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1 Introduction

Information criteria is a popular tool for a model selection, since it can be used to compare

non-nested models as well as nested models. Generally, there are two assumptions under which

we derive information criteria: (A) the true distribution may not be in the chosen parametric

family; (B) the true distribution is in the chosen parametric family. In model selection problem,

usually we do not know the true distribution is in the chosen parametric family. Therefore, the

assumption (A) may be a more practical assumption.

Some authors considered model selection using the profile likelihood under the assumption

(B). For example Xu, Vaida and Harrington (2009) used profile likelihood to derive the profile

Akaike information criteria. Claeskens and Carroll (2007) used the profile Akaike information

criteria to apply their method of focused information criteria (Claeskens and Hjort (2003)) in

the context of semi-parametric models. In this paper we derive an information criteria using the

profile likelihood under the assumption (A) for parametric and semi-parametric models.

We consider parametric and semi-parametric models of the form

P = {f(x; θ, η) : θ ∈ Θ, η ∈ H} (1)

where f(x; θ, η) denotes a density with two parameters: θ is a finite-dimensional parameter of

interest, and η is a nuisance parameter, which is finite-dimensional for a parametric model and

infinite-dimensional for a semi-parametric model.

Let G(x) and g(x) be the true cdf and pdf for which the data X1, . . . , Xn are generated. The

expectation of a function φ(X) of X with respect to G is denoted by E{φ(X)}. Let us define

(θ0, η0) as the maximizer of the expected log of density

E{log f(X; θ0, η0)} = max
θ,η

E{log f(X; θ, η)}.

Then the assumption (A) is equivalent to the situation that “we may have g(x) 6= f(x; θ, η) for

all θ ∈ Θ and η ∈ H” and the assumption (B) is “we have g(x) = f(x; θ0, η0)”.

2 Profile Likelihood Information Criteria

In this section we derive information criteria for parametric and semi-parametric models with

nuisance parameters. We assume the assumption (A) that the true distribution (density) g(x)

may not be in the chosen parametric family. The information criteria derived here will be

called the profile likelihood information criteria (PLIC) since we use the profile likelihood for

the derivation.

Suppose the model P in (1) may be a semi-parametric model and a function η̂θ is the

maximizer of the expected log of density given a value of the parameter θ:

η̂θ = argmaxηE{log f(X; θ, η)}. (2)
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Then the profile log-likelihood is given by∫
log f(x; θ, η̂θ)dGn(x)

and the profile likelihood score equation is

∂

∂θ

∫
log f(x; θ, η̂θ)dGn(x) = 0. (3)

Note that the function η̂θ satisfies η̂θ0 = η0.

Let

˜̀
1(x; θ) =

∂

∂θ
log f(x; θ, η̂θ), ˜̀

11(x; θ) =
∂2

∂θ∂θT
log f(x; θ, η̂θ), (4)

and

J̃11 = −E{˜̀11(X; θ0)}. (5)

Under the mild regularity conditions the standard Taylor’s expansion argument can show that

the solution θ̂ to the profile likelihood score equation (3) is asymptotically linear estimator such

that

n1/2(θ̂ − θ0) = n−1/2
n∑
i=1

J̃−111
˜̀
1(Xi; θ0) + oP (1), (6)

(cf. Murphy and van der Vaart (2000), Hirose (2011)). The function ˜̀
1(x; θ0) is called the

efficient score function.

For the θ̂ and η̂θ given above, we will derive an information criteria based on the Kullback–

Leibler distance between g(·) and f(·; θ̂, η̂θ̂):

I{g(·), f(·; θ̂, η̂θ̂)} =

∫
log g(x)dG(x)−

∫
log f(x; θ̂, η̂θ̂)dG(x).

Since the first term in the right hand side is constant, the Kullback–Leibler distance is

determined by the second term.

If we use the integral
∫

log f(x; θ̂, η̂θ̂)dGn(x) as an estimator of the second term, the bias of

the estimator is

bias = E

{∫
log f(x; θ̂, η̂θ̂)dGn(x)−

∫
log f(x; θ̂, η̂θ̂)dG(x)

}
= E

{∫
log f(x; θ̂, η̂θ̂)d(Gn −G)(x)

}
By Taylor’s expansion

log f(x; θ̂, η̂θ̂) = log f(x; θ0, η0) + ˜̀
1(x; θ0)

T (θ̂ − θ0) +
1

2
(θ̂ − θ0)T ˜̀

11(x; θ∗)(θ̂ − θ0)

where θ∗ lies between θ̂ and θ0. It follows that the bias is

bias = E

{∫
log f(x; θ0, η0)d(Gn −G)(x)

}
+n−1E

{
n1/2

∫
˜̀
1(x; θ0, η0)

Td(Gn −G)(x)n1/2(θ̂ − θ0)
}

+(2n)−1E

{
n1/2(θ̂ − θ0)T

∫
˜̀
11(x; θ∗)d(Gn −G)(x)n1/2(θ̂ − θ0)

}
.
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In the right hand side, the first term is zero. The equation (6) implies n1/2(θ̂−θ0) = OP (1). It

follows that the third term is oP (n−1) due to the uniform law of large numbers (Glivenko-Canteli

theorem). We look closely at the second term in the right hand side. Using
∫

˜̀
1(x; θ0)dG(x) = 0

and (6), this term is equal to

n−1E

{
n1/2

∫
˜̀
1(x; θ0)

TdGn(x)n1/2(θ̂ − θ0)
}

= n−1E

{(
n1/2

∫
˜̀
1dGn

)T
J̃−111

(
n1/2

∫
˜̀
1dGn

)}
+ o(n−1)

= n−1tr

{
J̃−111 var

(
n1/2

∫
˜̀
1dGn

)}
+ o(n−1)

= n−1tr
(
J̃−111 Ĩ11

)
+ o(n−1) (7)

where

Ĩ11 = E{˜̀1(X; θ0)
⊗2}.

Therefore

bias = n−1tr
(
J̃−111 Ĩ11

)
+ o(n−1).

Since the form of information criteria using the profile likelihood is

−2n×
{∫

log f(x; θ̂, η̂θ̂)dGn(x)− bias

}
,

we have the profile likelihood information criteria (PLIC)

PLIC = −2
n∑
i=1

log f(Xi; θ̂, η̂θ̂) + 2tr(J̃−111 Ĩ11) (8)

where we ignored the o(1) term.

When the assumption (B): g(x) = f(x; θ0, η0), is true, we have Ĩ11 = J̃11 and

tr(J̃−111 Ĩ11) = tr(Ĩ−111 Ĩ11) = p,

where p is the dimension of the parameter θ. Then the PLIC become the profile Akaike infor-

mation criteria in Xu, Vaida and Harrington (2009)

−2
n∑
i=1

log f(Xi; θ̂, η̂θ̂) + 2p.

2.1 Alternative formula to compute PLIC

The PLIC given in (8) requires the function η̂θ which is defined by (2). In practice, it is

sometimes computationally difficult to deal with the function η̂θ. Therefore it is nice have an

alternative expression for the PLIC without using this function. In this section we will derive

such an expression for the PLIC under the assumption (A) that we may have g(x) 6= f(x; θ, η)

for all θ and η.
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First we assume that η is a finite-dimensional parameter so that the model P given in (1) is

a parametric model. Let us denote the score functions(
˙̀
1(x; θ, η)

˙̀
2(x; θ, η)

)
=

(
∂
∂θ log f(x; θ, η)
∂
∂η log f(x; θ, η)

)
(9)

and the second derivatives(
῭
11(x; θ, η), ῭

12(x; θ, η)

῭
21(x; θ, η), ῭

22(x; θ, η)

)
=

(
∂2

∂θ ∂θT
log f(x; θ, η), ∂2

∂θ ∂ηT
log f(x; θ, η)

∂2

∂η ∂θT
log f(x; θ, η), ∂2

∂η ∂ηT
log f(x; θ, η)

)
. (10)

Also let (
J11, J12

J21, J22

)
= −

(
E{῭11(X; θ0, η0)}, E{῭12(X; θ0, η0)}
E{῭21(X; θ0, η0)}, E{῭22(X; θ0, η0)}

)
.

Lemma 1. For the efficient score function ˜̀
1(x; θ0) and the efficient information matrix J̃11

given by (4) and (5), we have

˜̀
1(x; θ0) = ˙̀

1(x; θ0, η0)− J12J−122
˙̀
2(x; θ0, η0), (11)

and

J̃11 = J11 − J12J−122 J21. (12)

Proof. Note that the function η̂θ given by (2) satisfies η̂θ0 = η0 and

E{ ˙̀
2(X; θ, η̂θ)} = 0 for all θ,

where ˙̀
2(x; θ, η) is the score function for η defined by (9). By differentiating this equality with

respect to θ, we get

E{῭12(X; θ, η̂θ)}+

(
∂

∂θT
η̂θ

)
E{῭22(X; θ, η̂θ)} = 0 for all θ.

It follows that, at θ0, we have

∂

∂θT
η̂θ = −J12J−122 . (13)

Hence the efficient score function

˜̀
1(x; θ0) =

∂

∂θ

∣∣∣∣
θ=θ0

log f(x; θ, η̂θ) = ˙̀
1(x; θ0, η0) +

(
∂

∂θT
η̂θ

)
˙̀
2(x; θ0, η0)

is given by (11). Now, the second derivative is

∂2

∂θ∂θT

∣∣∣∣
θ=θ0

log f(x; θ, η̂θ) = ῭
11(x; θ0, η0) + 2

(
∂

∂θT
η̂θ0

)
῭
12(x; θ0, η0)

+

(
∂

∂θT
η̂θ0

)
῭
22(x; θ0, η0)

(
∂

∂θ
η̂θ0

)
+

(
∂2

∂θ∂θT
η̂θ0

)
˙̀
2(x; θ0, η0).
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By taking expectations of these functions, it follows with (13) that (12) holds. �

Equations (11) and (12) give us a formula to compute the PLIC: let

Ĵ11 = (Ĵ11 − Ĵ12Ĵ−122 Ĵ21)
−1 (14)

where

Ĵij =
1

n

n∑
i=1

῭
ij(Xi; θ̂, η̂)

and let

Î11 =
1

n

n∑
i=1

{ ˙̀
1(Xi; θ̂, η̂)− Ĵ12Ĵ−122

˙̀
2(Xi; θ̂, η̂)}⊗2.

The PLIC is computed by

P̂LIC = −2
n∑
i=1

log f(Xi; θ̂, η̂) + 2tr(Ĵ11Î11). (15)

This formula does not require the function η̂θ. It only requires the score functions (9) and the

second derivatives of the log of density (10) in addition to the MLE (θ̂, η̂).

Suppose η is an infinite dimensional parameter so that the model (1) is a semi-parametric

model. In the case of nonparametric maximum likelihood estimator η̂ of η, the estimator is in

a finite dimensional space. We can have score functions for θ and η as if it were a parametric

model. So the formula (15) is applicable in these semi-parametric models.

2.2 Example: Semi-parametric stratified sampling model

Suppose the underlying data generating process on the sample space Y × X is a model

Q = {f(y, x; θ, η) = f(y|x; θ)η(x) : θ ∈ Θ, η ∈ H}. (16)

Here f(y|x; θ) is a conditional density of Y given X which depends on a finite dimensional param-

eter θ, η(x) is an unspecified density of X which is an infinite-dimensional nuisance parameter.

For a partition of the sample space Y × X = ∪Ss=1Ss, define

Qs(x; θ) =

∫
f(y|x; θ) 1(y,x)∈Ss dy,

and let

Qs(θ, η) =

∫
Qs(x; θ)η(x) dx

be the probability of (Y,X) belonging to stratum Ss. In standard stratified sampling, for

each s = 1, . . . , S, a random sample of size ns, (Ys1, Xs1), . . . , (Ysns , Xsns), is taken from the

conditional distribution

fs(y, x; θ, η) =
f(y|x; θ)η(x)1(y,x)∈Ss

Qs(θ, η)
(17)

of (Y,X) given stratum Ss. We aim to find the maximum likelihood estimators for θ and η

based on the data from the stratified sampling.
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To find a nonparametric maximum likelihood estimator η̂ of η, we assume that the support

of the distribution of X is only at the observed values:

supp(X) = {v1, . . . , vK}.

Let (η1, . . . , ηK) = {η(v1), . . . , η(vK)}, then ηK = 1−
∑K−1

k=1 ηk and log η(x) and Qs(θ, η) can be

expressed as

log η(x) =
K∑
k=1

1{x=vk} log ηk

and

Qs(θ, η) =
K∑
k=1

Qs(vk; θ)ηk.

The log of density is

log fs(y, x; θ, η) = log f(y|x; θ) +
K∑
k=1

1{x=vk} log ηk + log

{
K∑
k=1

Qs(vk; θ)ηk

}
.

The derivatives of the log of density are

˙̀
1(s, x; θ, η) =

∂

∂θ
log fs(y, x; θ, η) =

∂
∂θf(y|x; θ)

f(y|x; θ)
+

∑K
k=1

∂
∂θQs(vk; θ)ηk∑K

k=1Qs(vk; θ)ηk

and

˙̀
2(s, x; θ, η) =

(
∂

∂ηk
log fs(y, x; θ, η) : k = 1, . . . ,K − 1

)
=

(
1{x=vk}

ηk
−

1{x=vK}

ηK
+
Qs(vk; θ)−Qs(vK ; θ)∑K

k=1Qs(vk; θ)ηk
: k = 1, . . . ,K − 1

)
.

The second derivatives ˙̀
11, ˙̀

12, ˙̀
21, ˙̀

22 can be calculated similarly.

Let (θ̂, η̂) be the solution to the score equations
∑S

s=1

∑ns
i=1

˙̀
1(s, Ysi, Xsi; θ̂, η̂) = 0 and∑S

s=1

∑ns
i=1

˙̀
2(s, Ysi, Xsi; θ̂, η̂) = 0. With the log-likelihood logLn(θ, η) =

∑S
s=1

∑ns
i=1 log fs(Ysi, Xsi; θ, η),

the PLIC is calculated by

P̂LIC = −2 logLn(θ̂, η̂) + 2tr(Ĵ11Î11) (18)

where Ĵ11 is given by (30) with Ĵij = 1
n

∑S
s=1

∑ns
i=1

῭
ij(s, YsiXsi; θ̂, η̂) and Î11 = 1

n

∑S
s=1

∑ns
i=1{ ˙̀

1(s, Ysi, Xsi; θ̂, η̂)−
Ĵ12Ĵ

−1
22

˙̀
2(s, Ysi, Xsi; θ̂, η̂)}⊗2.

3 Method of re-parametrization

Scott and Wild (1997, 2001) proposed a method of re-parametrization of profile-likelihood so

that the log-likelihood is an explicitly defined function in terms of the parameters in the re-

parametrized model. It turns out that their estimator is efficient. Motivated by their work,

under the assumption (B) that the true distribution is in the chosen parametric family, Hirose

7



and Lee (2011) showed conditions under which re-parametrization gives efficient estimation in

a context of semi-parametric multiple-sample model. In this section, we extend the results to

the more general situation (A) that the true distribution may not be in the chosen parametric

family.

The reason why we consider this method is that if the estimators of the parameter of interest

are the same in the original semi-parametric model and the re-parametrized model, then the

information criteria for these two models should coincide. We will show that the PLIC given

above has this property.

In the multi-sample model, we observe S independent samples

Xs1, . . . , Xsns , s = 1, . . . , S,

where each sample Xs1, . . . , Xsns is independently and identically distributed according to the

true cdf Gs. Let n =
∑S

s=1 ns. We assume (n1
n , . . . ,

nS
n ) → (w1, . . . , wS) where ws > 0 and∑S

s=1ws = 1.

Suppose we choose an S-vector of semi-parametric models (P1, . . . ,PS) where, for each

s = 1, . . . , S,

Ps = {fs(x; θ, η) : θ ∈ Θ, η ∈ H}

is a probability model on the sample space Xs with the parameter of interest θ, a finite-

dimensional parameter, and the nuisance parameter η, which is an infinite-dimensional pa-

rameter.

Let (θ0, η0) be the maximizer of the expected log of density:

(θ0, η0) = argmaxθ,η

S∑
s=1

wsEs{log fs(X; θ, η)},

here Es denotes the expectation with respect to the cdf Gs.

We assume that the function η̂θ satisfies

∂

∂η

∣∣∣∣
η=η̂θ

S∑
s=1

wsEs{log fs(X; θ, η)} = 0 for all θ ∈ Θ.

Then the the efficient score function in the multi-sample model is given by

˜̀
1(s, x; θ0) =

∂

∂θ

∣∣∣∣
θ=θ0

log fs(x; θ, η̂θ). (19)

Define

Ĩ11 =

S∑
s=1

wsEs

{
˜̀
1(s,X; θ0)

⊗2
}

(20)

and

J̃11 = −
S∑
s=1

wsEs

{
∂2

∂θ∂θT

∣∣∣∣
θ=θ0

log fs(X; θ, η̂θ)

}
. (21)
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By the derivation of PLIC in Section 2, the PLIC for the multi-sample semi-parametric

model is

PLIC = −2

S∑
s=1

ns∑
i=1

log fs(Xsi; θ̂, η̂θ̂) + 2tr(J̃−111 Ĩ11). (22)

In the method of re-parametrization, we assume that the density for the least favorable

submodel is of the form

fs(x; θ, η̂θ) = f ′s(x; θ, qθ), for θ ∈ Θ, s = 1, . . . , S, (23)

where qθ is a function of θ whose values are in a finite dimensional space, the function f ′s(x; θ, q)

is twice continuously differentiable with respect to (θ, q) and q is a finite dimensional parameter.

Let q0 = qθ0 , then, since η0 = η̂θ0 , we have fs(x; θ0, η0) = f ′s(x; θ0, q0). With an appropriate

neighborhood Dq of q0 in the Euclidean space, the model

P ′s = {f ′s(x; θ, q) : θ ∈ Θ, q ∈ Dq}, s = 1, . . . , S

is called the re-parametrized model. Further, suppose

∂

∂q

∣∣∣∣
q=qθ

S∑
s=1

wsEs{log f ′s(x; θ, q)} = 0 for θ ∈ Θ. (24)

Then the the efficient score function in the re-parametrized model is given by

˜̀′
1(s, x; θ0) =

∂

∂θ

∣∣∣∣
θ=θ0

log f ′s(x; θ, qθ). (25)

Let

Ĩ ′11 =
S∑
s=1

wsEs

{
˜̀′
1(s,X; θ0)

⊗2
}

(26)

and

J̃ ′11 = −
S∑
s=1

wsEs

{
∂2

∂θ∂θT

∣∣∣∣
θ=θ0

log f ′s(X; θ, qθ)

}
. (27)

Again, by the derivation of PLIC in Section 2, the PLIC for the re-parametrized model is

PLIC = −2
S∑
s=1

ns∑
i=1

log f ′s(Xsi; θ̂, qθ̂) + 2tr{(J̃ ′11)−1Ĩ ′11}. (28)

From the assumption (23), it is immediate that the PLICs (22) and (28) are the same

information criteria with different expressions.

Let

˙̀′
1(s, x; θ, q) =

∂

∂θ
log f ′s(x; θ, q) and ˙̀′

2(s, x; θ, q) =
∂

∂q
log f ′s(x; θ, q)

9



be the score functions for θ and q in the re-parametrized model, respectively. Also denote the

second derivatives

῭′
12(s, x; θ, q) =

∂2

∂θ∂qT
log f ′s(x; θ, q) and ῭′

22(s, x; θ, q) =
∂2

∂q∂qT
log f ′s(x; θ, q).

By the derivation of the formula (15), we compute the PLIC (28) in the re-parametrized

model by

P̂LIC = −2

S∑
s=1

ns∑
i=1

log f ′s(Xsi; θ̂, q̂) + 2tr{(Ĵ ′)11Î ′11}. (29)

where

(Ĵ ′)11 = (Ĵ ′11 − Ĵ ′12(Ĵ ′22)−1Ĵ ′21)−1, (30)

Ĵ ′ij = n−1
S∑
s=1

ns∑
i=1

῭′
ij(s,Xsi; θ̂, q̂)

and

Î ′11 = n−1
S∑
s=1

n∑
i=1

{ ˙̀′
1(s,Xsi; θ̂, q̂)− Ĵ ′12(Ĵ ′22)−1 ˙̀′

2(s,Xsi; θ̂, q̂)}⊗2.

In the next, we apply the result to the example of stratified sampling example given in

Section 2.2.

3.1 Example: Semi-parametric stratified sampling model continued

This example is a continuation of the semi-parametric stratified sampling model which we dis-

cussed in Section 2.2. For each s = 1, . . . , S, let Gs be the true cumulative distribution function

(cdf) which we aim to approximate by the chosen model fs(y, x; θ, η). Let ws, s = 1, . . . , S, be

the weight probabilities, i.e., ws > 0 for all s and
∑

sws = 1. The expected log likelihood with

the weight probabilities ws and the cdfs Gs is

S∑
s=1

ws

∫
log fs(y, x; θ, η)dGs =

S∑
s=1

ws

[∫
{log f(y|x; θ) + log η(x)} dGs − logQs(θ, η)

]
.

Again we assume that the support of the distribution of X is finite:

supp(X) = {v1, . . . , vK}.

To find the maximizer (η1, . . . , ηK) of the expected log-likelihood at θ, differentiate the expected

likelihood with respect to ηk and set the derivative equal to zero,

∂

∂ηk

S∑
s=1

ws

∫
log fs(y, x; θ, η)dGs =

S∑
s=1

ws

{∫
1x=vkdGs
ηk

−
Qs|X(vk; θ)

Qs(θ, η)

}
= 0.

The solution ηk to the equation is

η̂θ(vk) = ηk =

∑S
s=1ws

∫
1x=vkdGs∑S

s=1ws
Qs|X(vk;θ)

Qs(θ,η)

.
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This form motivate us to work with a continuous extension of the solution: Suppose gs(y, x) is

the density funciton corresponds to the distribution function Gs, then the continuous extension

of the solution can be written as

η̂θ(x) = η̂(x, θ, Q̂(θ)) =
g∗(x)∑S

s=1ws
Qs|X(x;θ)

Q̂s(θ)

,

where

g∗(x) =

S∑
s=1

ws

∫
gs(y, x)dy,

and

Q̂s(θ) =

∫
Qs|X(x; θ)η̂(x, θ, Q̂(θ))dx, s = 1, . . . , S.

Now let

fs(y, x; θ, η̂θ) =
f(y|x; θ)1(y,s)∈Ss η̂(x, θ, Q̂(θ))

Q̂s(θ)
, s = 1, . . . , S, (31)

be the model we wish to re-parametrize. From this it is immediate that condition (23) is satisfied

(with Q̂(θ) = (Q̂1(θ), . . . , Q̂S(θ)) as the function qθ).

By replacing Q̂(θ) = (Q̂1(θ), . . . , Q̂S−1(θ), Q̂S(θ)) with q = (q1, . . . , qS−1, 1), we consider a

re-parametrized model of the form

f ′s(y, x; θ, q) =
f(y|x; θ)1(y,s)∈Ss η̂(x, θ, q)

qs
, s = 1, . . . , S,

where

η̂(x, θ, q) =
g∗(x)∑S

s=1ws
Qs|X(x;θ)

qs

.

The true value of (θ, q) is

(θ0, q0) =

(
θ0,

(
Q1(θ0, g0)

QS(θ0, g0)
, . . . ,

QS−1(θ0, g0)

QS(θ0, g0)
, 1

))
.

For j = 1, . . . , S − 1, the derivative is

∂

∂qj

S∑
s=1

wsEs{log f ′s(y, x; θ, q)} = − ∂

∂qj

S∑
s=1

wsEs

{
log

S∑
s′=1

ws′
Qs′|X(x; θ)

qs′
+ log qs

}

=
wj
q2j

{∫
Qj|X(x; θ)η̂(x, θ, q)dx− qj

}
.

It follows that, for all θ ∈ Θ, we have

∂

∂q

∣∣∣∣
q=Q̂(θ)

S∑
s=1

wsEs{log f ′s(y, x; θ, q)} = 0.
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This verifies the condition (24). Therefore the formula (29) is applicable to this example.

The log of density in the re-parametrized model is

log f ′s(y, x; θ, q) = log f(y|x; θ) + log g∗(x)− log

S∑
s′=1

ws′
Qs′|X(x; θ)

qs′
− log qs.

The score functions in the re-parametrized model are

˙̀′
1(s, y, x; θ, q) =

∂

∂θ
log f ′s(y, x; θ, q)

=
∂
∂θf(y|x; θ)

f(y|x; θ)
−
∑S

s′=1ws′
∂
∂θ
Qs′|X(x;θ)

qs′∑S
s′=1ws′

Qs′|X(x;θ)

qs′

and

˙̀′
2(s, y, x; θ, q) =

(
∂

∂qk
log f ′s(y, x; θ, q) : k = 1, . . . , S − 1

)

=

 wk
Qk|X(x;θ)

q2k∑S
s′=1ws′

Qs′|X(x;θ)

qs′

− 1k=s
qk

: k = 1, . . . , S − 1


The second derivatives ῭′

11,
῭′
12,

῭′
21,

῭′
22 can be calculated similarly.

Then PLIC in this model is calculated by (29) with obvious modification. Since PLICs in

the original semi-parametric model and the re-parametrized model coincides, this value must be

close to the one calculated by (18).

4 An extension of PLIC

We have developed PLIC using Kullback–Leibler distance between g and f(x; θ̂, η̂θ̂) where the

function η̂θ is given by (2). For the empirical cdf Gn, define

η̂θ,Gn = argmaxη

∫
log f(x; θ, η)dGn(x). (32)

In this section, we show that the reason why it is not useful to have a PLIC based on the

Kullback–Leibler distance between g and f(x; θ̂, η̂θ̂,Gn):

I{g(·), f(·; θ̂, η̂θ̂,Gn)} =

∫
log g(x)dG(x)−

∫
log f(x; θ̂, η̂θ̂,Gn)dG(x) (33)

We assume that the parameter η is a finite dimensional parameter so that the model (1) is

a parametric model.

The bias of
∫

log f(x; θ̂, η̂θ̂,Gn)dGn(x) as an estimator of the second term in (33) is

bias = E

{∫
log f(x; θ̂, η̂θ̂,Gn)dGn(x)−

∫
log f(x; θ̂, η̂θ̂,Gn)dG(x)

}
= E

{∫
log f(x; θ̂, η̂θ̂,Gn)d(Gn −G)(x)

}

12



By Taylor’s expansion, for some θ∗ between θ̂ and θ0, and for some η∗ between η̂θ0,Gn and

η0, the bias is expanded as

bias = E

{∫
log f(x; θ0, η0)d(Gn −G)(x)

}
+n−1E

{
n1/2

∫
˜̀
1(x; θ0, G)Td(Gn −G)(x)n1/2(θ̂ − θ0)

}
+n−1E

{
n1/2

∫
˙̀
2(x; θ0, η0)

Td(Gn −G)(x)n1/2(η̂θ0,Gn − η0)
}

+(2n)−1E

{
n1/2(θ̂ − θ0)T

∫
˜̀
11(x; θ∗, Gn)d(Gn −G)(x)n1/2(θ̂ − θ0)

}
+(2n)−1E

{
n1/2(η̂θ0,Gn − η0)T

∫
῭
22(x; θ0, η

∗)d(Gn −G)(x)n1/2(η̂θ0,Gn − η0)
}

+n−1E

{
n1/2(θ̂ − θ0)Tn1/2

∫
{˜̀1(x; θ0, Gn)− ˜̀

1(x; θ0, G)}d(Gn −G)(x)

}
.

The first term in the right hand side is zero. Due to (35) in Lemma 2 given below, the last

term in the right hand side is oP (n−1). By (37), n1/2(θ̂−θ0) = OP (1). Under the mild regularity

conditions we have the uniform weak law of large numbers: supθ
∫

˜̀
11(x; θ,Gn)d(Gn −G)(x) =

oP (1). These imply the forth term in the right hand side is oP (n−1). Similarly, the fifth term

in the right hand side is oP (n−1). We look closely the second and third terms in the right hand

side.

Using (37) and (7), the second term in right hand side is equal to

n−1tr
[
J̃−111 Ĩ11

]
+ o(n−1).

Similarly, using (34) and
∫

˙̀
2(x; θ0, η0)dG(x) = 0, the third term in right hand side is equal

to

n−1E

{
n1/2

∫
˙̀
2(x; θ0, η0)

Td(Gn −G)(x)n1/2(η̂θ0,Gn − η0)
}

= n−1E

{(
n1/2

∫
˙̀
2dGn

)T
J−122

(
n1/2

∫
˙̀
2dGn

)}
+ o(n−1)

= n−1tr

{
J−122 var

(
n1/2

∫
˙̀
2dGn

)}
+ o(n−1)

= n−1tr(J−122 I22) + o(n−1),

where I22 = E( ˙̀
2

˙̀T
2 ).

If we combine all of these, the bias can be written as

bias = n−1tr(J̃−111 Ĩ11) + n−1tr(J−122 I22) + o(n−1).

The extended profile likelihood information criteria (PLICext) is given by

PLICext = −2

n∑
i=1

log f(Xi; θ̂, η̂θ̂,Gn) + 2tr(J̃−111 Ĩ11) + 2tr(J−122 I22)

13



The term tr(J−122 I22) depends on the choice of parametrization for the nuisance parameter

η. For example, in the stratified sampling example, when g(x) = f(x; θ0, η0) we have J22 = I22

and, tr(J−122 I22) ≈ n for the original semi-parametric model and tr(J−122 I22) = S − 1 for the re-

parametrized model. The PLICext is not useful to compare parametric/semi-parametric models

with nuisance parameters.

The next lemma gives asymptotic linear expansion of the maximum profile likelihood esti-

mator θ̂ and η̂θ0,Gn .

Lemma 2.

(a) For the function η̂θ,Gn given by (32), we have

n1/2(η̂θ0,Gn − η0) = n1/2
∫
J−122

˙̀
2(x; θ0, η0)dGn(x) + oP (1) (34)

where J22 = −E = { ∂2

∂η∂ηT
|θ=θ0,η=η0 log f(x; θ, η)}.

(b) For the function ˜̀
1(x; θ,Gn) = ∂

∂θ log f(x; θ, η̂θ,Gn), we have

n1/2
∫
{˜̀1(x; θ0, Gn)− ˜̀

1(x; θ0, G)}dGn(x) = oP (1). (35)

(c) A solution θ̂ to the profile likelihood score equation

n1/2
∫

˜̀
1(x; θ̂, Gn)dGn(x) = 0 (36)

is an asymptotically linear estimator such that

n1/2(θ̂ − θ0) = n1/2
∫
J̃−111

˜̀
1(x; θ0, G)dGn(x) + oP (1). (37)

Proof. (a) From (32), the function η̂θ0,Gn is solution to

n1/2
∫

˙̀
2(x; θ0, η̂θ0,Gn)dGn(x) = 0

where ˙̀
2(x; θ, η) = ∂

∂η log f(x; θ, η) is the score function for η. By usual Taylor’s expansion

argument, it follows that n1/2(η̂θ0,Gn − η0) has an asymptotic linear expansion (34).

(b) Using

˜̀
1(x; θ,G) = ˙̀

1(x; θ, η̂θ,G) +

(
∂

∂θT
η̂θ,G

)
˙̀
2(x; θ, η̂θ,G)

and Taylor’s expansion, there are η∗ and η∗∗ in between η̂θ0,Gn and η̂θ0,G = η0 such that

n1/2
∫
{˜̀1(x; θ0, Gn)− ˜̀

1(x; θ0, G)}dGn(x)

=

∫
῭
12(x; θ0, η

∗)dGn(x)n1/2(η̂θ0,Gn − η0)

+

(
∂

∂θT
η̂θ0,Gn

)∫
῭
22(x; θ0, η

∗∗)dGn(x)n1/2(η̂θ0,Gn − η0)

+

{
∂

∂θT
n1/2(η̂θ0,Gn − η̂θ0,G)

}∫
˙̀
2(x; θ0, η0)dGn(x).
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Since Gn
P→ G, we have η̂θ0,Gn

P→ η̂θ0,G = η0 and it follows that η∗, η∗∗
P→ η0.

Then under the mild regularity conditions, we have that

∂

∂θT
η̂θ0,Gn

P→ ∂

∂θT
η̂θ0,G = −J12J−122 ,∫

῭
12(x; θ0, η

∗)dGn(x)
P→
∫

῭
12(x; θ0, η0)dG(x) = −J12,∫

῭
22(x; θ0, η

∗∗)dGn(x)
P→
∫

῭
22(x; θ0, η0)dG(x) = −J22

and {
∂

∂θT
n1/2(η̂θ0,Gn − η̂θ0,G)

}
= OP (1).

The claim follows from these.

(c) By (35), the solution θ̂ to the equation (36) also satisfies

n1/2
∫

˜̀
1(x; θ̂, G)dGn(x) = oP (1).

Then by usual Taylor’s expansion argument, we have (37). �

References

Claeskens G. and Carroll R. (2007). An asymptotic theory for model selection inference in

general semiparametric problems. Biometrika 94 249–265.

Claeskens G. and Hjort N.L. (2003). Focused information Criterion (with Discussion). J. Am.

Statist. Assoc. 98 900–945.

Hirose, Y. (2011). Efficiency of profile likelihood in semi-parametric models, Ann. Inst. Statist.

Math. DOI 10.1007/s10463-010-0280-y.

Hirose, Y. and Lee A.(2011). Reparametrization of the Least Favorable Submodel in Semi-

Parametric Multi-Sample Models, Bernoulli To appear.

Hjort N.L. and Claeskens G. (2003). Frequentist model average estimators (with Discussion).

J. Am. Statist. Assoc. 98 879–899.

Murphy, S.A. and van der Vaart, A.W. (2000). On profile likelihood (with discussion). J. Amer.

Statist. Assoc. 95 449–485.

Xu R., Vaida F. and Harrington D.P. (2009). Using profile likelihood for semiparametric model

selection with application to proportional hazard mixed models. Statistica Sinica 19 819–842.

15


