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The lead-acid batteries used to power conventional submarines

while they are submerged undergo unique deep discharge and

rapid recharge histories. An improved mathematical model is

required to calculate state of charge and to predict the per-

formance of these batteries. Three models are considered —

a detailed electrochemical kinetic model, a hydraulic analogue

model, and a parametric model.

The detailed electrochemical model is developed in one dimen-

sion, resulting in coupled nonlinear convection-diffusion equa-

tions with complicated boundary conditions. The resulting

non-dimensionalised equations are solved asymptotically for the

narrow boundary layers that develop in the electrolyte near

the cell plates, resulting in a single linear diffusion equation

with nonlinear boundary conditions that explicitly capture the

boundary layer behaviour. Numerical solutions and comparison

with data is needed.
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The hydraulic model is modified and tested in a preliminary

manner, and looks promising as a predictive model. The para-

metric model also looks promising, but needs to be fitted to

data and tested further.

1. Introduction

The Australian Submarine Corporation (ASC) asked MISG to model

a typical lead acid battery used to power conventional (non-nuclear) sub-

marines while submerged. The use of these batteries features large currents

and rapid recharging, in a pattern of cyclic operation (Fig. 1). Such use

leads to nonlinear battery performance with memory, dependent on past

history. Existing models have a focus on discharge performance from the

fully charged state, and do not appear to provide satisfactory estimates of

battery reserves for predicting submarine performance.

Figure 1: A typical discharge history for a submarine battery.

ASC is seeking an improved mathematical model of lead-acid battery



Lead-acid batteries 3

performance, which they want to incorporate into an overall Submarine

Performance Model (SPM), written in Matlab.

In particular, ASC have asked

• What are the key parameters to enable specification of a battery

• Can these be related to define performance

• Can these be used to define a generic model of a lead acid battery

which can provide improved prediction of performance under cyclic

operation.

• What is the best technique to model the battery in the proposed

SPM environment:

– Electrochemical model

– Electric model

– Parametric Model

2. Some Battery Basics

Typical submarine batteries are conventional flooded lead acid cells. Each

plate in the cell is essentially flat or planar, although the positive plate is

composed of tubes arranged in a plane, filled with porous lead oxide. The

negative plate is a stretched metal grid, coated with porous lead. The gap

(face to face) between adjacent positive and negative plates (or electrodes)

is usually in the order of 1mm. There is a porous spacer in this gap, to



4 Australian Submarine Corp.

prevent contact between adjacent electrodes. A representative cutaway

view is presented in Fig. (2)

Figure 2: A cutaway view of the construction of a typical lead-acid batteries

as used in submarines.

The batteries may be water-cooled at their top ends, and usually the

acid is air-lifted from the bottom of the battery and sprinkled back over

the top of the plates to prevent acid stratification. We estimated that this

would completely overturn the acid in a day or two. Hence we ignored
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any vertical variation in the specific gravity of the acid. There is good

evidence that vertical variations in electric field do give a vertical variation

in reaction rate [1; 2], but that ignoring this variation still gives good

results for battery performance [1]. The batteries are typically operated

with several short cycles per day, and a larger recharge cycle every few days

or so (see Fig. 1), although this pattern might be rather different during a

mission.

The chemical reactions generally agreed [1] to occur in a lead-acid bat-

tery are, on the negative plate:

Pb + HSO−
4

k+
0

⇀↽

k−0

PbSO4 + H+ + 2e− (1)

and on the positive plate:

2e− + PbO2 + 3H+ + HSO−
4

k+
1

⇀↽

k−1

PbSO4 + 2H2O (2)

During discharge, the (net) reactions proceed from left to right with

reaction rates k+
0 , k+

1 , and during charge they proceed from right to left

with reaction rates k−0 , k−1 . The state of charge of a battery is accurately

given by the specific gravity of the electrolyte, that is, by the amount of

sulphuric acid remaining. As a battery discharges, lead sulphate builds up

in the pores, reducing porosity in both plates, and can block transport or

reduce the surface area accessible for reaction. Under normal operation

much of the lead sulphate is broken up into lead and sulphate ions during
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charging. However in non optimal environments lead sulphate crystals

can form and this may be difficult or impossible to reverse during normal

charging.

Dasoyan and Aguf [3] give a detailed account of varying mechanisms

near the negative electrode due to changes in temperature, current density,

charge, charging rates and local concentrations.

In more general terms, Vincent [4] states that If a lead acid battery

is left uncharged for too long or operated at too high temperature or with

too high acid concentration the lead sulphate deposit gradually recrystallises

into course grains. This sulphation causes severe passivation, particularly

of negative plates, inhibiting charge acceptance. Restoration is sometimes

possible by slow charging in very dilute sulphuric acid.

There are reports on the web eg. http://www.shaka.com/ kalepa/desulf.htm

of claims for pulsed charging with the pulses at a resonant frequency. The

claim appears to be that the relatively high voltage charges for a very short

time do not damage the battery by causing overheating, but the relatively

high energy at resonant frequency cause breakdown of the crystal structure

leading to separation of the lead and sulphate ions.

To model the build-up of lead sulphate (particularly in crystalline form

blocking access to the expanded electrodes) is very complicated with de-

pendence on numerous battery variables. In the short term it seems the

best method is to interpolate amongst available data from actual trials.

This is not very satisfactory for a new battery design before construction.
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However it is desirable to prevent conditions that lead to crystallization

rather than calculate how much is occurring.

Generally there are three stages for charging a typical submarine bat-

tery, a constant power stage (with voltage increasing to about 2.4V per

cell), followed by a constant voltage stage until current drops to a very

small value, followed by a constant current stage (with higher voltages)to

100 % capacity. The three stages may be used in different mixes during a

typical submarine mission.

3. A Detailed Electrochemical Model

3.1 The Model

The battery cell consists of a lead oxide plate (the positive electrode) and

a lead plate (the negative electrode) which are separated by a thin gap

O(1)mm filled with a sulphuric acid solution which partially ionises to

form H+ and HSO−
4 ions. The plates are relatively flat but porous to

increase the surface area of reaction. In addition both plates have large

lateral dimensions compared to their separation (in a submarine cell they

typically have area of about 0.5m2). Given the geometry of the cell it is

sensible to look for a model with only one spatial dimension x running

across the width of the cell with x = 0 being the position of the surface of

the negative electrode and x = L being the position of the surface of the

positive electrode, as illustrated in Fig. (3).

The chemical reactions taking place in the battery are noted in the
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Figure 3: A sketch illustrating key features of the detailed electrochemical

model. The horizontal scale is exaggerated compared to the vertical scale.

previous section. We take x = 0 at the negative electrode and x = L

at the positive electrode. We make the assumption that the reactions are

in quasi static equilibrium. In other words we assume that the diffusive

processes that bring the ions H+ and HSO−
4 into contact with the elec-

trodes occur over a much longer timescale than the reaction itself. This

assumption is supported by noting that the timescale for reaction kinetics

is of the order of seconds for lead-acid cells [5], much shorter than typical

charge/discharge times in the submarine application. As a first step we

also assume that the reactions on both electrodes are primarily controlled

by the activation energies (i.e. the effective concentrations) of H+ and

HSO−
4 and the surface concentration of PbSO4 which we write as

[H+] = H m−3, [HSO−
4 ] = S m−3,

on x = L [PbSO4] = γ+ m−2, on x = 0 [PbSO4] = γ− m−2.
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In practice the supply of electrons and water will always be at nearly uni-

form concentrations. Note that the units for concentration are numbers

of ions per unit volume or per unit area. We are assuming that there is

always sufficient lead and lead oxide available for reaction, and we ignore

in this work any effects of lead sulphate buildup in pores in the electrodes,

blocking access of electrolyte to electrodes, and altering the electric field

there. Future extension of this work would be useful, in which the model

is modified to include effects due to variations in the available surface con-

centrations of Pb and PbO2. The reaction equilibria are thus given by

S = K0γ
−H on x = 0, γ+ = K1H

3S on x = L, (3)

where

K0 =
k−0 [e]2

k+
0 [Pb]δ

,

and

K1 =
k+

1 [Pb O2]δ[e]
2

k−1
,

and where [e] is the concentration of electrons, and δ is a measure of the

width of the region of solute that is at equilibrium with the surface of the

electrode. In the solution between the two electrodes the ions H+ and

HSO−
4 diffuse and advect under the action of an electric field E which we

can write in terms of an electric potential φ as follows:

E = −φxex ,

where ex is a unit vector in the x-direction and φx ≡ ∂φ
∂x

. Balancing Stokes’

drag on a HSO−
4 ion with the force acting on it due to the electric field
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gives the ion’s velocity (in the absence of diffusion) as (see, e.g., [6])

vs =
qφx

6πµa
,

where q is the charge on an electron, µ is the viscosity of water and a is the

Stokes radius of the HSO−
4 ion. In addition the diffusion coefficient Ds is

given by the Stokes-Einstein relation [6; 7]

Ds =
kT

6πµa
,

where k is Boltzmann’s constant and T is the absolute temperature of

the solution. Using these two relations we can write down the advection

diffusion equation for S

St = Ds

(
Sxx −

q

kT

∂

∂x
(Sφx)

)
, (4)

and a similar development yields the advection diffusion equation for H

Ht = Dh

(
Hxx +

q

kT

∂

∂x
(Hφx)

)
, (5)

where Dh = kT/(6πµb) is the diffusion coefficient of hydrogen ions and

b is the Stokes radius of a hydrogen ion. Since hydrogen ions are much

smaller than HSO−
4 ions it is tempting to think that Dh � Ds, but this

assumption is false because hydrogen ions do not exist as isolated entities in

solution but rather as a complex formed with a number of water molecules

and its Stokes’ radius is thus comparable with that of an HSO−
4 ion (which

is probably also hydrated).

The rate of change of the lead sulphate surface concentration on the

positive electrode may be seen, on consulting the chemical reaction, to be
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equal to the flux of HSO−
4 ions arriving at the electrode and equal to one

third the flux of hydrogen ions arriving at the electrode. This leads to the

following relations:

dγ+

dt
= −Ds

(
Sx −

q

kT
(Sφx)

)
dγ+

dt
= −1

3
Dh

(
Hx +

q

kT
(Hφx)

)
 on x = L (6)

A similar balance on the negative electrode gives

dγ−

dt
= Ds

(
Sx −

q

kT
(Sφx)

)
dγ−

dt
= −Dh

(
Hx +

q

kT
(Hφx)

)
 on x = 0. (7)

The electric potential φ obeys Poisson’s equation (a form of Gauss’s

law):

∂

∂x
(εφx) = −ρ,

where ε is the dielectric constant of the medium and ρ is the charge density

in the medium (As m−3). Allowing for a surface density p m−2 of positive

charge carriers on the surface of the positive electrode and a surface density

f m−2 of negative charge carriers on the surface of the negative electrode

Poisson’s equation yields

∂

∂x
(εφx) = q (S −H + fδ(x)− pδ(x− L)) .

Boundary conditions on this differential equation are provided by specifying

an arbitrary reference potential φ and a symmetry condition (to ensure

that the total electric field at a distance from the plates is zero). These

boundary conditions are respectively

φ = 0 on x = 0−,

φx|x=0− = −φx|x=L+ .
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Furthermore, since the model conserves charge within the cell, if the total

charge is zero at time t = 0 then it is so for all time; then integrating

Poisson’s equation for the electric field from x = 0− to x = L+ gives

φx|x=L+ − φx|x=0− =
q

ε

∫ L+

0−
ρ dx (8)

=
q

ε

(
p− f +

∫ L

0
(H − S) dx

)
(9)

=
total charge

εA
(10)

= 0 at all times. (11)

It follows that

φx|x=0− = φx|x=L+ = 0 .

Note that the dielectric constant of water εw ≈ 80ε0 and that the

dielectric constant in the conducting electrodes is ε0, the permittivity of

free space. At this stage it is helpful to integrate the δ functions out of

Poisson’s equation to leave boundary conditions posed on x = 0+ and

x = L− which lie just within the fluid; this gives rise to the following:

φxx =
q

εw

(S −H) 0 < x < L, (12)

φx|x=0+ =
qf

εw

, (13)

φx|x=L− =
qp

εw

, (14)

φ = 0 , x = 0 + . (15)

Finally we need to give conditions on the rate of change of charge

carriers on the surface of the electrodes. By referring to the chemical
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reactions one can see that these are

dp

dt
= 2

dγ+

dt
− I

Aq
on x = L, (16)

df

dt
= 2

dγ−

dt
− I

Aq
on x = 0, (17)

where I (amps) is the current flowing in the circuit being powered by the

cell (that is, I > 0 for discharge) and A m2 is the area of the electrodes.

The current flowing in the circuit is powered by the potential differences

between the two plates and, where the electrical resistance of the circuit is

R Ohms, is given by

I =
φ|x=L+ − φ|x=0−

R
=

φ|x=L− − φ|x=0+

R
. (18)

Estimates for the parameters and for typical values of variables (for

rescaling) in the problem are given below

L ∼ 10−3 m, q = 1.60× 10−19 A s,

ε0 = 8.85× 10−12 A s V−1m−1 εw ∼ 7× 10−10 A s V−1m−1,

a ∼ 10−10 m, b ∼ 10−10 m,

µ ∼ 10−3 kg m−1s−1, k = 1.381× 10−23 N m K−1,

H0 ∼ 6× 1029m−3, S0 ∼ 6× 1029m−3,

T ∼ 300K R ∼ 10 Ohms

A ∼ 10−1m2.

3.2 Non-dimensionalisation of the model

We nondimensionalise the model, comprised of equations (3)-(18), assum-

ing that diffusive effects balance electrostatic effects in the advection dif-
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fusion equations for H and S (4)-(5). This leads to the scalings

x = Lx∗, t =
L2

Ds

t∗, φ =
kT

q
φ∗, I =

kT

qR
I∗,

H = H0H
∗, S = H0S

∗, f = H0Lf ∗, p = H0Lp∗,

γ+ = H0Lγ+∗
, γ− = H0Lγ−

∗
.

and hence to the following dimensionless model:

∂S∗

∂t∗
=

∂2S∗

∂x∗2
− ∂

∂x∗

(
S∗∂φ∗

∂x∗

)
,

∂H∗

∂t∗
= κ

(
∂2H∗

∂x∗2
+

∂

∂x∗

(
H∗∂φ∗

∂x∗

))
,

∂2φ∗

∂x∗2
= Γ (S∗ −H∗)


in 0 < x∗ < 1 (19)

together with the boundary conditions

S∗ = k0H
∗γ−

∗

dγ−
∗

dt∗
=

(
∂S∗

∂x∗
− S∗∂φ∗

∂x∗

)
dγ−

∗

dt∗
= −κ

(
∂H∗

∂x∗
+ H∗∂φ∗

∂x∗

)
∂φ∗

∂x∗
= Γf ∗

φ∗ = 0



on x∗ = 0 (20)

and

γ+∗
= k1H

∗3S∗

dγ+∗

dt∗
= −

(
∂S∗

∂x∗
− S∗∂φ∗

∂x∗

)
dγ+∗

dt∗
= −κ

3

(
∂H∗

∂x∗
+ H∗∂φ∗

∂x∗

)
∂φ∗

∂x∗
= Γp∗



on x∗ = 1 (21)
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and the relations

df∗

dt∗
= 2

dγ−
∗

dt∗
− λI∗, (22)

dp∗

dt∗
= 2

dγ+∗

dt∗
− λI∗, (23)

I∗ = φ∗|x∗=1− − φ∗|x=0+ . (24)

Here the dimensionless parameters in the model are given by

Γ =
qH0L

2

εwkT
, λ =

LkT

q2RADSH0

, κ =
DH

DS

,

k0 = K0H0L, k1 =
K1H

3
0

L
.

(25)

Henceforth we will drop the asterisks from the dimensionless variables.

3.3 Asymptotic analysis of the model

Substituting typical parameter values into the relation for Γ and λ given

in (25) we estimate Γ ∼ 5× 1012, λ ∼ 4× 10−2. Note that the value of the

resistance R substituted into the formula for λ depends on the use being

made of the battery and hence λ may vary (but is nevertheless O(1) ) .

Indeed, operation of the batteries is better modelled with a resistance and

a back EMF in practice, and a constant power regime is a more faithful

approximation to the intended discharge of the batteries. For simplicity for

now, we just use a resistance. For the reasons mentioned above we expect

κ to be an O(1) parameter. In addition we also expect k1 and k2 to be

O(1) parameters3. Since there is one dominant large parameter Γ in this

model and there is some doubt about the values of the other parameters

3Recent work suggests otherwise, however, and this remains work in progress
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in the model (although none are particularly large or small) we will make

the assumption that throughout the rest of the analysis λ, κ, k0 and k1 are

all of order one.

Outer Region.

Inspection of the third of equations (19) reveals that S ≈ H in the bulk of

the cell (charge neutrality). We therefore introduce an outer region lying

between the two plates, denote variables in this region with the superscript

(c) and make the following asymptotic expansion:

H(c) = H
(c)
0 + · · · , S(c) = S

(c)
0 + · · · , φ(c) = φ

(c)
0 + · · · .

Substituting the above into (19) gives, to leading order,

∂H
(c)
0

∂t
= κ

∂2H
(c)
0

∂x2
+

∂

∂x

H
(c)
0

∂φ
(c)
0

∂x

 ,

∂S
(c)
0

∂t
=

∂2S
(c)
0

∂x2
− ∂

∂x

S
(c)
0

∂φ
(c)
0

∂x

 ,

S
(c)
0 = H

(c)
0 . (26)

Manipulation of these equations leads to a single diffusion equation for H
(c)
0

and an equation for the potential φ
(c)
0 :

∂H
(c)
0

∂t

(
1 +

1

κ

)
= 2

∂2H
(c)
0

∂x2
, (27)

∂

∂x

H
(c)
0

∂φ
(c)
0

∂x

 =
(

1− κ

1 + κ

)
∂2H

(c)
0

∂x2
. (28)

Together with (26) this forms a fourth-order system for (H
(c)
0 , S

(c)
0 , φ

(c)
0 )

in contrast to the original system (19) which is sixth-order. Hence we
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introduce boundary layer regions in the vicinity of each electrode in order to

satisfy the boundary conditions on the problem. The boundary conditions

on the fourth-order system come from matching with these boundary layers.

The boundary layer about the negative electrode: Inner region

0.

In this region we rescale x with Γ−1/2 (assuming a 1 molar activity for

the H+ ions this corresponds to considering a dimensional length scale

of about 10−9m), denote variables by the superscript (i) and make the

following asymptotic expansion:

x = Γ−1/2z, H(i) = H
(i)
0 +

H
(i)
1

Γ1/2
+ · · · , S(i) = S

(i)
0 +

S
(i)
1

Γ1/2
+ · · · ,

φ(i) = φ
(i)
0 +

φ
(i)
1

Γ1/2
+ · · · , f = Γ−1/2f0 + · · · , γ− = γ−0 + · · · .

Substituting into (19) gives to leading order

∂2H
(i)
0

∂z2
+

∂

∂z

H
(i)
0

∂φ
(i)
0

∂z

 = 0 , (29)

∂2S
(i)
0

∂z2
− ∂

∂z

S
(i)
0

∂φ
(i)
0

∂z

 = 0 , (30)

∂2φ
(i)
0

∂z2
= S

(i)
0 −H

(i)
0 , (31)
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in 0 < z < ∞, which are to be solved using the following boundary condi-

tions on z = 0:

∂H
(i)
0

∂z
+ H

(i)
0

∂φ
(i)
0

∂z
= 0 , (32)

∂S
(i)
0

∂z
− S

(i)
0

∂φ
(i)
0

∂z
= 0 , (33)

∂φ
(i)
0

∂z
= f0 , (34)

φ
(i)
0 = 0 . (35)

We can solve (29) and (30) in conjunction with the boundary conditions

(32) and (33) to obtain the following expressions

H
(i)
0 = B(t) exp(−φ

(i)
0 ), S

(i)
0 = A(t) exp(φ

(i)
0 ). (36)

Substituting these into (31) gives the following second order differential

equation for φ
(i)
0 :

∂2φ
(i)
0

∂z2
= A(t) exp(φ

(i)
0 )−B(t) exp(−φ

(i)
0 ), (37)

which we can integrate once to obtain∂φ
(i)
0

∂z

2

= 2(A(t) exp(φ
(i)
0 ) + B(t) exp(−φ

(i)
0 ) + h(t)), (38)

where h(t) is an arbitrary function of time. Matching to the outer solution

at leading order gives the conditions (φ
(i)
0 )z → 0 and (φ

(i)
0 )zz → 0 as z →∞,

which in turn leads to the conclusion that h(t) = −2
√

A(t)B(t) . It follows

that (38) can be rewritten as

∂φ
(i)
0

∂z
= ±

√
2
(
A(t)1/2 exp(φ

(i)
0 /2)−B(t)1/2 exp(−φ

(i)
0 /2)

)
.
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We can integrate this to obtain φ
(i)
0 and the corresponding expression for

(φ
(i)
0 )z

φ
(i)
0 = 2 ln

(B(t)

A(t)

)1/4

tanh

(
∓(A(t)B(t))1/4

√
2

(z + z0(t))

) , (39)

∂φ
(i)
0

∂z
=

2
√

2(A(t)B(t))1/4

sinh
(√

2(A(t)B(t))1/4(z + z0(t))
) , (40)

where z0 is a constant of integration. The boundary conditions (34) and

(35) then give rise to the conditions

f0 sinh
(√

2(A(t)B(t))1/4z0(t)
)

= 2
√

2(A(t)B(t))1/4 , (41)

tanh

(
(A(t)B(t))1/4

√
2

z0(t)

)
=

(
A(t)

B(t)

)1/4

, (42)

where the negative sign has been discarded as unphysical. The far field

behaviour of H
(i)
0 , S

(i)
0 and φ

(i)
0 follows from (39) and (36) and is

H
(i)
0 → (A(t)B(t))1/2, S

(i)
0 → (A(t)B(t))1/2, φ

(i)
0 → 1

2
ln

(
B(t)

A(t)

)
(43)

as z →∞.

We proceed to next order in the inner region with the goal of finding

the flux of H and S on the edge of the outer region. Doing so we obtain

the following equations for (H
(i)
1 , S

(i)
1 , φ

(i)
1 ):

∂

∂z

∂H
(i)
1

∂z
+ H

(i)
0

∂φ
(i)
1

∂z
+ H

(i)
1

∂φ
(i)
0

∂z

 = 0 (44)

∂

∂z

∂S
(i)
1

∂z
− S

(i)
0

∂φ
(i)
1

∂z
− S

(i)
1

∂φ
(i)
0

∂z

 = 0 , (45)

in 0 < z < ∞, with boundary conditions∂H
(i)
1

∂z
+ H

(i)
0

∂φ
(i)
1

∂z
+ H

(i)
1

∂φ
(i)
0

∂z

 = −1

κ

dγ−0
dt

(46)
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∂S
(i)
1

∂z
− S

(i)
0

∂φ
(i)
1

∂z
− S

(i)
1

∂φ
(i)
0

∂z

 =
dγ−0
dt

, (47)

on z = 0. Integrating gives∂H
(i)
1

∂z
+ H

(i)
0

∂φ
(i)
1

∂z
+ H

(i)
1

∂φ
(i)
0

∂z

 = −1

κ

dγ−0
dt

(48)

∂S
(i)
1

∂z
− S

(i)
0

∂φ
(i)
1

∂z
− S

(i)
1

∂φ
(i)
0

∂z

 =
dγ−0
dt

, (49)

in 0 < z < ∞.

Matching the inner region 0 to the outer region.

Matching the leading order outer solution to the inner solution in region 0

as z → ∞ (see (43)), using Van Dyke’s matching principle, we obtain the

following conditions on (H
(c)
0 , S

(c)
0 , φ

(c)
0 ) at x = 0:

φ
(c)
0 |x=0 =

1

2
ln

(
B(t)

A(t)

)
, (50)

H
(c)
0 |x=0 = S

(c)
0 |x=0 = (A(t)B(t))1/2. (51)

The fluxes of H
(c)
0 and S

(c)
0 match to the first order fluxes of H(i) and

S(i), namely to (H
(i)
1 )z + H

(i)
0 (φ

(i)
1 )z + H

(i)
1 (φ

(i)
0 )z and (S

(i)
1 )z − S

(i)
0 (φ

(i)
1 )z −

S
(i)
1 (φ

(i)
0 )z respectively. Using (49) to evaluate these, and matching to the

outer solution, gives rise to these conditions∂H
(i)
0

∂x
+ H

(i)
0

∂φ
(i)
0

∂x

∣∣∣∣∣∣
x=0

= −1

κ

dγ−0
dt

,

∂S
(i)
0

∂x
− S

(i)
0

∂φ
(i)
0

∂x

∣∣∣∣∣∣
x=0

=

∂H
(i)
0

∂x
−H

(i)
0

∂φ
(i)
0

∂x

∣∣∣∣∣∣
x=0

=
dγ−0
dt

.
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It is helpful to rewrite these conditions in the form

∂H
(i)
0

∂x

∣∣∣∣∣∣
x=0

=
1

2κ
(κ− 1)

dγ−0
dt

, (52)

H
(i)
0

∂φ
(i)
0

∂x

∣∣∣∣∣∣
x=0

= − 1

2κ
(κ + 1)

dγ−0
dt

, (53)

The boundary layer about the positive electrode: Inner region 1.

In this region we rescale x with Γ−1/2, denote variables by the superscript

(j) and make the following asymptotic expansion:

x = 1− Γ−1/2z, H(j) = H
(j)
0 +

H
(j)
1

Γ1/2
+ · · · , S(j) = S

(j)
0 +

S
(j)
1

Γ1/2
+ · · · ,

φ(j) = φ
(j)
0 +

φ
(j)
1

Γ1/2
+ · · · , p = Γ−1/2p0 + · · · , γ− = γ−0 + · · · .

The analysis which follows on substitution of the above expansion into (19)

and (70) is almost identical to that carried out for the inner region about

the negative electrode and, in order to avoid repetition, we shall only give

the results. These are listed below:

H
(j)
0 = D(t) exp(−φ

(j)
0 ), S

(j)
0 = C(t) exp(φ

(j)
0 ), (54)

φ
(j)
0 = 2 ln

(D(t)

C(t)

) 1
4

tanh

(C(t)D(t))
1
4

√
2

(z + z1(t))

 ,(55)

(C(t)D(t))
1
4 = − p0

2
√

2
sinh

(√
2(C(t)D(t))

1
4 z1(t)

)
. (56)

3

κ

dγ+
0

dt
=

∂H
(j)
1

∂z
+ H

(j)
0

∂φ
(j)
1

∂z
+ H

(j)
1

∂φ
(j)
0

∂z

 , (57)

dγ+
0

dt
=

∂S
(j)
1

∂z
− S

(j)
0

∂φ
(j)
1

∂z
− S

(j)
1

∂φ
(j)
0

∂z

 (58)
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Matching inner region 1 to the outer region.

The matching proceeds in a similar manner to that of inner region 0 to the

outer and gives rise to the following conditions on the outer solution:

φ
(c)
0 |x=1 =

1

2
ln

(
D(t)

C(t)

)
, (59)

H
(c)
0 |x=1 = S

(c)
0 |x=1 = (C(t)D(t))1/2, (60)

∂H
(i)
0

∂x

∣∣∣∣∣∣
x=1

= −
(

3 + κ

2κ

)
dγ+

0

dt
, (61)

H
(i)
0

∂φ
(i)
0

∂x

∣∣∣∣∣∣
x=1

=
(

κ− 3

2κ

)
dγ+

0

dt
, (62)

The outer region

Integrating (28) with respect to x we find

H
(c)
0

∂φ
(c)
0

∂x
=
(

1− κ

1 + κ

)
∂H

(c)
0

∂x
+ Υ(t).

Applications of the boundary conditions (52), (53), (61) and (62) to the

above equation determines Υ(t) as:

Υ(t) = −
(

2

1 + κ

)
dγ−0
dt

= −
(

2

1 + κ

)
dγ+

0

dt
,

from which we can conclude that

dγ+
0

dt
=

dγ−0
dt

, (63)

∂φ
(c)
0

∂x
=

(1− κ)

(1 + κ)H
(c)
0

∂H
(c)
0

∂x
− 2

(1 + κ)H
(c)
0

dγ+
0

dt
. (64)

Integrating the latter of these equations between x = 0 and x = 1 and

substituting the boundary conditions (50), (51), (59) and (60) then gives
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the following relation:

ln(C(t))− ln(A(t)) + κ ln(B(t))− κ ln(D(t)) = 2
dγ−0
dt

∫ 1

0

1

H
(c)
0

dx. (65)

We now expand I as follows:

I = I0 + . . . ,

and substitute this expansion into (22) and (23) to obtain

dγ−0
dt

=
dγ+

0

dt
=

λ

2
I0, (66)

and into (24), together with (42), (39) and (55), to find

I0 = 2 ln

(D(t)

C(t)

)1/4

tanh

(
(C(t)D(t))1/4

√
2

z1(t)

) . (67)

In addition the chemical reaction equations (20a) and (70a) yield at leading

order, on substitution of expressions for (H
(i)
0 , S

(i)
0 , φ

(i)
0 ) and (H

(j)
0 , S

(j)
0 , φ

(j)
0 ),

A(t)

B(t)
= k0γ

−
0 , k1D(t)2C(t)2 = γ+

0 tanh4

(
(C(t)D(t))1/4z1(t)√

2

)
. (68)

Summary of the simplified model

We now summarise equations (27), (41), (42), (51), (52), (60), (61), (63),

(65), (66), (67) and (68) comprising the simplified model. These are listed

below.

∂H
(c)
0

∂t

(
1 +

1

κ

)
= 2

∂2H
(c)
0

∂x2
, (69)

∂H
(c)
0

∂x

∣∣∣∣∣∣
x=0

=
λI0

4κ
(κ− 1), (70)
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∂H
(c)
0

∂x

∣∣∣∣∣∣
x=1

= −λI0

4κ
(κ + 3), (71)

H
(c)
0

∣∣∣
x=0

= (A(t)B(t))1/2, (72)

H
(c)
0

∣∣∣
x=1

= (C(t)D(t))1/2, (73)

λI0

∫ 1

0

dx

H
(c)
0

= ln(C(t))− ln(A(t)) + κ ln(B(t))− κ ln(D(t)), (74)

I0 = 2 ln

(D(t)

C(t)

)1/4

tanh

(
(C(t)D(t))1/4

√
2

z1(t)

) ,(75)

(
A(t)

B(t)

)1/4

= tanh

(
(A(t)B(t))1/4

√
2

z0(t)

)
, (76)

A(t)

B(t)
= k0γ

−
0 , (77)

k1D(t)2C(t)2 = γ+
0 tanh4

(
(C(t)D(t))1/4z1(t)√

2

)
, (78)

dγ−0
dt

=
dγ+

0

dt
=

λ

2
I0, (79)

f0 =
2
√

2(A(t)B(t))1/4

sinh
(√

2(A(t)B(t))1/4z0(t)
) , (80)

p0 = − 2
√

2(C(t)D(t))1/4

sinh
(√

2(C(t)D(t))1/4z1(t)
) . (81)

The problem has been reduced to that of solving the linear diffusion equa-

tion (69), subject to boundary conditions which require solving equations (70)

to (81) simultaneously. Suitable initial conditions for a charged battery

that begins to be discharged at time zero are to take γ± = 0, and H and

S to be one. Charging is a matter of reversing current flow. One way to

use this model for our problem is to specify the current drawn from the

battery, and to solve for the voltage.
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4. A Simpler Chemical Model

A model was developed that assumes the rate-limiting processes are the

chemical reactions at the plates. Subsequent literature searches reveal that

the time constants for lead dioxide are of the order of seconds [5], suggest-

ing that the transport of electrolyte is the rate-determining process, as

modelled in the previous section. Hence we will not present this work here.

5. A Hydraulic Model

The hydraulic model given by Manwell and McGowan, [8] divides the bat-

tery into two compartments, one holding charge that is immediately avail-

able, q1(t), and the other holding chemically bound charge, q2(t), that takes

longer to become available, as illustrated schematically in figure 4. Both

compartments have height one. The outer compartment has surface area

c, and the inner has area 1 − c. The constant c ∈ [0, 1] proportions the

battery according to how much charge is immediately available, compared

with total available charge. The ”head” that drives ion flow is h1 = q1/c

in the outer compartment, and h2 = q2/(1− c) in the inner compartment.

The conductance between the two compartments is k′.

Then the hydraulic model equations are

dq1

dt
= −I(t)− k′(h1 − h2), (82)

dq2

dt
= k′(h1 − h2). (83)
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Figure 4: Battery model showing total charge in two compartments, one

with immediate charge and the other with chemically bound charge.

Defining a new rate constant,

k =
k′

c(1− c)
,

leads to the following form for the governing equations for the system:

dq1

dt
= −I(t)− k(1− c)q1 + kcq2, (84)

dq2

dt
= k(1− c)q1 − kcq2, (85)

where the current drawn I(t) is also found by simple rearrangement as

I(t) = −
(

dq1

dt
+

dq2

dt

)
. (86)

The voltage, V (t) is given by

V (t) = β + αq1(t)− I(t)R0. (87)
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The forms for the constants β and α are

β = Emin, α =
(E0,d − Emin)

q1m

(88)

for discharging and for charging

β = E0,c, α =
(Emax − E0,c)

q1m

. (89)

The definitions of the various constants are that Emin is the minimum

allowed discharge voltage (’empty’), E0,d the maximum internal discharge

voltage (’full’), Emax the maximum charging voltage, E0,c the minimum

charging voltage, q1m the maximum value of q1(t).

Manwell and McGowan, 1991, solved the above equations for constant

I(t), and constant k and used their solutions to find expressions for the

various unknown constants such as q1m.

Finding the solution for constant k but non constant I(t) is a simple

Laplace transform problem yielding the solution

q1(t) = 2c sinh

(
kt

2

)
e−kt/2(q1(0) + q2(0)) + q1(0)e

−kt

−c
∫ t

0
I(u) du− (1− c)

∫ t

0
I(u)ek(u−t) du,

and similarly for q2.

However it is not clear that k should be a constant. If k = k(t) is a

known function then solution of the above system of differential equations

is relatively easy using Matlab programming. Unfortunately the precise

form for k(t) may not be known.
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We suggest the problem be reversed, so that instead of using a constant

k to predict V (t) given an I(t), the voltage and currents are used to find

k(t). Once a dependable form for k(t) is known, then this can be used to

better predict future voltage and current values.

From equation (85) we have

k =

dq2

dt
q1 − c(q1 + q2)

, (90)

but using equation (86) this can be written as

k =
−I(t)− dq1

dt

q1 + c(
∫ t

0
I(u) du− c1)

(91)

where c1 = q1(0) + q2(0) is an integration constant. Using equation (87)

the final expression is

k(t) =

−αI(t)−
(

dV

dt
+

dI

dt
R0

)

V (t)− β + I(t)R0 + cα
∫ t

0
I(u) du− c2

, (92)

where c2 = cα(q1(0) + q2(0)).

Thus, theoretically, given data for V (t) and I(t) and the various pa-

rameters, k(t) can be found. There are two main difficulties with this

operation. First, the data for V (t) and I(t) must be suitable for differ-

entiation and integration, which will usually require the fitting of splines

through the data. Care must be taken to make sure the approximation

spline accurately represents the data, while still allowing relatively smooth

and continuous derivatives.
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The second difficulty lies in estimating the constants c, α, β, q1(0), q2(0).

Accurate measurements of these using the model above is a separate chal-

lenge beyond the scope of this current work.

6. A Parametric Model

The Battery Energy Storage Test Facility model (“BEST” model) was de-

veloped by the US Department of Energy to model parametrically the

behaviour of lead-acid storage batteries [8; 9]. The model equations are

V = E − IR0 (93)

E = E0 −
AX

Q0

− MX

Q0 −X
(94)

X = q +
DIq + (1−D) < IQ >

I0

(95)

< IQ > =
∫ q

0

(
q − q′

t− t′

)
dq′ (96)

where R0 is the internal resistance of the battery (0.04mΩ), E is the theo-

retical battery voltage (if there is zero internal resistance), E0 is the battery

voltage at zero current (2.14V), Q0 is the capacity limit (50.9 kilo Ampere-

hours) at zero current, q is the number of ampere-hours discharged at time

t, q′ is the number of ampere-hours discharged at the previous times t′, X

is called the effective discharge, I is the current drawn from the battery, V

is the measured voltage across the battery, and < IQ > takes account of

the history of the battery. The four parameters A, M , D, and I0, are to

be fitted to the charge/discharge data.

This parametric model has been found to have appropriate behaviour,

such as a gradual decline in voltage versus discharge, up to a critical value
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when voltage drops right away, and the correct (concave upwards) slope of

plots of capacity versus discharge current.

This model looks promising, as it should be straight-forward to fit the

four parameters, it is easy to programme, it is designed to handle variable

discharge histories, and it is also designed to allow for recharging. Un-

certainties to be determined are how robust the parameters are (e.g. to

changing battery age), whether the model is adequate for modelling the

effects of lead sulphate buildup, and what effect temperature would have

on the parameter values.

The figures presented here show model behaviours for a test problem, at

constant discharge current, and at constant discharge power (240 ampere-

volts). More work is needed to see if the model is going to be useful in this

application.

Figure 5: Voltage versus discharge at constant current, using the “BEST”

model.
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Figure 6: Battery capacity versus constant discharge current, using the

“BEST” model.

Figure 7: Battery voltage versus discharged ampere-hours when discharg-

ing at constant power, using the “BEST” model.
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Figure 8: Battery current versus time when discharging at constant power,

using the “BEST” model.
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7. Conclusions and recommendations

Three different models for the discharge and charge of lead-acid batter-

ies under deep cycling conditions were considered in depth. Some good

progress was made, especially with asymptotic solutions for the boundary

layers that develop in the detailed electrochemical model, and in extending

the hydraulic model to the case of a variable k. More work is needed, es-

pecially in fitting models to actual battery performance data, to see which

model is the most accurate and robust.
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