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ABSTRACT 
In this study we model the warranty claims process and 

evaluate the warranty servicing costs under non-renewing 

and renewing free repair warranties. We assume that the 

repair time for rectifying the claims is non-zero and the 

repair cost is a function of the length of the repair time. To 

accommodate the ageing of the product and repair 

equipment, we use a decreasing geometric process to model 

the consecutive operational times and an increasing 

geometric process to model the consecutive repair times. 

We identify and study the alternating geometric process 

(AGP), which is an alternating process with cycles 

consisting of the item’s operational time followed by the 

corresponding repair time. We derive new results for the 

AGP in finite horizon and use them to evaluate the warranty 

costs over the warranty period and over the life cycle of the 

product under a non-renewing free repair warranty 

(NRFRW), a renewing free repair warranty (RFRW) and a 

restricted renewing free repair warranty (RRFRW(n)). 

Properties of the model are demonstrated using a simulation 

study. 
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NOMENCLATURE 
{𝑋𝑖}1

∞ – a stochastically decreasing geometric process with 

parameters {𝑎, 𝐹𝑋1(𝑡)}, 𝑎 ≥ 1, representing the “on” 

times;  
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{𝑌𝑖}1
∞ – a stochastically increasing geometric process with 

parameters {𝑏, 𝐹𝑌1(𝑡)}, 0 < 𝑏 ≤ 1,  representing the 

“off” times; 

𝑍𝑖    – the length of the ith cycle, with the cumulative 

distribution function 𝐻𝑖(𝑡); 
𝑆𝑛   – the end of the nth cycle, with the cumulative 

distribution function 𝐺𝑖
𝑛(𝑡); 

𝑇    – the length of the warranty period; 

𝐿    – the length of the life cycle; 

𝐶(𝑇) – the warranty cost over the warranty period; 

𝐶(𝐿) – the warranty cost over the life cycle. 

 

1. INTRODUCTION 
In warranty cost analysis it is typically assumed that 

the time required to rectify a warranty claim is negligible. 

In many cases this assumption is reasonable but there are 

situations where this assumption is hard to justify, e.g., 

having lengthy repairs with high penalty costs or lengthy 

repair leading to substantial loss of income. In these cases, 

ignoring the length of repair will lead to underestimation of 

the expected warranty costs. 

Chukova and Hayakawa [1, 2] studied models based 

on an alternating renewal process (i.e., assuming 

independent and identically distributed (i.i.d.) operational 

times and independent and identically distributed repair 

times) to evaluate the warranty costs under both non-

renewing and renewing warranties. Non-zero repair times 

and a finite time horizon were taken into account in these 

models. For details on alternating renewal processes, see 
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[3]. For more on the application of renewal theory in 

warranty cost analysis, see [4]. For more on models with 

non-zero repair times see [5]–[12]. 

The main goal of this paper is to study a generalization 

of the aforementioned results in [1, 2] to more realistically 

account for product ageing, i.e., the operational times are 

stochastically decreasing and the repair times are 

stochastically increasing. We use the geometric process to 

model the stochastically increasing and decreasing times 

(see [13] for an overview of the geometric process). In this 

paper we model a scenario in which, as an item ages, the 

operational time decreases and the time required to bring a 

faulty product to a functioning condition increases. Hence, 

the new model will be based on an alternating geometric 

process (AGP), which we will introduce in Section 2. 

 

2. THE MODEL 

2.1. Alternating geometric process (AGP) 
Consider an item, which initially operates for a length 

of time 𝑋1 and then fails. After this, it undergoes repair for 

a length of time 𝑌1 . After the repair, the item is again 

operational for a time 𝑋2, which is followed by a repair for 

a time 𝑌2 and so on. We assume that: 

 

(1) {𝑋𝑖}1
∞  and {𝑌𝑖}1

∞
  are independent sequences of 

random variables; 

(2) {𝑋𝑖}1
∞ is a stochastically decreasing geometric 

process with parameters {𝑎, 𝐹𝑋1(𝑡)}, 𝑎 ≥ 1; 

(3) {𝑌𝑖}1
∞

   is a stochastically increasing geometric 

process with parameters {𝑏, 𝐹𝑌1(𝑡)}, 0 < 𝑏 ≤ 1. 

 

A stochastic process {𝑍𝑖}1
∞  is referred to as a 

geometric process with parameter 𝛽 if there exists a real 

number 𝛽 > 0 such that {𝛽𝑖−1𝑍𝑖}1
∞ is a renewal process 

[13]. A geometric process is stochastically increasing if 

0 < 𝛽 ≤ 1 and stochastically decreasing if 𝛽 ≥ 1. If 𝛽 =
1, then the process becomes a renewal process. See [14] for 

a different parametrization of the geometric process. The 

process described above is referred to as an alternating 

geometric process (AGP) with parameters 

{𝑎, 𝐹𝑋1(𝑡), 𝑏, 𝐹𝑌1(𝑡)}.  

We refer to a period of time as a “cycle” if it consists 

of an operational (“on”) time followed by the 

corresponding repair (“off”) time. We suppose that the 

repair cost is incurred at the end of each cycle. If the 

warranty coverage expires during a repair period, the 

corresponding repair is completed and its cost is fully 

incurred by the warrantor. In this case we have a complete 

cycle. If the warranty expires during an operational period, 

the cost of the following repair is not covered by the 

warrantor and the cycle is incomplete. 

Similar to [1, 2], we assume that the cost of the ith 

repair has the form 𝐶𝑖 = 𝐴 + 𝛿𝑌𝑖 , where 𝐴  and 𝛿  are 

prespecified constants. 

The life cycle of a product is defined as the time while 

the product is still usable and contemporary. We assume 

that during the life cycle, after the expiration of the 

warranty coverage for the initially purchased item, at the 

time of the first off-warranty failure, the consumer 

purchases an identical item to the initial one, with the same 

warranty coverage. 

2.2. AGP in finite horizon 
Consider an AGP with the ith “on” time distribution 

𝐹𝑋𝑖 and ith “off” time distribution 𝐹𝑌𝑖 . We assume that the 

“on” and “off” time processes are geometric processes. The 

“on” time process is a decreasing geometric process with 

parameters ≥ 1,  𝐹𝑋𝑖(𝑡) = 𝐹𝑋1(𝑎
𝑖−1𝑡), 𝑖 = 1, 2, … . The 

“off” time process is an increasing geometric process with 

parameters 0 < 𝑏 ≤ 1,  𝐹𝑌𝑖(𝑡) = 𝐹𝑌1(𝑏
𝑖−1𝑡), 𝑖 = 1, 2, … . 

Denote by 𝑍𝑖 = 𝑋𝑖 + 𝑌𝑖 , the length of the ith cycle, i.e., the 

sum of the ith operational and ith repair times, with the 

cumulative distribution function 𝐻𝑖(𝑡) . Let 𝑆𝑛 =
 ∑ (𝑋𝑖 + 𝑌𝑖)

𝑛
𝑖=1  . Then, the number of AGP cycles 

completed by time t, 𝑁(𝑡), and its expected value, 𝑚1(𝑡), 
are given respectively by 

 

𝑁(𝑡) = sup{𝑛: 𝑆𝑛 ≤ 𝑡} and 𝑚1(𝑡) = 𝐸(𝑁(𝑡)). 
 

Analogously to computing the renewal function (see [3]), 

we can see that 𝑚1(𝑡) can be represented as 

𝑚1(𝑡) =  ∑𝑃(𝑆𝑛 ≤ 𝑡)

∞

𝑛=1

= ∑𝐺1
𝑛(𝑡)

∞

𝑛=1

, 

where 

𝐺𝑖
𝑛(𝑡) = 𝐻𝑖 ∗ 𝐻𝑖+1 ∗ …∗ 𝐻𝑖+𝑛−1      (1) 

and “∗” denotes a convolution. 

 

Next, we summarize some of the results needed to 

evaluate the expected warranty costs. Most of the results 

are stated without proof. Firstly, by extending the results of 

[13][Thm 2.3.1], the probability that the system is “on” at 

time 𝑡 can be obtained as follows 

𝑃(on at 𝑡) =  �̅�𝑋1(𝑡) +  ∑∫  �̅�𝑋𝑛+1(𝑡 − 𝑠) 𝑑𝐺1
𝑛(𝑠).

𝑡

0

∞

𝑛=1

 

  (2) 

Let 𝑇 > 0  be the length of a finite period of time. 

Then, the following results hold: 

 

Theorem 1. 

𝐸(𝑌𝑁(𝑇)+1|on at 𝑇)  

=  
𝐸(𝑌1)

𝑃(on at 𝑇)
 {�̅�𝑋1(𝑡)

+  ∑
1

𝑏𝑛
∫  �̅�𝑋𝑛+1(𝑇 − 𝑠) 𝑑𝐺1

𝑛(𝑠)
𝑇

0

∞

𝑛=1

}. 

 

 (3) 
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Theorem 2. 

 

𝑃(𝑆𝑁(𝑇) + 𝑋𝑁(𝑇)+1 ≤ 𝑡 | on at 𝑇)

=  
�̅�𝑋1(𝑇) − �̅�𝑋1(𝑡)

�̅�𝑋1(𝑇) + ∑ ∫  �̅�𝑋𝑛+1(𝑇 − 𝑠) 𝑑𝐺1
𝑛(𝑠)

𝑇

0
∞
𝑛=1

 

+  
∑ ∫  (�̅�𝑋𝑛+1(𝑇 − 𝑠)  −  �̅�𝑋𝑛+1(𝑡 − 𝑠))  𝑑𝐺1

𝑛(𝑠)
𝑇

0
∞
𝑛=1

�̅�𝑋1(𝑇) + ∑ ∫  �̅�𝑋𝑛+1(𝑇 − 𝑠) 𝑑𝐺1
𝑛(𝑠)

𝑇

0
∞
𝑛=1

 

(4) 

 

 

Theorem 3. 

 

𝑃(𝑆𝑁(𝑇)+1 + 𝑋𝑁(𝑇)+2 ≤ 𝑡 | off at 𝑇)  =  
1

𝑃(off at 𝑇)

× (∫ ∫ 𝐹𝑋2(𝑡 − 𝑢 − 𝑣) 𝑑𝐹𝑌1(𝑣) 𝑑𝐹𝑋1(𝑢)
𝑡−𝑢

𝑇−𝑢

𝑇

0

+ ∑∫ ∫ ∫ 𝐹𝑋𝑛+2(𝑡 − 𝑠 − 𝑢
𝑡−𝑠−𝑢

𝑇−𝑠−𝑢

𝑇−𝑠

0

𝑇

0

∞

𝑛=1

− 𝑣)  𝑑𝐹𝑌𝑛+1(𝑣) 𝑑𝐹𝑋𝑛+1(𝑢) 𝑑𝐺1
𝑛(𝑠)) 

 (5) 

3. WARRANTY COST ANALYSIS UNDER AN 
NRFRW 

 

Next, we consider a non-renewing free repair warranty 

(NRFRW), i.e., the product is warrantied for a fixed period 

of time T, usually starting right after the purchase. During 

the warranty period all expenses are borne by the 

manufacturer. We derive the expected warranty costs over 

the warranty period T and over the life cycle of length L. 

3.1. Expected warranty costs over (0, T) 
The total cost over the warranty period, C(T), can be 

represented as 

 

𝐶(𝑇) =  

{
 
 

 
 
∑ 𝐶𝑖

𝑁(𝑇)

𝑖=1

 if "on" at time 𝑇

∑ 𝐶𝑖

𝑁(𝑇)+1

𝑖=1

 if "off" at time 𝑇.

 

 

Then, 

 

𝐸(𝐶(𝑇)) = 𝐸 ( ∑ 𝐶𝑖

𝑁(𝑇)+1

𝑖=1

)

− 𝐸(𝐶𝑁(𝑇)+1| on at 𝑇)𝑃(on at 𝑇), 

(6) 

where 𝑃(on at 𝑇) is given by (2). For 𝑏 ≠ 1, we have 

 

 

𝐸(𝐶𝑖) = 𝐸(𝐴 + 𝛿𝑌𝑖) = 𝐴 + 𝛿
𝐸(𝑌1)

𝑏𝑖−1
 ,   (7) 

 

 

𝐸(𝐶𝑁(𝑇)+1| on at 𝑇) = 𝐴 + 𝛿𝐸(𝑌𝑁(𝑇)+1| on at 𝑇),  (8) 

and, 

 

𝐸 ( ∑ 𝐶𝑖

𝑁(𝑇)+1

𝑖=1

)= 𝐸 ( ∑ (𝐴 + 𝛿𝑌𝑖)

𝑁(𝑇)+1

𝑖=1

)

= 𝐴(𝑚1(𝑇) + 1) + 𝛿𝐸 ( ∑ 𝑌𝑖

𝑁(𝑇)+1

𝑖=1

)

= 𝐴(𝑚1(𝑇) + 1) + 𝛿
𝐸(𝑌1){𝐸(𝑏

−𝑁(𝑇)) − 𝑏}

1 − 𝑏
.

 

(9) 

 

Note that when 𝒃 = 𝟏, the repair time process is a renewal 

process. For the expected warranty cost under this scenario 

refer to [1]. 

3.2. Expected warranty costs over (0, L) 
Let 𝐿∗ be a prespecified time during which a 

product is considered to be contemporary and competitive 

with similar products in the market. Let 𝐿 be the time of 

the first off-warranty failure of the product after 𝐿∗. Then, 

we call (0, 𝐿) the life-cycle of the product. Let 𝜉 be a 

positive random variable, representing the time between 

two consecutive purchases, i.e., 

 

𝜉 =  {
𝑆𝑁(𝑇) + 𝑋𝑁(𝑇)+1, if "on" at time 𝑇

𝑆𝑁(𝑇)+1 + 𝑋𝑁(𝑇)+2, if "off" at time 𝑇
 

 

Then, the expected cost over (0, 𝐿) is given by 

 

𝐸(𝐶(𝐿)) = (𝑚𝜉
∗(𝐿) + 1)𝐸(𝐶(𝑇)), 

 

where 𝑚𝜉
∗(𝑡)  is the renewal function of the renewal 

process generated by 𝜉. Based on the definition of 𝜉, its 

distribution can be represented via the respective 

conditional distributions of 𝑆𝑁(𝑇) + 𝑋𝑁(𝑇)+1  and 

𝑆𝑁(𝑇)+1 + 𝑋𝑁(𝑇)+2, given in (4) and (5) respectively. 

 

4. WARRANTY COST ANALYSIS UNDER A RFRW 
AND A RRFRW(n) 

 

Next, we consider a renewing free repair warranty 

(RFRW) under which, following a warranty repair, the item 

is warranted anew for a period of length T. If the warranty 
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period ends during an operational period, the cost of the 

following repair is not incurred by the warrantor and the 

warranty coverage expires. Here we will distinguish 

between the warranty coverage 𝑊𝑇 , which is a random 

variable, and the warranty period, which is a predetermined 

constant 𝑇. We define 𝑊𝑇 as the time from the purchase 

of the product until the expiry of the warranty coverage. We 

also consider a restricted renewing free repair warranty 

(RRFRW(n)), in which the number of warranty repairs is 

limited to some predetermined number n.  We define 𝑊𝑇
𝑛 

as the warranty coverage under a RRFRW(n). 

 

4.1. Cost analysis for a RFRW  

4.1.1. Expected warranty costs over (𝟎,𝑾𝑻)  
Due to the mechanism of the renewing warranty, WT is 

equal to: 

 

𝑊𝑇 = {

𝑇 if 𝑋1 > 𝑇

𝑇 +∑(𝑋𝑖 + 𝑌𝑖)

𝑘

𝑖=1

if 𝑋𝑖 ≤ 𝑇, 𝑖 = 1, 2, … , 𝑘,
𝑋𝑘+1 > 𝑇,  for some 𝑘.

 

(10) 

Then, the warranty cost 𝐶(𝑊𝑇)  over the warranty 

coverage is a random variable and its distribution is as 

follows: 

 

 

𝐶(𝑊𝑇) =

{
 
 
 
 

 
 
 
 
0, with probability1 − 𝐹𝑋1(𝑇)

𝐶1 with probability (1 − 𝐹𝑋2(𝑇)) 𝐹𝑋1(𝑇)

𝐶1 + 𝐶2with probability(1 − 𝐹𝑋3(𝑇)) 𝐹𝑋2(𝑇)𝐹𝑋1(𝑇)

⋮ ⋮ ⋮

∑𝐶𝑖

𝑘

𝑖=1

with probability(1 − 𝐹𝑋𝑘+1(𝑇))∏𝐹𝑋𝑖(𝑇)

𝑘

𝑖=1

⋮ ⋮ ⋮

 

(11) 

where 𝐸(𝐶𝑖), for 𝑏 ≠ 1, is given in (7). 

 

Next, we consider the expected warranty costs 

𝐸(𝐶(𝑊𝑇))   over (0,𝑊𝑇).  After some algebraic 

manipulations, we obtain that  

 

𝐸(𝐶(𝑊𝑇)) =  ∑(𝐴 + 
𝛿𝐸(𝑌1)

𝑏𝑘−1
)∏𝐹𝑋𝑗(𝑇)

𝑘

𝑗=1

∞

𝑘=1

. 

(12) 

 

 

It can be shown that the series (12) is divergent (based on 

d’Alembert’s test and the Stolz-Cesàro theorem [15]). 

Hence, 𝐸(𝐶(𝑊𝑇)) goes to infinity. Therefore, assigning a 

warranty period of length 𝑇  for a product, with 

operational/repair times that form an AGP with parameters 

{𝑎, 𝐹𝑋1(𝑡), 𝑏, 𝐹𝑌1(𝑡)}  is not a viable business option. It 

may, however, be practical to offer a restricted renewing 

free repair warranty, with at most 𝑛  warranty repairs 

(RRFRW(n)), which we will present in subsection 4.2.  

4.2. Cost analysis for a RRFRW(n)  
 

As an alternative to a RFRW strategy we will consider 

its modified version, called a restricted renewing free repair 

warranty with parameter n (RRFRW(n)), under which at 

most  𝑛  warranty repairs are covered by the warranty 

coverage, where 𝑛 is a known, fixed constant. 

 

4.2.1. Expected warranty costs over (𝟎,𝑾𝑻
𝒏)  

Under a RRFRW(n), the warranty coverage 𝑊𝑇
𝑛 can 

be represented as follows: 

 

 

𝑊𝑇
𝑛 =

{
  
 

  
 
𝑇 if 𝑋1 > 𝑇

∑(𝑋𝑖 + 𝑌𝑖)

𝑘−1

𝑖=1

+ 𝑇
if 𝑋𝑖 ≤ 𝑇, 𝑖 = 1, 2, … , 𝑘 − 1,

𝑋𝑘 > 𝑇, 2 ≤ 𝑘 ≤ 𝑛

∑(𝑋𝑖 + 𝑌𝑖)   

𝑛

𝑖=1

if 𝑋𝑖 ≤ 𝑇, 𝑖 = 1, 2, … , 𝑛.

 

 

 

Then, the warranty cost 𝐶(𝑊𝑇
𝑛)  over the warranty 

coverage is a random variable and its distribution is as 

follows: 

 

𝐶(𝑊𝑇
𝑛) =

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 
0, with probability 1 − 𝐹𝑋1(𝑇)

𝐶1 with probability (1 − 𝐹𝑋2(𝑇)) 𝐹𝑋1
⋮ ⋮ ⋮

∑𝐶𝑖

𝑘−1

𝑖=1

with probability (1 − 𝐹𝑋𝑘(𝑇))∏𝐹𝑋𝑖(𝑇)

𝑘−1

𝑖=1

,

for 𝑘 < 𝑛
⋮ ⋮ ⋮

∑𝐶𝑖

𝑛−1

𝑖=1

with probability (1 − 𝐹𝑋𝑛(𝑇))∏𝐹𝑋𝑖(𝑇)

𝑛−1

𝑖=1

∑𝐶𝑖

𝑛

𝑖=1

  with probability  ∏𝐹𝑋𝑖(𝑇)

𝑛

𝑖=1

.

 

 

 

It is easy to derive that under a RRFRW(n) the expected 

warranty cost is given by  

 

𝐸(𝐶(𝑊𝑇
𝑛)) =  ∑(𝐴 + 

δ𝐸(𝑌1)

𝑏𝑘−1
)

𝑛

𝑘=1

∏𝐹𝑋𝑗(𝑇),

𝑘

𝑗=1

 

(13) 
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which is a truncated version of the divergent series (12) to 

its 𝑛th partial sum. Hence, for a RRFRW(n) under an AGP 

with parameters {𝑎, 𝐹𝑋1(𝑡), 𝑏, 𝐹𝑌1(𝑡)},  the expected 

warranty cost is always finite, and this warranty strategy 

might be considered as an appropriate warranty strategy by 

some producers. 

 

4.2.2. Expected warranty costs over (𝟎, 𝑳)  
Similar to section 3.2, expressions for the expected 

warranty costs over (0, L) can be derived under a 

RRFRW(n). Consider the positive random variable 𝜉𝑛 as 

the time between two consecutive purchases under a 

RRFRW(n). By definition   

 

𝜉𝑛 = 

{
  
 

  
 
𝑋1 if 𝑋1 > 𝑇

∑(𝑋𝑖 + 𝑌𝑖)

𝑘−1

𝑖=1

+ 𝑋𝑘

 
if 𝑋𝑖 ≤ 𝑇, 𝑖 = 1, 2, … , 𝑘 − 1,
𝑋𝑘 > 𝑇, 2 ≤ 𝑘 ≤ 𝑛 
 

∑(𝑋𝑖 + 𝑌𝑖) + 𝑋𝑛+1   

𝑛

𝑖=1

if 𝑋𝑖 ≤ 𝑇, 𝑖 = 1, 2, … , 𝑛.

 

 

 

Then, it can be shown that the cdf of 𝜉𝑛 is given by 

 

𝑃(𝜉𝑛 ≤ 𝑡) = 𝑃(𝑇 < 𝑋1 ≤ 𝑡) +

∫ 𝑃(𝑇 <
𝑡−𝑇

0
 𝑋2 ≤ 𝑡 − 𝑠) 𝑑𝐺1

1(𝑠) +

∫ 𝑃(𝑇 <
𝑡−𝑇

0
 𝑋3 ≤ 𝑡 − 𝑠) 𝑑𝐺1

2(𝑠) + ⋯

∫ 𝑃(𝑇 <
𝑡−𝑇

0
 𝑋𝑛 ≤ 𝑡 − 𝑠) 𝑑𝐺1

𝑛−1(𝑠) +

∫ 𝑃(
𝑡

0
𝑋𝑛+1 ≤ 𝑡 − 𝑠) 𝑑𝐺1

𝑛(𝑠).

   

 

Therefore, the following theorem holds: 

 

 

Theorem 5. 

 

𝐹𝜉𝑛(𝑡) = (𝐹𝑋1(𝑡) − 𝐹𝑋1(𝑇)) + 

∑∫ (𝐹𝑋𝑖+1(𝑡 − 𝑠) − 𝐹𝑋𝑖+1(𝑇)) 𝑑𝐺1
𝑖(𝑠) +

𝑡−𝑇

0

𝑛−1

𝑖=1

∫ (𝐹𝑋𝑛+1(𝑡 − 𝑠)) 𝑑𝐺1
𝑛(𝑠)

𝑡

0

,

 

 

where 𝐺1
𝑖(𝑠) is given by    (1). 

 

Then, the expected warranty costs over (0, 𝐿) , say 

𝐸(𝐶(𝐿)) , are expressed in terms of 𝜉𝑛  in the following 

way 

 

𝐸(𝐶(𝐿)) = (𝑚𝜉𝑛
∗ (𝐿) + 1)𝐸(𝐶(𝑊𝑇

𝑛)), 

 

where 𝑚𝜉𝑛
∗  is the renewal function of the renewal process 

generated 𝜉𝑛. 

 

5. SIMULATION RESULTS FOR A NRFRW  
 

In this section, using simulation, we study the 

expected warranty cost for a NRFRW under an AGP with 

parameters {𝑎, 𝐹𝑋1(𝑡), 𝑏, 𝐹𝑌1(𝑡)}.  The expected warranty 

costs over the warranty period, as well as the life cycle, are 

estimated using the average cost over 5 million warranty 

cost simulations under a NRFRW.  

The expected warranty cost 𝐸(𝐶(𝑇)), given in (6), is 

influenced mainly by the following two factors:  

i. the number of claims and  

ii. the cost of these claims.  

The cost of the claims depends on the length of the 

repair time (driven by the repair time distribution 𝐹𝑌1  and 

0 < 𝑏 < 1 ). The number of claims depends on the 

operational time (driven by operational time distribution 

𝐹𝑋1 and 𝑎 > 1) as well as the repair times. Recall that the 

cost of the ith claim is 𝐶𝑖 = 𝐴 + 𝛿𝑌𝑖  , where A could be 

interpreted as a fixed cost incurred for each repair and δ 

could be interpreted as a variable cost per time unit. 

Figure 1 explores the relationship between the repair 

rate 𝜇 = 1/𝐸(𝑌1)  and warranty cost for an exponential 

repair time distribution for various values of the cost 

parameter δ. The operational times are modelled by an 

exponential distribution with rate 𝜆 = 1/𝐸(𝑋1) = 0.0055. 

If the time unit for the simulation is a day, then this 

corresponds to a failure rate of approximately 2 per year 

and thus an average operational time of about 182 days. A 

repair rate of 𝜇 = 1/𝐸(𝑌1) = 2 corresponds to an average 

repair time of 0.5 days and a repair rate of 𝜇 = 1/𝐸(𝑌1) =
0.01 corresponds an average repair time of 100 days. As 

expected, a comparison of the three graphs in Figure 1 

shows that as the cost parameter δ increases, the expected 

warranty cost will increase. Notice that an increase by a 

factor of 100 from 𝛿 = 0.01 to 𝛿 = 1 leads to a similar 

percentage increase in the warranty costs for small values 

of b. The shape of the graphs, however, changes for 

different values of 𝛿. 

It might be expected that as the repair rate increases 

(i.e., the length of the repair time decreases) the cost would 

decrease. That is, we may expect the expected warranty 

cost for 𝜇 = 2 to be less than the cost for 𝜇 = 0.01. This 

can be observed in the third graph of Figure 1 for 𝛿 = 1. 

However, in the first two graphs of Figure 1, for high values 

of b this is not the case. This can be explained by examining 

Figure 2. When b is low and 𝜇 is low the expected number 

of cycles is much lower than when b is high and 𝜇 is high, 

and correspondingly, the expected cycle length is much 

larger. In Figure 1, the first graph has a very small variable 

cost parameter 𝛿 = 1/365 = 0.00274  compared with 

the fixed cost parameter A = 1, so the number of cycles 

dominates the expected warranty cost. Notice that the cost 

is comparable to the expected number of cycles shown in 

Figure 2. In the third graph in Figure 1, for 𝛿 = 1 , the 

expected warranty cost is dominated by the repair time, 

rather than the number of cycles, and thus the cost is 

comparable to the average cycle length shown in Figure 2. 
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Figure 1. Expected Warranty Cost with 

X1~Exponential(λ=0.0055), A=1, T=1460, a=1.1, 

Y1~Exponential(μ), for various ẟ 

 

 
Figure 2. Properties of the cycle with 

X1~Exponential(λ=0.0055), A=1, ẟ=1, T=1460, a=1.1, 

Y1~Exponential(μ) 

 

 

Figure 3 shows that as the parameter a increases (i.e., 

the operational times decrease more rapidly) the expected 

warranty cost increases. This is to be expected since shorter 

operational times mean that there will be more claims 

within the warranty period. The operational times are also 

influenced by the failure rate 𝜆 = 1/𝐸(𝑋1). Figure 3 also 

shows that higher values of 𝜆  (i.e., shorter operational 

times) lead to higher warranty costs. It also shows that for 

higher values of 𝜇 (i.e., shorter repair times), the expected 

warranty cost is lower for values of a, which are close to 1. 

For larger values of a (approximately a > 1.3) and 𝜆 (𝜆 =
0.0055  and 𝜆 = 0.01 ), the expected warranty cost is 

higher for larger values of 𝜇 (shorter repair times). This 

suggests that as operational times decrease (larger a and 𝜆) 

and repair times decrease (larger 𝜇), the cost is driven by 

the frequency of repairs rather than the length of the 

repairs.   
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Figure 3 Expected Warranty Cost with  

X1~Exponential(λ), A=1, ẟ=2, T=730, b=0.95,  

Y1~Exponential(μ), for various λ 

 

 

6 CONCLUSIONS 
 

In this paper, we studied non-renewing, renewing and 

restricted renewing free repair warranties under a new 

failure/repair process based on an alternating geometric 

process (AGP), which accounts for the shortening behavior 

of the operational times and for the lengthening behavior 

of the repair times. Using an AGP, we derived the expected 

warranty costs over the warranty period and over the life 

cycle for NRFRW, RFRW and RRFRW(n) models. Also, 

using simulation, we demonstrated some properties of the 

NRFRW model. In our future work, we will explore the 

properties of the RRFRW(n) using simulation and work on 

providing some insight on the statistical inference for the 

proposed warranty models. 
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