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1. Introduction

We consider a mixture of semiparametric models whose density is of the form

p(x; θ, η, π) =

K∑
k=1

πkpk(x; θk, ηk), (1)

where for each k = 1, . . . ,K, pk(x; θk, ηk) is a semiparametric model with finite dimen-
sional parameter θk ∈ Θ ⊂ Rmk and infinite dimensional parameter ηk ∈ Hk where Hk

is a subset of Banach space Bk, and π1, . . . , πK are mixture probabilities. We assume
that πk > 0 for each k and

∑K
k=1 πk = 1. We denote θ = (θ1, . . . , θK), η = (η1, . . . , ηK)

and π = (π1, . . . , πK). Once we observe iid data X1, . . . , Xn from the mixture model, the
joint probability function of the data X = (X1, . . . , Xn) is given by

p(X; θ, η, π) =

n∏
i=1

K∑
k=1

πkpk(Xi; θk, ηk). (2)

We consider θ is the parameters of interest, and η and π are nuisance parameters. This
paper aim to establish large sample properties of the parameter θ using EM-algorithm
and profile likelihood approach.

To discuss the EM-algorithm, we further introduce notations (we use notations from
[Bishop (2006)]). Let Zi = (Zi1, . . . , ZiK) be group indicator variable for the subject i: for

each k, Zik = 0 or = 1 with P (Zik = 1) = πk, and
∑K
k=1 Zik = 1. Let Z = (Z1, . . . , Zn).

The joint probability function of the complete data (X,Z) is

p(X,Z; θ, η, π) =

n∏
i=1

K∏
k=1

[πkpk(Xi; θk, ηk)]Zik . (3)
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Then the EM-algorithm utilize the identity

log p(X; θ, η, π) =
∑
Z

q(Z) log p(X,Z; θ, η, π)−
∑
Z

q(Z) log p(Z|X; θ, η, π), (4)

where q(Z) is any distribution of Z ([McLachlan & Krishnan (2008)], Equation (3.3)).
In the E-step put

q(Z) = p(Z|X; θold, ηold, πold),

then it is well known that the gradient for the log p(X; θ, η, π) coincides with the one
for

∑
Z q(Z) log p(X,Z; θ, η, π) at (θold, ηold, πold). In the M-step, maximize the expec-

tation of complete data log likelihood function
∑

Z q(Z) log p(X,Z; θ, η, π) to obtain
(θnew, ηnew, πnew). Then repeat E-step and M-step iteratively until we achieve the max-
imum.

Under this procedure, the maximizer of the mixture log likelihood function log p(X; θ, η, π)
with respect to θ, η and π is the same as the ones for the expectation of complete data log
likelihood function

∑
Z q(Z) log p(X,Z; θ, η, π) ([McLachlan & Krishnan (2008)], Section

3.4.1).

The EM-algorithm gives us value of the maximum likelihood estimator θ̂ of the mixture
model. However it does not give us the variance of the estimator. In the following, we
aim to establish asymptotic properties of the maximum likelihood estimator of θ using
profile likelihood estimation with the EM-algorithm.

1.1. Estimation and asymptotic normality of the estimator

From the complete data joint distribution (3), we can derive the conditional distribution
p(Z|X; θ, η, π):

p(Z|X; θ, η, π) =
p(X,Z; θ, η, π)∑
Z p(X,Z; θ, η, π)

=

n∏
i=1

K∏
k=1

[πkpk(Xi; θk, ηk)]Zik∑K
j=1 πjpj(Xi; θj , ηj)

=

n∏
i=1

K∏
k=1

γk(Xi; θ, η)Zik . (5)

where

γk(Xi; θ, η) =
πkpk(Xi; θk, ηk)∑K
j=1 πjpj(Xi; θj , ηj)

, k = 1, . . . ,K. (6)

Again from (3), the expected complete data log-likelihood under q(Z) = p(Z|X; θ, η, π)
is ∑

Z

q(Z) log p(X,Z|θ, η, π) =

n∑
i=1

K∑
k=1

γk(Xi; θ, η)[log πk + log pk(Xi; θk, ηk)]. (7)
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With the expected complete data log-likelihood (7), the method of Lagrange multiplier
can be applied to get the MLE π̂k of πk:

π̂k(θ, η) =

∑n
i=1 γk(Xi; θ, η)

n
, k = 1, . . . ,K. (8)

We require that, as n→∞,

π̂k(θ0, η0)
P→ π0k

where (θ0, η0) are the true value of (θ, η) and π0k, k = 1, . . . ,K, are the true mixture
probability.

The efficient score function and information matrix in the mixture model:
The score function for θ and score operator for η in the mixture model given in (1) are,
respectively,

˙̀(x; θ, η) =
∂

∂θ
log

(
K∑
k=1

πkpk(x; θk, ηk)

)
=

K∑
k=1

γk(x; θ, η)
∂

∂θ
log pk(x; θk, ηk), (9)

and

B(x; θ, η) = dη log

(
K∑
k=1

πkpk(x; θk, ηk)

)
=

K∑
k=1

γk(x; θ, η)dη log pk(x; θk, ηk) (10)

where γk(x; θ, η) is given in (6) with Xi is replaced with x. The notation dη is the
Hadamard derivative operator with respect to the parameter η.

Let θ0, η0 be the true values of θ, η and denote ˙̀
0(x) = ˙̀(x; θ0, η0) and B0(x) =

B(x; θ0, η0). Then, it follows from the standard theory ([van der Vaart (1998)], page 374)
that the efficient score function ˜̀

0 and the efficient information matrix Ĩ0 in the semi-
parametric mixture model are given by

˜̀
0(x) = (I −B0(B∗0B0)−1B∗0) ˙̀

0(x), (11)

and

Ĩ0 = E[˜̀0 ˜̀T
0 ]. (12)

Note: Equations (9) and (10) show that the score functions in the semiparametric
mixture model (1) coincide with the ones for the expected complete data likelihood (7).

The score function for the profile likelihood: In the estimation of (θ, η) we use
the profile likelihood approach: we obtain a function (θ, F )→ η̂θ,F = (η̂1,θ,F , . . . , η̂K,θ,F )
whose values are in the space of the parameter η = (η1, . . . , ηK).
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Define the score functions for the profile likelihood in the model

φ(x; θ, F ) =
∂

∂θ
log

(
K∑
k=1

πkpk(x; θk, η̂k,θ,F )

)
=

K∑
k=1

γk(x; θ, η̂θ,F )
∂

∂θ
log pk(x; θk, η̂k,θ,F ) (13)

and

ψ(x; θ, F ) = dF log

(
K∑
k=1

πkpk(x; θk, η̂k,θ,F )

)
=

K∑
k=1

γk(x; θ, η̂θ,F )dF log pk(x; θk, η̂k,θ,F ), (14)

We require that η0 = η̂θ0,F0 and the condition (R2) below assumes φ(x; θ0, F0) is the

efficient score function ˜̀
0(x) in the model where θ0, η0 and F0 are the true values of the

parameters θ, η and cdf F .

Assumptions: We list assumptions used for Theorem 1.1 and Theorem 1.2 given
below.

On the set of cdf functions F , we use the sup-norm, i.e. for F, F0 ∈ F ,

‖F − F0‖ = sup
x
|F (x)− F0(x)|.

For ρ > 0, let
Cρ = {F ∈ F : ‖F − F0‖ < ρ}.

We assume that:

(R1) For each (θ, F ) ∈ Θ×F , the log-profile-likelihood function for an observation x

log p(x; θ, F ) = log

(
K∑
k=1

πkpk(x; θk, η̂k,θ,F )

)
(15)

is continuously differentiable with respect to θ and Hadamard differentiable with re-
spect to F for all x. Derivatives are respectively denoted by φ(x; θ, F ) = ∂

∂θ log p(x; θ, F )
and ψ(x; θ, F ) = dF log p(x; θ, F ) and they are given in (13) and (14).

(R2) The 4th-root-n-consistency of Fn, n1/4(Fn−F0) = OP (1), and η̂θ,F satisfies η̂θ0,F0 =
η0 and the function

˜̀
0(x) := φ(x; θ0, F0)

is the efficient score function.
(R3) The efficient information matrix Ĩ0 = E[˜̀0 ˜̀T

0 ] = E[φφT (X; θ0, F0)] is invertible.
(R4) There exists a ρ > 0 and a neighborhood Θ of θ0 such that the class of functions

{φ(x; θ, F ) : (θ, F ) ∈ Θ × Cρ} is Pθ0,η0 -Donsker with square integrable envelope
function.

(R5) If θt → θ0 and Ft → F0 as t→ 0, we have for F ∈ Cρ and θ ∈ Θ,

φ(x; θt, F )− φ(x; θ0, F ) = O(θt − θ0) and φ(x; θ, Ft)− φ(x; θ, F0) = O(Ft − F0)

ψ(x; θt, F )− ψ(x; θ0, F ) = O(θt − θ0) and ψ(x; θ, Ft)− ψ(x; θ, F0) = O(Ft − F0)

(16)
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(R6) ∥∥E[φ(x; θ0, F0)φT (x; θ0, F0)ψ(x; θ0, F0)]
∥∥ <∞ (17)

Main result: statistical generalized derivative and asymptotic linearity of
the estimator. To calculate the second derivative of the score function φ(x; θ, F, γ)
given in (13), we use the idea similar to the derivative of generalized function. Let ϕ→
(f, ϕ) =

∫∞
−∞ f(x)ϕ(x)dx be a generalized function, where ϕ vanishes outside of some

interval. Then if f and ϕ are differentiable with derivative f ′ and ϕ′, then by integration
by parts,

(f ′, ϕ) =

∫ ∞
−∞

f ′(x)ϕ(x)dx = −
∫ ∞
−∞

f(x)ϕ′(x)dx = −(f, ϕ′).

We define the derivative (f ′, ϕ) of the generalized function ϕ→ (f, ϕ) by −(f, ϕ′). This
definition is valid even if f is not differentiable, provided ϕ is differentiable.

Using condition (R1) and suppose the density for the profile likelihood p(x; θ, F ) given
in (15) is twice differentiable with respect to θ, then by differentiating the identity∫ {

∂

∂θ
log p(x; θ, F )

}
p(x; θ, F )dx = 0,

with respect to θ at (θ, F ) = (θ0, F0), we get equivalent expressions for the efficient
information matrix in terms of the score function φ(x; θ0, F0):

Ĩ0 = E[φφT (X; θ0, F0)] = −E
[
∂

∂θT
φ(X; θ0, F0)

]
. (18)

From this equation we are motivated to define the expected derivative of the score func-
tion −E

[
∂
∂θT

φ(X; θ0, F0)
]

by E[φφT (X; θ0, F0)]. In the following theorem, we show that

the definition is valid even when the derivative of the score function ∂
∂θT

φ(x; θ, F ) does
not exist.

Theorem 1.1 Let p(x; θ, F ) =
∑K
k=1 πkpk(x; θk, η̂k,θ,F ), φ(x; θ, F ) = ∂

∂θ log p(x; θ, F ),
and ψ(x; θ, F ) = dF log p(x; θ, F ) as defined in (15), (13) and (14), respectively.

Suppose (R1) and (R5), then, for θt → θ0 and Ft → F0 as t→ 0, we have that

E
[
t−1{φ(X; θt, F0)− φ(X; θ0, F0)}

]
= −E

[
φ(X; θ0, F0)φT (X; θ0, F0)

]
{t−1(θt − θ0)}+ o{1 + t−1(θt − θ0)}. (19)

Further suppose (R2) and (R6) then

E
[
t−1{φ(X; θt, Ft)− φ(X; θt, F0)}

]
= O{t−1(θt − θ0)(Ft − F0)}+ o{1 + t−1(Ft − F0)2}. (20)

Note. Note that even when the derivative ∂
∂θφ(x; θ, F ) does not exist the equation

(21) in the proof holds. Together with the derivative ∂
∂θp(x; θ, F ) exists imply that the

derivative of the map θ → E [φ(x; θ, F )] exists and it is given by (19). We may call the
derivative the statistical generalized derivative. Similar comment for (20) holds.
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Proof.
First we prove (19). For each t, the equality

0 = t−1
{∫

φ(x; θt, F0)p(x; θt, F0)dx−
∫
φ(x; θ0, F0)p(x; θ0, F0)dx

}
=

∫
t−1{φ(x; θt, F0)− φ(x; θ0, F0)}p(x; θt, F0)dx

+

∫
φ(x; θ0, F0)t−1{p(x; θt, F0)− p(x; θ0, F0)}dx

holds. It follows that

lim
t→0

∫
t−1{φ(x; θt, F0)− φ(x; θ0, F0)}p(x; θt, F0)dx

= − lim
t→0

∫
φ(x; θ0, F0)t−1{p(x; θt, F0)− p(x; θ0, F0)}dx. (21)

By the differentiability of p(x; θ, F ) with respect to θ, the right hand side is equal to

−
∫
φ(x; θ0, F0)

[
∂

∂θT
p(x; θ0, F0)

{
lim
t→0

t−1(θt − θ0)
}]

dx

= −
∫
φ(x; θ0, F0)φT (x; θ0, F0)p(x; θ0, F0)dx

{
lim
t→0

t−1(θt − θ0)
}
.

As long as we understood the limit t→ 0 is taken before the integral
∫
·dx, the above

can be written as∫
t−1{φ(x; θt, F0)− φ(x; θ0, F0)}p(x; θt, F0)dx

= −
∫
φ(x; θ0, F0)φT (x; θ0, F0)p(x; θ0, F0)dx

{
t−1(θt − θ0)

}
+ o(1). (22)

Using assumption (16), we get∥∥∥∥∫ t−1{φ(x; θt, F0)− φ(x; θ0, F0)}p(x; θt, F0)dx−
∫
t−1{φ(x; θt, F0)− φ(x; θ0, F0)}p(x; θ0, F0)dx

∥∥∥∥
=

∥∥∥∥∫ t−1{φ(x; θt, F0)− φ(x; θ0, F0)}{p(x; θt, F0)− p(x; θ0, F0)}dx
∥∥∥∥

≤
∣∣∣∣∫ O{t−1(θt − θ0)}{p(x; θt, F0)− p(x; θ0, F0)}dx

∣∣∣∣ =

∫
O{t−1(θt − θ0)}o(1)dx = o{t−1(θt − θ0)}.

(23)

Altogether, we have (19):∫
t−1{φ(x; θt, F0)− φ(x; θ0, F0)}p(x; θ0, F0)dx

=

∫
φ(x; θ0, F0)φT (x; θ0, F0)p(x; θ0, F0)dx{t−1(θt − θ0)}+ o{1 + t−1(θt − θ0)}.
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Now we prove (20).
By Taylor’s expansion,

p(x; θt, F0) = p(x; θ0, F0) + φ(x; θ0, F0)p(x; θ0, F0)(θt − θ0) + o(θt − θ0). (24)

Further,

p(x; θt, Ft) = p(x; θ0, F0) + φ(x; θ0, F0)p(x; θ0, F0)(θt − θ0)

+ψ(x; θ0, F0)p(x; θ0, F0)(Ft − F0) + o{(θt − θ0) + (Ft − F0)}. (25)

Using assumption (16)

φ(x; θt, F0)ψ(x; θt, F0)

= {φ(x; θ0, F0) +O(θt − θ0)}{ψ(x; θ0, F0) +O(θt − θ0)}
= φ(x; θ0, F0)ψ(x; θ0, F0) + {φ(x; θ0, F0) + ψ(x; θ0, F0)}O(θt − θ0) +O(θt − θ0).(26)

Since ψ(x; θ0, F0) is in the nuisance tangent space and φ(x; θ0, F0) is the efficient score
function, we have

E[φ(x; θ0, F0)ψ(x; θ0, F0)] =

∫
φ(x; θ0, F0)ψ(x; θ0, F0)p(x; θ0, F0)dx = 0. (27)

As before, for each t, the following equation holds:∫
t−1{φ(x; θt, Ft)− φ(x; θt, F0)}p(x; θt, Ft)dx

= −
∫
φ(x; θt, F0)t−1{p(x; θt, Ft)− p(x; θt, F0)}dx. (28)

By the differentiability of p(x; θ, F ) with respect to F and (16), a similar proof as (22)
can show that, as t→ 0, the equation (28) is equivalent to∫

t−1{φ(x; θt, Ft)− φ(x; θt, F0)}p(x; θt, Ft)dx

= −
∫
φ(x; θt, F0)ψ(x; θt, F0)p(x; θt, F0)dx{t−1(Ft − F0)}+ o(1). (29)

The left hand side of (29) is as t→ 0, using (16) and (25),∫
t−1{φ(x; θt, Ft)− φ(x; θt, F0)}p(x; θt, Ft)

=

∫
t−1{φ(x; θt, Ft)− φ(x; θt, F0)}[p(x; θ0, F0) + φ(x; θ0, F0)p(x; θ0, F0)(θt − θ0)

+ψ(x; θ0, F0)p(x; θ0, F0)(Ft − F0) + o{(θt − θ0) + (Ft − F0)}]dx

=

∫
t−1{φ(x; θt, Ft)− φ(x; θt, F0)}p(x; θ0, F0)dx+ t−1o{(θt − θ0)(Ft − F0) + (Ft − F0)2}.
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The integral in the right hand side of (29) is, using (24), (26) and (27),∫
φ(x; θt, F0)ψ(x; θt, F0)p(x; θt, F0)dx

=

∫
{φ(x; θ0, F0)ψ(x; θ0, F0) + [φ(x; θ0, F0) + ψ(x; θ0, F0)]O(θt − θ0) +O(θt − θ0)}

×{p(x; θ0, F0) + φT (x; θ0, F0)p(x; θ0, F0)(θt − θ0) + o(θt − θ0)}dx
= E[φ(x; θ0, F0)φT (x; θ0, F0)ψ(x; θ0, F0)]O(θt − θ0) +O(θt − θ0).

Altogether, (29) is equivalent to∫
t−1{φ(x; θt, Ft)− φ(x; θt, F0)}p(x; θ0, F0)dx+ t−1o{(θt − θ0)(Ft − F0) + (Ft − F0)2}

= −E[φ(x; θ0, F0)φT (x; θ0, F0)ψ(x; θ0, F0)]t−1O{(θt − θ0)(Ft − F0)}+ t−1O{(θt − θ0)(Ft − F0)}+ o(1).

(20) follows from this with (17).
Using the result in Theorem 1.1, we can get the following result:

Theorem 1.2 Suppose sets of assumptions (R1)− (R6). Then a consistent solution θ̂n
to the estimating equation

n∑
i=1

φ(Xi; θ̂n, Fn) = 0 (30)

is an asymptotically linear estimator for θ0 :

√
n(θ̂n − θ0) =

1√
n

n∑
i=1

Ĩ−10
˜̀
0(Xi) + oP (1).

Hence we have that
√
n(θ̂n − θ0)

d−→ N
(

0, Ĩ−10

)
as n→∞.

Proof
By Lemma 19.24 in [van der Vaart (1998)] together with the dominated convergence

theorem and condition (R4) implies

1√
n

n∑
i=1

{φ(Xi; θ̂n, Fn)− φ(Xi; θ0, F0)} =
√
nE{φ(X; θ̂n, Fn)− φ(X; θ0, F0)}+ oP (1). (31)

Using (19) and (20) , the right hand side of (31) is

√
nE{φ(X; θ̂n, Fn)− φ(X; θ0, F0)}

=
√
nE{φ(X; θ̂n, Fn)− φ(X; θ̂n, F0)}+

√
nE{φ(X; θ̂n, F0)− φ(X; θ0, F0)}

=
√
n(θ̂n − θ0)Op(Fn − F0)− Ĩ0

√
n(θ̂n − θ0) + op{1 +

√
n(θ̂n − θ0) +

√
n(Fn − F0)2},

(32)
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where Ĩ0 = E{φ(X; θ0, F0)φT (X; θ0, F0)}. Since we assumed 4th-root-n-consistency, we
have

√
n(Fn − F0)2 = Op(1) and Fn − F0 = op(1). Finally, (31) together with (32) and

1√
n

∑n
i=1 φ(Xi; θ̂n, Fn) = 0 imply that

√
n(θ̂n − θ0) =

1√
n

n∑
i=1

Ĩ−10 φ(Xi; θ0, F0) + oP (1).
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