Table 1, 10,000 replications were performed to obtain the empirical sizes displayed

in the table.

The empirical size of the test statistic is accurate, or conservative, at all combinations

of parameter values and lead times reported in Table 1, including L = 10. Thus there

is no evidence of the excessive skewness (compared to the relevant asymptotic chi-squared

distribution) reported by Tiao and Xu (1993) for all L > 2, which gave infeasible large

positive size distortions for their proposed statistics, T 2
J and D2

J (J = L− 1). While our test

size does improve with series length, differences are often quite small and the test appears

reasonably sized at moderate lead times, certainly for series of length 100 or greater.

Table 2 presents the empirical power of the test when it was applied to the ARMA(1,1)

process as an alternative data generating model, to which the IMA(1,1) was fitted. Again,

10,000 replications were performed for series generated using each of six combinations of

ARMA parameters (φ > θ ≥ 0) at five lead times and two nominal sizes, with all series of

length 200. Our six combinations of ARMA parameters form a subset of those considered by

Tiao and Xu (1993) in their Table 3, where comparable maximum powers for the Ljung-Box

statistic are also given. Tiao and Xu gave empirical powers only for 10% nominal size and

only for lead time 2, due to the excessive size distortions noted above.

Some general patterns are suggested for our test statistic: power decreases with lead

11



Lead Nominal Length of η
time size series 0 0.2 0.4 0.6 0.8

50 0.094 0.096 0.091 0.091 0.099
10% 100 0.094 0.096 0.093 0.094 0.093

2 200 0.099 0.097 0.092 0.093 0.097
50 0.046 0.046 0.043 0.040 0.054

5 % 100 0.046 0.046 0.045 0.045 0.047
200 0.049 0.048 0.046 0.043 0.047
50 0.088 0.083 0.079 0.080 0.076

10% 100 0.091 0.091 0.089 0.089 0.085
4 200 0.095 0.094 0.094 0.094 0.094

50 0.040 0.038 0.039 0.036 0.039
5 % 100 0.044 0.041 0.041 0.042 0.043

200 0.047 0.047 0.045 0.046 0.047
50 0.075 0.069 0.066 0.063 0.053

10% 100 0.082 0.082 0.083 0.081 0.071
10 200 0.090 0.093 0.087 0.088 0.085

50 0.041 0.036 0.032 0.027 0.021
5 % 100 0.043 0.041 0.041 0.037 0.032

200 0.045 0.043 0.044 0.041 0.041

Table 1: Empirical sizes for proposed test statistic at various lead times, series lengths and
parameter values, with the (1, η) model. 10,000 replications for each tabulated entry.

time for ‘moderate’ values of the AR parameter, φ < 0.5 say, while power is maximised at

medium lead times, 2 < L < 10 for higher values of φ. When compared to Tiao and Xu’s

(1993, Table 3) statistic T 2
1 , our test has comparable empirical power for some cases, such

as φ = 0.9, but appears less powerful in others. Our accurate or conservative empirical size

may explain that difference. For example, Tiao and Xu report empirical sizes for T 2
1 of 16.5%

and 11.7%, at nominal sizes of 10% and 5%, with series of length 100 and η = 0.8.

To interpret the observed patterns in the power of our test statistic, it is necessary to

consider when the IMA(1,1) model could reasonably be expected to fit well a series generated

by an ARMA(1,1) process. With η near unity the IMA(1,1) model can fit well a process

that is close to white noise. Hence combinations of ARMA parameters that impose little

structure, such as φ ≈ θ, can be well modelled by the IMA(1,1). Also, the IMA(1,1) model

can, reasonably well, fit an ARMA(1,1) process with φ close to one. Generated processes

that are more clearly stationary within the sample period, with moderate values of φ, display

reasonably rapid reversion to the mean. In such cases power will be greatest at low lead

times, where the divergence between the autocorrelation structures beyond lag 1 is marked
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Nominal Lead (φ, θ)
size time (0.1, 0.0) (0.4, 0.1) (0.7, 0.4) (0.9, 0.0) (0.9, 0.4) (0.95, 0.3)

2 0.431 0.905 0.557 0.174 0.163 0.108
4 0.262 0.799 0.714 0.268 0.265 0.136

10% 6 0.200 0.643 0.706 0.326 0.318 0.148
8 0.150 0.538 0.666 0.351 0.339 0.154
10 0.127 0.463 0.610 0.363 0.347 0.151
2 0.329 0.840 0.437 0.101 0.091 0.056
4 0.186 0.712 0.599 0.162 0.165 0.072

5 % 6 0.129 0.537 0.583 0.196 0.195 0.079
8 0.090 0.425 0.534 0.197 0.203 0.074
10 0.068 0.341 0.458 0.186 0.194 0.066

Table 2: Empirical powers for proposed test statistic at various lead times. 10,000 replica-
tions with series of length 200 for each tabulated entry. Testing the (1, η) estimated model
against the (φ, θ) data generating process.

but forecast uncertainty is still moderate. Conversely, for generated processes that display

more persistence, with φ close to one, power will increase with lead time, since a greater

horizon is required to differentiate between stationary and integrated observed behaviour.

However, at long lead times, such as L = 10, power tends to reduce, even for φ close to one,

because of the limited information available for discrimination. The figure given on page 246

of HTW shows how parameter estimation of the IMA(1,1) model, to minimise the MSS of

multi-step errors, focuses on information at lower frequencies.

To emphasise this point we carried out one further investigation by simulation of an

alternative ARMA(1,1) process of length 400, with φ = 0.9 and θ = 0, and performing the

test with a lead time L = 15. The greatest advantage from re-estimating the IMA model to

minimise the MSS of multi-step errors, a reduction by a substantial factor of two (Tiao and

Xu, 1993, page 630), is approached under these circumstances. The MLE of η will be close to

1− φ = 0.1, so that most weight is placed upon recent observations in the EWMA, whereas

for a high lead time prediction a value of η close to 1.0 is optimal, so that the forecast is close

to the mean of the stationary autoregression. The residuals from MLE of the mis-specified

IMA(1,1) model, contain, however, only a limited amount of information to point to the

large swing in the moving average parameter needed for high lead time prediction. From a

typical realisation, the evidence may be seen in the rapid reduction in the ordinates of the

residual sample spectrum below frequency 0.02, as shown in Figure 4 (a). The corresponding

effect may be seen in the residual autocorrelations in Figure 4 (b), as a slight downward bias
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(a) (b)

Figure 4: Analysis of the residuals obtained from MLE of an IMA(1,1) model for an AR(1)
process with parameter 0.9. (a) The lower frequencies of the residual sample spectrum, with
the (scaled) gain function G(f) used to weight the spectrum in the MSS of 15 step-ahead
prediction errors, (b) the sample autocorrelation function of the residuals.

at low lags. The (scaled) gain function G(f) used in the expression (7) for the MSS of 15

step-ahead prediction errors, is shown as a line on Figure 4 (a). By placing weight on the

frequencies below 0.05, our test focuses on the information in the lower 5 to 10 spectral

ordinates, that is available, in a series of this length, for detecting the lack of uniformity in

the residual spectrum. In 10,000 replications, our q statistic demonstrated powers of 0.56

and 0.80 for tests of respective size 5% and 10%, showing that the information supporting

model re-estimation, though limited, can be detected by this test. The corresponding powers

of the Ljung-Box test, using a maximum lag of 21, were 0.18 and 0.30.

4 Assessment of the statistic for an autoregressive model

To introduce this section, reconsider the AR(3) model fitted to the seasonally adjusted

series of quarterly USA unemployment, in the introduction. Figure 5 (a) shows the sample

spectrum of that series, together with the spectrum of the fitted model. The sample spectrum

appears to have distinct low frequency peaks, a sharp one close to frequency zero and a broad

peak around frequency 0.05 (period 5 years). However, the fitted spectrum fails to resolve

these peaks. Motivated by this we have investigated the power of our test for simulated series

which might reflect a similar structure. We chose as an alternative model, a series composed

of the sum of three independent components: a near unit root AR(1) process, an AR(2)

process with a stochastic cycle of period 25, and white noise. Thus xt = ut + vt + zt where

ut = φut−1+at, with φ = 0.99 and var (at) = 1.0; vt = 2r cos(λ)vt−1−r2vt−2+bt with r = 0.98,
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(a) (b)

Figure 5: (a) The sample spectrum of the USA unemployment series with the AR(3) model
spectrum superimposed; (b) the sample spectrum of a simulated series with an AR(6) model
spectrum superimposed.

λ = 2π/25 and var (bt) = 0.32; and zt is uncorrelated with variance 1.0. To check the size

of the test, we required an approximating autoregressive model of suitable order. From a

simulation of the process xt, use of the AIC selected an autoregressive approximation of

order 6. We therefore determined the AR(6) model φ(B)xt = et that provided the minimum

variance one-step ahead predictor of xt. This had coefficients φ1 = 0.9177, φ2 = 0.2455,

φ3 = −0.0069, φ4 = −0.0892, φ5 = −0.0919, φ6 = −0.0290, and var (et) = 3.6451.

We simulated 10,000 samples of time series with length 200 from this AR(6) model, fitted

an AR(6) model to each sample in the frequency domain, and evaluated the test statistic

for lead times L = 8 and L = 16. These were chosen as substantial fractions of the period

of the stochastic cycle, at which it would be important to detect inadequacy of predictions.

The frequency domain form of the AR(6) model spectrum S is given by the reciprocal linear

expression 1/S = R =
∑6

j=0 βj cos(jω) = Rββ. The frequency domain procedures of Section

2 only required modification similar to the use of an adjusted response in generalized linear

models with a reciprocal link (see McCullagh and Nelder, 1989, Section 2.5).

The results of these simulations are shown in Table 3. The empirical sizes are shown for

the nominal sizes of 10% and 5%, for the tests based on both our statistics q and r, and

for the Ljung-Box test statistic calculated using a maximum lag of 20. For the q statistic

the empirical sizes are slightly conservative for lead time 8, more so for lead time 16. The r

statistic is so seriously over sized at lead time 8, as to make it unreliable for use in testing.

We believe that the reason lies in the poor conditioning (apart from the exact singularity) of

the variance matrix of the score g, used in its construction, and are unwilling to recommend

15



its general use. The Ljung-Box test is slightly over-sized.

Lead time Nominal size q Statistic r Statistic Ljung-Box
8 10% 0.095 0.140 0.113

5 % 0.045 0.093 0.056
16 10% 0.084 0.072 0.113

5 % 0.035 0.036 0.056

Table 3: Empirical size of tests of model adequacy for given lead time and nominal size, for
an AR(6) null model. 10,000 replications for each tabulated entry.

We proceeded to estimate the power of the tests for rejecting the AR(6) model, when

applying it to the alternative model with independent components described above, using

the same series length and number of replications. Table 4 shows that for the test of nominal

size 5% based on the q statistic, applied for lead time 16, an empirical power of over 60%

was achieved against the alternative. In comparison, the Ljung-Box statistic is very much

less powerful. When applied for lead time 8, the power of the q statistic was lower than for

lead time 16, but still noticeably more powerful than the (over-sized) Ljung-Box test.

Lead time Nominal size q Statistic Ljung-Box
8 10% 0.377 0.246

5 % 0.274 0.144
16 10% 0.722 0.246

5 % 0.620 0.144

Table 4: Empirical powers of tests of model adequacy for given lead time and nominal size,
for an AR(6) model fitted to the alternative process with independent components described
in the text. 10,000 replications for each tabulated entry.

We can gain some further insight into these results, by calculation of the prediction error

variances of the alternative process under the true model, and the best approximating AR(6)

DMS predictor. The prediction error variances for lead times 1, 8 and 16, using the true

model, are respectively 3.28, 24.51 and 31.82. The error variances that are achieved at

the same lead times, using the AR(6) model that minimises the one-step prediction error

variance, are respectively 3.65, 46.15 and 72.61. These are clearly much greater than those of

the true model, for the lead times greater than 1. The error variances that can be achieved,

using, for each respective lead time, the AR(6) DMS predictor, are 3.65, 40.93 and 38.14.

This shows that the potential reduction in prediction error variance that may be achieved

is relatively small at lead time 8, from 46.15 to 40.93. However it is very substantial at lead
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time 16, from 72.61 to 38.14, which is not much greater than the value of 31.82 achieved by

the true model. This accords with the results of the power investigation, that suggests it is

quite difficult to detect potential forecast improvement using a lead time of 8 in this case,

but an important potential gain is detected at a lead time of 16. Investigation of several

realisations confirmed the indications gained from the example of USA unemployment. The

residual autocorrelations and spectrum do not show up any clear lack of fit of the AR(6)

model but, as Figure 5 (b) shows, the fitted model spectrum typically fails to resolve the

peaks in the sample spectrum of the series.

5 Conclusion

We have presented a diagnostic test for improved multi-step forecasting, which has wide

applicability, together with reliable size and good power in a range of examples. The potential

reduction in the multi-step forecast error that may be gained from re-estimation of the model

parameters, justifies a test which is sensitive to this possibility. The methodology of the test

also provides insight into the statistical features of the residual spectrum, that are associated

with a significant outcome.
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