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SUMMARY

Surveys often contain qualitative variables for which respondents may select any number
of the outcome categories. For instance, for the question “What type of contraception have
you used?” with possible responses (oral, condom, lubricated condom, spermicide, and di-
aphragm), respondents would be instructed to select as many of the outcomes that apply. This
type of response is called multiple responses. Bilder and Loughin (2002) proposed a Cochran-
Mantel-Haenszel (MH) type method to test whether the choice of type of contraception is
marginally independent of an explanatory variable given a stratification variable (known as
conditional multiple marginal independence, CMMI). We apply the generalized MH type es-
timators (Greenland, 1989) to estimate the conditional group effects among the c outcome
categories and follow the bootstrap method to estimate the variances and covariances for the
estimators. The method can also be used for data with dependent observations across strata.
It performs well even for highly sparse data.
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1 Introduction

In a survey, it is common that the respondents may select any number of the outcome cat-
egories. For instance, for the question “What type of contraceptives have you used?” with
possible responses (oral, condom, lubricated condom, spermicide, and diaphragm), respon-
dents would be instructed to select whichever of the outcomes apply. Categorical variables
that summarize this kind of data are called pick any/c variables (Bilder and Loughin, 2002),
where c is the number of outcome categories (c = 5 in this case). We can cross-classify the
counts from a survey that contains a pick any/c variable along with a group variable (r levels,
e.g. whether a subject had a prior history of urinary tract infection) and a stratification vari-
able (K levels, e.g. several age groups) into an r × c×K contingency table. In the r × c×K
table, subjects may be represented in more than one cell. Table 1 given by Bilder and Loughin
(2002) shows data for the above example of 239 sexually active college women in a 2 × 5 × 2
table. Also, Table 3 gives the complete information about whether a subject had a prior
history of urinary tract infection (UTI) (yes or no), type of contraceptive used (oral, condom,
lubricated condom, spermicide, and diaphragm), and age (≥ 24 or < 24).

Another example is a study conducted by Dr. Paul Warren in the School of Linguistics
and Applied Language Studies at Victoria University of Wellington, New Zealand. For the
data, 6 experts (raters) rated a bunch of non-native English utterances into 3 scales for
comprehensibility (from “not easy” to “very easy” to understand) and then indicated whether
there was a problem for that utterance in each of 7 items (e.g. pronunciation of consonants,
vowel pronunciations, word stress, etc.). Each of the 6 raters assessed each of the 50 utterances
and gave a rating to each one as well as binary choices (i.e., it was or was not a problem) on
the 7 items (a-g). We want to look at the conditional relationship between the rating and the 7
items given raters. Table 2 shows 6 different 3×7 tables (i.e., K = 6, r = 3, and c = 7), where
the cell counts are dependent across the columns for each table and also dependent across the
6 strata. The complete information about each of the 50 utterances can be displayed as in
Table 3.

Both examples have data with stratified multiple responses, yet the observations are not
independent across the strata in the second example. This type of data occurs frequently in
health and social sciences, and language studies.

Bilder and Loughin (2002) generalized the Cochran test to determine if the group and pick
any/c variable are marginally independent given a stratification variable (known as conditional
multiple marginal independence, CMMI). For the UTI example, they tested whether the
contraception practices of women are different based on their urinary tract infection history
controlling for their age group. They used a nonparametric bootstrap method to obtain the
p-value of the test. When the group and pick any/c variable are not conditionally marginally
independent, it is more interesting to describe how the pick any/c variable depends on the
group. Similarly, for the linguistics example, we are not interested in the differences between
the raters, but we focus on describing the conditional relationship between the rating and
the items given each rater. This article evaluates the conditional row effects on picking any/c
variable given the stratification variable. It allows us to establish multiple comparisons among
the conditional row effects and c outcome categories.

Instead of using marginal logit models for which the pick any/c variable is treated as a
c-dimensional binary response discussed by Agresti and Liu (2001), this article discusses the
generalized Mantel-Haenszel (MH) estimators. We extend the MH estimators for a categorical
r× 2×K table (Greenland, 1989) and follow the bootstrap method to estimate the variances
and covariances for the estimated conditional row effects among the c outcome categories.
Similar to the Cochran-Mantel-Haenszel test, the generalized MH estimators are used when
the conditional row effects are not expected to vary drastically among the strata. For a binary
response case, it is a well known situation that the MH estimators perform much better than
the ML estimators when the number of strata is large and there are few observations in
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each stratum (Andersen, 1980, p. 244). It is not surprising that the MH estimators should
perform better than the ML estimators for the multiple responses case when the responses are
considered as c different binary responses. Also, when the data are highly sparse, for instance,
there is no respondent on a particular outcome category in a row, the generalized estimating
equations (GEE) approach fails to estimate the conditional row effects.

2 Generalized Mantel-Haenszel Estimators

Let’s consider each item separately. For example, we consider item “a” (consonants pronun-
ciations) only in Table 2. The conditional association between rating and “whether there was
a consonants pronunciations problem” given raters can be described using a 3 × 2 × 6 table,
where the column variable is “whether there was a consonants pronunciations problem” with
two levels (yes, no), the row variable is rating (not easy, medium, very easy), and the stratum
variable is rater. Suppose we naively treat the 3 × 2 tables for 6 raters as independent. If
the association between rating and “whether there was a consonants pronunciations problem”
doesn’t change dramatically across different raters, we can use the generalized MH estima-
tor (Greenland, 1989) to describe the conditional relationship between the row and column
variables.

For a general r×c×K table, let Xj
ik denote the number of utterances having a problem on

item j that are rated by the kth rater (stratum) with the overall rating (row) i. The notation
nik denotes the total number of utterances in the ith row and the kth stratum. Suppose that
πj|ik is the probability of having a problem on item j when the utterance is at row i and
stratum k. Let Nk = n1k + . . . + nrk. Also, let the odds ratio for rows i and h be

θj
ih =

πj|ik(1 − πj|hk)

(1 − πj|ik)πj|hk
j = 1, . . . , c, i = 1, . . . , r, h = 1, . . . , r, and i 6= h,

for all k, which is the ratio of the odds of having a problem on item j for utterances at row
i to the odds of having a problem on item j for utterances at row h, given any stratum. The

generalized MH estimator (Greenland, 1989) of log θj
ih is

L̄j
ih = (Lj

i+ − Lj
h+)/r , (1)

where Lj
ih = log

(
∑K

k=1
Xj

ik
(nhk−Xj

hk
)/Nk

∑K

k=1
Xj

hk
(nik−Xj

ik
)/Nk

)

and the subscript “+” indicates summation over

that subscript. When the row variable has only two levels (r = 2) as for the UTI example

in Table 1, we can use θj
12 to describe the conditional row effect on selecting item j and the

generalized MH estimator of log θj
12 is simplified to the ordinary MH estimator

Lj
12 = log

(

∑K
k=1 Xj

1k(n2k − Xj
2k)/Nk

∑K
k=1 Xj

2k(n1k − Xj
1k)/Nk

)

. (2)

For each item, say j, Greenland (1989) proposed the dually consistent variance and co-

variance estimators for {L̄j
ih,∀ i 6= h} for either sparse or non-sparse data. However, since the

observations may not be independent across strata, these variance and covariance estimators
are not consistent anymore. Also, people might be interested in comparing the conditional
association across items. For instance, for the UTI example, one might be interested in com-
paring the UTI effects for contraceptive methods “oral” with “condom” and for the linguistics
example, one might be interested in comparing the rating effects for different items. Because
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the generalized MH estimators are dependent across different items, it is complicated to derive
the dually consistent variances and covariances estimators for them. This article uses a real-
istic way to find estimates applying the nonparametric bootstrap method. Therefore, we can
obtain the bootstrap estimated variances and covariances of the generalized MH estimators

{L̄j
ih, j = 1, . . . , c, i 6= h = 1, . . . , r}.

The nonparametric bootstrap method (Efron and Tibshirani, 1993) was conducted by
randomly selecting subjects with replacement from the original data. For instance, for the
UTI data, we resample Nk women with replacement from the kth stratum, where k = 1, 2.
Similarly, for the linguistics example, we resample 50 utterances with replacement and across
classify the data into the 3× 7× 6 table. For each resample data set, the size of each stratum
is the same as the original data. Denote the total number of observations as n. We take B
resamples of size n and then for each resample, we calculate the generalized MH estimates

{L̄j
ih, j = 1, . . . , c, i 6= h = 1, . . . , r}. The bootstrap estimate of standard error of L̄j

ih is the
standard deviation of the bootstrap replicates,

s.e. for L̄j
ih =

√

√

√

√

∑B
b=1

(

L̄j
ih,b −

∑B
b=1 L̄j

ih,b/B
)2

B − 1
,

where L̄j
ih,b is the generalized MH estimate L̄j

ih for the bth bootstrap resample. Similarly, the

bootstrap estimate of covariance of L̄j
ih and L̄j′

i′h′ is

ˆcov(L̄j
ih, L̄j′

i′h′) =

∑B
b=1

(

L̄j
ih,b −

∑B
b=1 L̄j

ih,b/B
) (

L̄j′

i′h′,b −
∑B

b=1 L̄j′

i′h′,b/B
)

B − 1
.

3 Examples

Let’s consider the UTI example in Table 1, the MH estimate of {log θj
12, j = 1, . . . , 5} is

{0.12, −0.52, 0.71, 0.64, 0.08}. The estimate of log θ1
12 indicates that the odds of having used

oral contraceptive for women without a prior history of UTI are estimated to be exp(0.12) =
1.13 times higher than the odds for women with a prior history of UTI, given each age group.
Choosing B = 100, the corresponding bootstrap standard error is {0.28, 0.26, 0.28, 0.32,

0.39}. Table 4 gives the bootstrap variances and covariances estimates of {Lj
12, j = 1, . . . , 5}.

The conditional UTI effects are significant for contraceptives “condom”, “lubricated condom”,
and “spermicide” at a 5% significance level. For comparing the UTI effects for contraceptives
“oral” and “lubricated condom”, a 95% confidence interval for log θ3

12−log θ1
12 is (−0.39, 1.57).

Table 5 shows all multiple comparisons of the conditional UTI effects for any two items.

In the example, since there are no women without prior history of urinary tract infection
who use diaphragms, the MH estimate (2) for item 5 is undefined. In order not to smooth
the data too much, we add 0.5 to each cell in the stratum with largest size. For instance,
because the stratum of Age<24 contains more observations, we add 0.5 to each cell count in
that stratum. The cell counts for “UTI and whether diaphragms is used” being “no and yes”,
“yes and yes”, “no and no”, and “yes and no” become 0.5, 5.5, 85.5, and 111.5 respectively.

For the Linguistics example in Table 2, by comparing rating levels 1 and 2, the MH estimate

of {log θj
12, j = 1, . . . , 7} is {−0.00, 1.19, 0.70, 0.28, −0.10, 0.88, −0.39} with the bootstrap

standard error of {0.81, 0.50, 0.53, 0.40, 0.47, 0.50, 1.07}. Comparing rating levels 1 and 3,

the MH estimate of {log θj
13, j = 1, . . . , 7} is {1.34, 1.47, 1.21, 1.49, 0.73, 1.36, −1.23} with the

bootstrap standard error of {0.73, 0.48, 0.58, 0.49, 0.44, 0.45, 1.17}. There are no significant
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differences between rating levels 1 and 2 for most of items, except for item b (pronunciation
of vowels), given each of raters. However, the differences between rating levels 1 and 3 are
significant for most of items given each of raters, except for items a, e, and g. Table 6 shows
the generalized MH estimates and their bootstrap standard errors. Similarly, the bootstrap
variances and covariances estimates can be obtained.

4 Conclusion

To describe stratified multiple responses, we can use the generalized MH estimators to eval-
uate the conditional associations between row and column variables. Like the ordinary MH
estimator, the estimators can perform well even for sparse data based on a simulation study.
When there are dependent strata as in Table 2, the generalized MH estimators can still be
used. The motivation of the naive assumption of independence across strata comes from work
by Liang and Zeger (1986) showing that such naive estimators for repeated measurement data
can perform well.

Though we motivated the generalized MH estimators by treating K separate r × 2 tables
as independent, the variances and covariances estimators based on this would be inappro-
priate. Also, the MH estimators between items are dependent. In Section 2, we proposed
the nonparametric bootstrap procedure to estimate the variances and covariances for the MH
estimators. Another simulation study shows that the bootstrap estimates perform reasonably
well.
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Table 1: The marginal UTI data

Contraceptive Total Total
Oral Condom L. cond. Spermicide Diaphragm responses women

Age ≥ 24
UTI

No 18 9 8 7 0 42 24
Yes 8 9 2 3 2 24 14

Age < 24
UTI

No 55 41 37 27 0 160 85
Yes 75 68 33 22 5 203 116
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Table 2: The marginal Linguistics data

Items Total Total
a b c d e f g responses utterances

Rater 1
Rating

1 8 7 2 2 1 0 1 21 8
2 32 22 7 2 6 0 3 72 32
3 8 1 3 0 0 0 1 13 10

Rater 2
Rating

1 10 8 8 4 5 8 0 43 11
2 18 6 10 11 8 11 1 65 19
3 18 9 4 3 8 7 0 49 20

Rater 3
Rating

1 7 1 3 0 4 2 0 17 7
2 11 4 6 1 8 4 0 34 13
3 23 7 8 3 13 8 2 64 30

Rater 4
Rating

1 2 2 2 2 0 0 0 8 2
2 11 7 2 4 1 1 0 26 12
3 11 6 1 5 0 0 1 24 36

Rater 5
Rating

1 1 0 0 0 0 0 0 1 1
2 8 6 5 0 1 1 0 21 23
3 5 11 4 0 1 1 0 22 26

Rater 6
Rating

1 14 18 6 14 14 17 0 83 18
2 12 10 1 9 11 9 0 52 14
3 12 14 4 7 9 11 1 58 18
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Table 3: The complete UTI data

Age ≥ 24

Contraceptive
Oral 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Condom 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
L. cond. 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
Spermicide 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
Diaphragm 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

UTI
No 0 0 0 0 0 0 0 0 0 0 0 0 2 0 4 0
Yes 0 0 0 0 0 0 0 0 2 0 1 1 1 0 0 1

Contraceptive
Oral 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Condom 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
L. cond. 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
Spermicide 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
Diaphragm 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

UTI
No 14 0 1 0 0 0 0 0 1 0 0 0 0 0 2 0
Yes 5 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0

Age < 24

Contraceptive
Oral 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Condom 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
L. cond. 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
Spermicide 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
Diaphragm 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

UTI
No 0 0 1 0 0 0 0 0 2 0 1 0 8 0 18 0
Yes 0 0 1 0 0 0 0 0 14 0 3 0 10 0 12 1

Contraceptive
Oral 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Condom 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
L. cond. 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
Spermicide 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
Diaphragm 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

UTI
No 42 0 1 0 0 0 0 0 1 0 0 0 5 0 6 0
Yes 44 3 0 0 0 0 0 0 15 1 2 0 7 0 3 0
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Table 4: The bootstrap variances and covariances estimates of {Lj
12, j = 1, . . . , 5}.

L1
12 L2

12 L3
12 L4

12 L5
12

L1
12 0.079 −0.050 −0.045 −0.048 0.011

L2
12 −0.050 0.068 0.051 0.045 −0.007

L3
12 −0.045 0.051 0.081 0.051 −0.006

L4
12 −0.048 0.045 0.051 0.104 −0.012

L5
12 0.011 −0.007 −0.006 −0.012 0.152

Table 5: A 95% confidence interval for log θj
12 − log θj′

12.

j
1 2 3 4 5

j′ Oral Condom L. cond. Spermicide Diaphragm

1. Oral (−1.6140, (−0.3876, (−0.5117, (−3.5851,
0.3342) 1.5724) 1.5589) −1.7931)

2. Condom (0.8074, (0.6022, (−2.9973,
1.6572) 1.7248) −1.1011)

3. L. cond. (−0.6335, (−4.2517,
0.4959) −2.3113)

4. Spermicide (−4.2498,
−2.1756)

Table 6: The generalized MH estimates and their bootstrap standard errors (in parentheses)
for the data in table 2

item j
a b c d e f g

pronunciation pronunciation word sentence rhythm intonation rate
of consonants of vowels stress stress

Lj
12 −0.00 1.19 0.70 0.28 −0.10 0.88 −0.39

(0.81) (0.50) (0.53) (0.40) (0.47) (0.50) (1.07)

Lj
13 1.34 1.47 1.21 1.49 0.73 1.36 −1.23

(0.73) (0.48) (0.58) (0.49) (0.44) (0.45) (1.17)

Lj
23 1.34 0.27 0.52 1.20 0.83 0.48 −0.84

(0.52) (0.30) (0.47) (0.50) (0.50) (0.43) (1.35)
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