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Abstract

Motivated by an application to school funding, we introduce the notion of a robust
decomposable Markov decision process (MDP). A robust decomposable MDP model
applies to situations where several MDPs, with the transition probabilities in each only
known through an uncertainty set, are coupled together by joint resource constraints.
Robust decomposible MDPs are different than both decomposible MDPs, and robust
MDPs and can not be solved by a direct application of the solution methods from either
of those areas. In fact, to the best of our knowledge, there is no known method to
tractably compute optimal policies in robust, decomposible MDPs. We show how to
tractably compute good policies for this model, and apply the derived method to a
stylized school funding example.
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1. Introduction

Allocation of school funding is critical to improving school performance. Unfortu-
nately, there is no consensus on how this limited resource should be allocated. As such,
the allocation of school funding is a recurring topic of political discussion (Shutt, 1979;
Fensterwald, 2013; Blume, 2013; Garber, 1997). For example, the state of California
passed an initiative in 2012 to raise taxes specifically to fund schools. In 2013, a major
debate was how to allocate this schools funding: should it be allocated by population or
should poorer schools receive more funding?

Generally, there are two groupings of the scientific literature on school budget allo-
cation. The first grouping proposes formulas that distribute funding based on school
characteristics and past performance (King and Mathers, 1997; Miles and Roza, 2006;
BenDavid-Hadar and Ziderman, 2011), while the second grouping is empirical in attempt-
ing to quantify the impact of increased levels of funding on school performance (Epple
and Romano, 2003; Hanushek, 1996; Rubenstein et al., 2007). In this work, we propose
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an alternate method of allocating funds to schools, based on control theory, that does not
directly fall into either grouping. Our method extends previous work on using Markov
decision processes (MDPs) for budget allocation. Motivated by school budget allocation,
the main contributions of this paper are 1) to introduce the concept of robust, decompos-
able MDPs 2) to propose a computationally tractable method of computing good policies
in such MDPs and 3) to illustrate, through a stylized example, that funding allocation
based on these MDPs outperforms strategies inspired by a current real-world policy, No
Child Left Behind.

In the remainder of this section we discuss the existing literature on school funding
and improving school performance. We then motivate the robust, decomposable MDP
model in words in Section 2. Related control theory work is discussed in Section 3.
Sections 4 and 5 mathematically present the model and show how it can tractably produce
a funding policy. In Section 6 we compare the funding policy generated from our model
to a stylized version of an existing policy, namely No Child Left Behind. We conclude
the paper with some discussion in Section 7.

1.1. School Funding: Literature Review

King and Mathers (1997) propose an approach for school improvement using performance-
based accountability and financial rewards. The authors consider several performance
indicators, including the students achievements—e.g., in English/language or mathemat-
ics, students attendance, the dropout and retention rates, etc.—for inclusion in a school
performance measure. They provide an extensive review of programs adopted in four US
states, in which based on the state identified performance measures, the schools could
qualify for reward money.

Miles and Roza (2006) discuss student-weighted resource allocation, which uses stu-
dent need as the building block of school budgeting. The authors develop a student-
weighted index for each school that takes into account the type of students in the school.
The student-weighted index is the ratio between two dollar amounts: the actual ex-
penditures at a given school and the expected expenditures, which are computed using
district-weighted average expenditures for each type of student. Based on several ex-
amples, the study concludes that student-weighted resource allocation provides greater
resource equity among schools within districts.

BenDavid-Hadar and Ziderman (2011) propose a new budget allocation formula, de-
signed to achieve an equitable distribution of educational achievement. In addition to
needs-based elements, similar to Miles and Roza (2006), the suggested composite alloca-
tion formula includes an improvement component, so that the schools receive budgetary
allocations based on a new incentive measure. The effect of the new budget allocation
formula is demonstrated on data from the Israeli schooling system. Datasets relating
students’ academic achievement to student background variables, teacher profiles, and
school characteristics are analyzed aiming to identify appropriate needs-based formula
components. The main approach in this study is the Ordinary Least Squares regression
analysis, a method widely used in the literature to measure the relationships between
student performance and student background characteristics, see (Gould et al., 2004;
Carnoy, 2007; Jenkins et al., 2006).

There are studies, as Epple and Romano (2003), where the focus is on the differences
in student ability, household income, and peer groups within the schooling system and
the consequences of those differences on educational benefits. Epple and Romano find

2



that significant heterogeneity in schools and outcomes occurs even under policies that
equalize finance and small expenditure variation has small effects. The study suggests
that greater funding variation amongst schools may help improve school performance.

A study by Hanushek (1996) concludes that school resource variations are not closely
related to variations in student outcomes, i.e., that aggressive spending programs are
not always good investment programs unless coupled with other fundamental reforms.
In other words, how a budget is utilized appears to be much more important than the
size of the budget. This result suggests that the distribution choice of a finite budget
across schools in a school district, or districts in a state, may be more important than
the size of the overall budget.

Rubenstein et al. (2007) focus on the resource allocation to individual schools within
a given school district. They explore resource allocation across schools in large districts
based on factors that reflect differential school costs or factors that are related to the
distribution of resources. Their empirical work, based on linear regression, shows that
schools with higher percentages of poor pupils often receive more money and have more
teachers per pupil, but the teachers tend to be less educated and less paid.

In our model, to be presented below, we assume that schools can be assessed either
absolutely or relatively to one another. This is not an unreasonable assumption as
school children are tested annually, for example in New Jersey (New Jersey Department
of Education, Office of Student Achievement and Accountability, 2011). However, school
assessment need not be through an annual exam and can be through any method that
produces a performance measure for schools. Bessent et al. (1982) propose one such
measure and Borhan and Jemain (2012) propose another, this is not an exhaustive list
of all school assessment methods.

Bessent et al. (1982) view a school as an enterprise in which the professional staff pro-
vide the operating conditions for converting quantifiable resources or inputs into pupil
learning outputs. The resources are determined by budgets, teacher assignments, and
student assignments; learning outputs are determined by pupil performance on stan-
dardized tests. A series of mathematical programs are designed to determine the school
efficiency in utilizing the available resources.

Borhan and Jemain (2012) propose an approach to assess school performance in an
hierarchical setting by using standardized test results. The approach is based on a belief
structure to represent an assessment as a distribution. This method, allows for the
assessment and the ranking of schools.

To the best of our knowledge, there are two basic approaches to allocating school fund-
ing. The first are policies that are the result of a political process, such as No Child Left
Behind. The second are policies suggested academically that distribute funding based on
school characteristics and past performance (King and Mathers, 1997; Miles and Roza,
2006; BenDavid-Hadar and Ziderman, 2011). We suggest the application of optimiza-
tion methods to school budget allocation. The main challenge with a direct application
of optimization methods is parameterization. Specifically, a typical optimization-based
funding allocation method requires data on the impact of funding decisions. To allevi-
ate the need for data, we create a robust optimization-based funding allocation model.
Specifically, the model does not require exact or probabilistic assessments of the impact
of funding decisions. Instead, it simply requires a range of potential impacts. We be-
lieve that an expert decision maker would be able to generate these ranges or it may
be possible to derive these ranges based on historical funding decisions. For example,
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New Zealand maintains data on the country-wide school funding and performance on
annual exams (New Zealand Ministry of Education, 2013). It may be possible to use this
data to statistically derive ranges of impacts resulting from funding decisions. For the
purposes of this study, we use a stylized example to compare our funding method to a
policy inspired by No Child Left Behind.

2. The Model

In this paper, we use a robust, decomposable, finite horizon MDP to compute funding
distribution policies for a school district. While the tools derived are generally applicable
to robust, decomposable, finite horizon MDPs, they are motivated by an application to
school district funding. In this section, we begin with an English language description of
the basic problem and motivation for the model we develop.

Consider a school district composed of a set of schools. While we use this phrasing,
school district could be interpreted in a state-level sense, as a group of smaller districts. In
either case, we are concerned with a large institution—which we call the school district—
composed of smaller institutions—which we call the schools.

Each school has a proficiency level, which, in practice, is determined annually by
the school’s students’ performance on a standardized exam. The school district wants
to maximize the proficiency of its schools. The main tool the school district has to
improve the proficiency of its schools is distributing a limited amount of funding amongst
the schools. Of course, not all schools are the same. Schools have varying numbers of
students, and varying capabilities to effectively use allocated funding. The school district
makes an annual decision on how to allocate its limited funding amongst the individual
schools. Realistically, the school district can only make a funding allocation plan for a
decade or so in the future.

Each school transitions into a state of higher or lower proficiency randomly, but
the transition probabilities are based on the funding the school receives from the dis-
trict. Unfortunately, it is impossible for the school district to know these transition
probabilities—which depend on the school in question, its current proficiency state, and
its level of funding. Even historical data on the school’s transitions would not help iden-
tify specific transition probabilities, since the situation at an individual school changes
quickly, as compared to the annual funding decision cycle. Instead, the school district
only has an uncertainty set—a range of possible transition probabilities—for the school.

We formalize the school district’s funding allocation problem into a mathematical
model as follows. Each individual school can be modeled as an MDP, where the states
describe the school’s proficiency, the actions describe the school’s funding level, and the
rewards describe the benefit the school district receives from the school’s proficiency level.
The rewards for each school capture the school’s importance to the district, which could,
for example, be proportional to the number of students in the school. The exact transition
probabilities for each school’s MDP are not known, but instead for each state action pair,
we know an uncertainty set describing a set of possible transition probabilities. We term
an individual school’s MDP as a little MDP.

The school district’s funding allocation problem is also an MDP. The school district’s
MDP has states that are the cross product of the states of the individual schools. The
individual schools MDPs are coupled by the joint funding allocation decision. The only
actions available to the school district are those that satisfy the district’s common budget.
But, given a distribution of the common funding, the transitions at each of the schools
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are independent. The school district has a finite horizon, about a decade, for which to
plan funding allocation decisions. We term the school district’s MDP as the big MDP.

The proposed method answers the basic question: How should the school district
distribute its limited funding to maximize the discounted total proficiency of its schools
over its planning horizon? We model this decision using a robust, decomposable, finite
horizon MDP. The term robust comes from the fact that the transition probabilities for
each school are not known, but are only known through uncertainty sets. The term
decomposable comes from the fact that the big MDP is made of a cross product of little
MDPs, coupled only by the limited funding to take actions across them. The term finite
horizon comes from the approximately decade long planning period for the district. We
formalize the robust, decomposable, finite horizon MDP with mathematical notation in
Section 4. In the next section, we discuss some related control theory work.

3. Related Work

Markov decision processes have provided a powerful modeling tool in solving problems
related to planning and decision-making under uncertainty, see (Puterman, 2005). How-
ever, often in practice an MDP model ends up with very large state and action spaces.
The computational difficulties in analyzing MPDs with high dimensionality stimulated
research on developing techniques to deal with this problem. Typical approaches to
address high dimensionality in MDPs are: function approximation, reachability consid-
erations and aggregation techniques (Meuleau et al., 1998; Powell, 2007).

Nilim and Ghaoui (2005) study the sensitivity of the optimal solutions to Markov
decision problems with respect to the state transition probabilities. Typically, in prac-
tice, the MDP transition probabilities are unknown and the errors in their estimations
often impose limitations in using MPDs as a modeling tool. The authors consider a
finite-state, finite-action MDP, and model the uncertainty in the transition matrices by
using uncertainty sets. They successfully use a modification of the classical dynamic
programming algorithm to solve this robust MDP problem.

Adelman and Mersereau (2008) focus on stochastic dynamic programming problems
that are suitable for relaxation via decomposition. The problems they consider consist
of a number of subproblems that are independent of each other except for a set of
coupling constraints on the action space. They use Lagrangian relaxation and linear
programming to approximate the dynamic programming formulation of the problem and
provide comparisons between the two relaxations and the optimal solution. Also, they
conclude with a useful discussion on how to select the appropriate relaxation.

The model we develop, while it has pieces from both Adelman and Mersereau and
Nilim and El Ghaoui, is novel. Specifically, solution methods for our model do not
follow directly from either paper. This is demonstrated by the fact that the big MDP is
not solvable by standard MDP methods, even using an exponentially sized state space,
as the corresponding big MDP of Adelman and Mersereau. Moreover, it can not be
solved by the methods of Nilim and El Ghaoui, because the uncertainty sets we address
have fundamentally different structure than their robust MDPs. We provide additional
discussion on this in Appendix B.

Sisikoglu et al. (2011) develop a learning algorithm for solving a discounted homo-
geneous MDP with unknown transition probabilities. These transition probabilities are
learned either through simulation or direct observation of the system in real time. The
authors compare the performance of their algorithm with other traditional learning meth-
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ods.
Meuleau et al. (1998) focus on a technique for computing approximately optimal

solutions to stochastic resource allocation problems modeled as MDPs with very large
state and action spaces. They assume that the problems are composed of multiple tasks
whose utilities are independent, and that the actions taken with respect to a task do not
influence the status of any other task, i.e., each task can be modeled as an MDP. Overall,
the tasks’ MDPs are weakly coupled by resource constraints: actions selected for one
MDP restrict the actions available to others. The authors propose heuristic techniques
for dealing with several classes of constraints that use the solutions for individual MDPs
to construct an approximate global solution.

Glazebrook et al. (2011) consider the allocation of a divisible resource, such as man-
power, money, or equipment, to a collection of tasks requiring it. The authors develop
a notion of indexability for problems of dynamic resource allocation where the resource
concerned may be assigned more flexibility than is allowed, for example, in classical
multi-armed bandits. In contrast to the previous work listed in the above paragraphs,
our model does not assume that we know the transition probabilities, or have access to a
simulator for the MDP. Instead, our model assumes we know a range of possible values,
the uncertainty set, for the transition probabilities.

We are not the first to use MDPs in constrained budget allocation. MDPs have
been used as a modeling tool for solving budget allocation problems in many different
applications areas. We review a few of these applications below.

Zhang (2006) considers the budget allocation problem for a building facilities manage-
ment system. The aim of his optimization model, based on an MDP, is to maximize the
overall performance of the building network over the planned time horizon by optimizing
the set of annual management actions on all building elements. The optimization is sub-
ject to various constraints, such as annual budget and minimum performance requirement
for a building or system.

Parvin et al. (2012) develop a model for trading off resources in testing, prevention,
and cure of two-stage contagious diseases, such as AIDS and cervical cancer. Under a
constrained budget, policymakers are faced with the decision of how to allocate budget
for prevention (via vaccinations), subsidized treatment, and examination to detect the
presence of initial stages of the contagious disease. Their model, based on an MDP, aims
to facilitate this decision-making exercise.

Tirenni et al. (2007) develop a decision-support system that offers a scientific frame-
work for optimal planning and budgeting of targeted marketing campaigns to maximize
return on marketing investments. MDPs are used to model customer dynamics and
to find optimal marketing policies that maximize the value generated by a customer
over a given time horizon. Lifetime value optimization is achieved through dynamic pro-
gramming algorithms that identify which marketing actions (cross-selling, up-selling, and
loyalty marketing campaigns), transition customers to better value and loyalty states.
They illustrate their approach with a case study, aiming to optimize marketing planning
and budgeting for Finnair’s frequent-flyer program. In contrast to the previous work
on MDPs in budget allocation, we consider a problem where transition probabilities are
known only through an uncertainty set.

6



4. Mathematical Formulation of the Model

In this section we introduce the mathematical formulation of the model described
in Section 2. We formally define the notation and specify a formulation for a robust,
decomposable, Markov decision process. While our discussion focuses on a finite horizon
problem due to the application of funding allocation in a school district, the results and
notation can be extended to an infinite horizon discounted case.

4.1. Notation

For a vector a indexed by elements of a set A, we refer to the coordinate corresponding
to i ∈ A with a[i]. We use 〈·〉i∈A to mean a sequence, with one element for each element
i in the set A.

The set I indexes all the little MDPs, each corresponding to an individual school. In
the remainder of the paragraph we define notation for little MDP i, for i ∈ I. The set
of possible states is Si and the set of actions in state s ∈ Si is Ai(s). The reward for
taking action a ∈ Ai(s) in state s ∈ Si is ri(s, a). There is a cost associated with taking
action a in state s in period t denoted by Cit(s, a) ∈ Rm. The cost is a vector over m
resources that may be allocated to the little MDP; in the schools example the resources
may be funding, man hours, staff, etc. The transition probability of moving to state
u is pi(u | s, a), given current state and action pair (s, a). The transition probability
is unknown, and is defined by the uncertainty set Pis,a ⊂ R|Si|. When we consider a

numerical example, we will consider a polyhedral set Pis,a, however we do not put these
restrictions in the proofs and exposition below.

The big MDP is composed of a set of little MDPs. Intuitively the only link between
the little MDPs is the budget allocation decision, and otherwise they are independent.
Formally, the state space of the big MDP, denoted by S =

⊗
i∈I Si, is the Cartesian

product of the states of the little MDPs. A vector s ∈ S is indexed by the set I, and we
denote the state of little MDP i in the vector s as s[i]. There is a finite budget, bt ∈ Rm,
for planning period t. The budget is a vector over m resources that may be allocated to
each little MDP. The set of actions for state s in period t is:

Āt(s) =

{
a ∈

⊗
i∈I
Ai(s[i]) | Ct(s,a) ≤ bt

}
,

where Ct(s,a) =
∑
i∈I C

i
t(s[i],a[i]). Intuitively the only actions available in the big

MDP are those within budget. We also define an unrestricted action set as:

A(s) =

{
a ∈

⊗
i∈I
Ai(s[i])

}
.

The unrestricted action set may include actions that are budget infeasible in some
states. We define a reward for each state action pair, s ∈ S,a ∈ A(s), as r(s,a) =∑
i∈I ri(s[i],a[i]). Intuitively, the reward is additive across little MDPs.
The set of possible transition probabilities for the big MDP in state s ∈ S given
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action a ∈ A(s) is defined as Ps,a. Formally, we have:

Ps,a =

{
p ∈ R|S| | p = 〈

∏
i∈I

pi[u[i]]〉u∈S where pi ∈ Pis[i],a[i] for all i ∈ I

}
.

Intuitively, an element in Ps,a is a vector in R|S| that gives the probabilities of transi-
tioning to each state u ∈ S. If little MDP i’s transition probabilities are pi, then the
probability to transition to state u ∈ S is the product of the probabilities that each little
MDP transitions to state u[i],

∏
i∈I p

i[u[i]]. This structure is related to the rectangular-
ity assumption of Nilim and Ghaoui (2005). In other words, given a s and a the little
MDPs transition independently.

4.2. Solving the big MDP

Solving the robust big MDP—computing the value for each big MDP state using
some variant of back-propagation—involves solving complex non-linear, non-convex op-
timization problems to find the worst-case transition probabilities. To our knowledge no
tractable algorithm exists to solve such problems exactly. We discuss a direct solution
approach further in Appendix B. Therefore, in this section, we take an alternate solution
approach based on Lagrangian relaxation.

We build an approximation for the value function of the big MDP, and discuss using
that approximation to compute policies. The robust MDP Bellman recursion (Nilim and
Ghaoui, 2005) for the big MDP in state s at time period t− 1 is:

V t−1(s) = max
a∈Āt(s)

[
r(s,a) + β min

p∈Ps,a

∑
u∈S

p[u]V t(u)

]
,

where V t−1(s) is the value of state s in time period t − 1. We also assume that at
the end of the planning horizon t = T the value function is given and decomposes,
V T (u) =

∑
i∈I V

i
T (u[i]), where V iT (u[i]) is the value of the little MDP i in state u[i]

in period T . The robust Bellman recursion differs from the standard Bellman recur-
sion (Puterman, 2005) because instead of taking the expectation with respect to known
transition probabilities, it takes the expectation with respect to worst case transition
probabilities within the uncertainty set, Ps,a, defined for each state action pair. The
correctness of the robust Bellman recursion is established by Nilim and Ghaoui (2005).
The above recursion uses the restricted action set Āt(s). If instead the recursion used the
unrestricted action set, A(s), and the value function V t(s) split into a sum of functions,
one for each state of each little MDP, then the recursion would decompose into |I| sepa-
rate recursions, one for each little MDP. Such a decomposition is carried out by Adelman
and Mersereau (2008) for weakly coupled, but not robust, MDPs. The advantage of the
decomposition is an exponential reduction in the number of value function values that
require computation. For example, if the big MDP consists of 10 little MDPs, each with
5 states, then prior to decomposition we require 510 value function computations, while
with decomposition we require only 5 · 10 = 50 value function computations.

To facilitate decomposition, we perform a Lagrangian relaxation on the coupling
budget constraints, Ct(s,a) ≤ bt, of the big MDP. An alternate, approximate dynamic
programming (ADP), approach is discussed in Appendix A. We consider the following
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robust Lagrangian relaxation of the robust Bellman recursion above:

V
λt−1

t−1 (s) = max
a∈A(s)

[
r(s,a) + λt−1 · (bt−1 −Ct−1(s,a)) + β min

p∈Ps,a

∑
u∈S

p[u]V λt
t (u)

]
.

(1)

Intuitively, we now consider unrestricted action set, A(s), but penalize actions that
violate the budget constraints using the Lagrange multiplier vector, λt. We still have
to show that the value function, V λt

t (s), decomposes into a sum of value functions, one
for each little MDP, and that the Lagrangian relaxation gives an upper bound on the
original value function, V t(s).

Lemma 4.1 shows how to decompose (1) into separate optimization problems over the
little MDPs. To facilitate this lemma, the assumption that the big MDP value function is
decomposable at t = T is key. We also set V λT

T (s) = V T (u) and V λT ,iT (s) = V iT (s)∀i ∈ I,
setting the value functions and Lagrangian approximation equal at the final period, T .

Lemma 4.1.
V λt
t (s) =

∑
i∈I

V λt,it (s[i])

for t from 1 to T , where

V
λt−1,i
t−1 (s) =

λt−1 · bt−1
|I|

+ max
a∈Ai(s)

[
ri(s, a)− λt−1 · Cit−1(s, a) + β min

pi∈Pis,a

∑
u∈Si

pi[u]V λt,it (u)

]

Proof. We proceed by induction on t. The claim is true for t = T by the assumption on
the form of V T (u). We assume that the claim is true for t and prove it for t − 1. We
start with the definition of the robust Lagrangian Bellman recursion:

V
λt−1

t−1 (s) = max
a∈A(s)

[
r(s,a) + λt−1 · (bt−1 −Ct−1(s,a)) + β min

p∈Ps,a

∑
u∈S

p[u]V λt
t (u)

]
.

Substituting the definitions of r(s,a) and Ct−1(s,a), and distributing and moving sum-
mations we have:

V
λt−1

t−1 (s) = max
a∈A(s)

[∑
i∈I

ri(s[i],a[i])

+
∑
i∈I

(
λt−1 · bt−1
|I|

− λt−1 · Cit−1(s[i],a[i])

)
+ β min

p∈Ps,a

∑
u∈S

p[u]V λt
t (u)

]
.

Applying the induction hypothesis and the definition of vectors in Ps,a gives:

V
λt−1

t−1 (s) = max
a∈A(s)

[∑
i∈I

ri(s[i],a[i]) +
∑
i∈I

(
λt−1 · bt−1
|I|

− λt−1

· Cit−1(s[i],a[i])

)
+ β min

p∈Ps,a

∑
u∈S

(∏
i∈I

pi[u[i]]

)(∑
i∈I

V λt,it (u[i])

)]
.

9



By reordering the summation and product within the minimization gives:

V
λt−1

t−1 (s) = max
a∈A(s)

∑
i∈I

ri(s[i],a[i]) +
∑
i∈I

(
λt−1 · bt−1
|I|

− λt−1

· Cit−1(s[i],a[i])

)
+ β min

p∈Ps,a

∑
i∈I

∑
u∈S

V λt,it (u[i])
∏
j∈I

pj [u[j]]

 .
We define S−i =

⊗
j∈I−i Sj , implying that S = Si

⊗
S−i, and reorder summations

further to get

V
λt−1

t−1 (s) = max
a∈A(s)

∑
i∈I

ri(s[i],a[i]) +
∑
i∈I

(
λt−1 · bt−1
|I|

− λt−1 · Cit−1(s[i],

a[i])

)
+ β min

p∈Ps,a

∑
i∈I

∑
s∈Si

V λt,it (s)pi[s]
∑

w∈S−i

∏
j∈I−i

pj [w[j]]

 .
We use the fact that 1 =

∑
w∈S−i

∏
j∈I−i

pj [w[j]] to get

V
λt−1

t−1 (s) = max
a∈A(s)

[∑
i∈I

ri(s[i],a[i]) +
∑
i∈I

(
λt−1 · bt−1
|I|

− λt−1 · Cit−1(s[i],a[i])

)
+ β min

p∈Ps,a

(∑
i∈I

∑
s∈Si

V λt,it (s)pi[s]

)]
.

From the definition of Ps,a we have

V
λt−1

t−1 (s) = max
a∈A(s)

[∑
i∈I

ri(s[i],a[i]) +
∑
i∈I

(
λt−1 · bt−1
|I|

− λt−1 · Cit−1(s[i],a[i])

)
+ β min

pi∈Pis[i],a[i]
,∀i∈I

(∑
i∈I

∑
s∈Si

V λt,it (s)pi[s]

)]
.

The minimization problem inside the recursion has an objective function that separates
into one term for each little MDP i ∈ I. In addition, the definition of p ∈ Ps,a allows
for an independent choice for each pi ∈ Pis[i],a[i]. These facts imply that the inner
minimization problem reduces to a sum of minimization problems and we have

V
λt−1

t−1 (s) = max
a∈A(s)

[∑
i∈I

ri(s[i],a[i]) +
∑
i∈I

(
λt−1 · bt−1
|I|

− λt−1 · Cit−1(s[i],a[i])

)
+
∑
i∈I

β min
pi∈Pis[i],a[i]

(∑
s∈Si

V λt,it (s)pi[s]

)]
.
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Now the outer maximization problem has an objective that is a sum with one term for
each little MDP, and it is over an unrestricted action set, giving independent choice of
action in each little MDP. Thus the outer maximization problem reduces to a sum of
maximization problems and we have

V
λt−1

t−1 (s) =
∑
i∈I

max
a∈Ai(s[i])

[
ri(s[i],a[i])

+

(
λt−1 · bt−1
|I|

− λt−1 ·Cit−1(s[i],a[i])

)
+ β min

pi∈Pis[i],a[i]

(∑
s∈Si

V λt,it (s)pi[s]

)]
.

Taking out constant terms from the outer maximization we have

V
λt−1

t−1 (s) =
∑
i∈I

{
λt−1 · bt−1
|I|

+ max
a∈Ai(s[i])

[
ri(s[i],a[i])− λt−1 ·

Cit−1(s[i],a[i]) + β min
pi∈Pis[i],a[i]

(∑
s∈Si

V λt,it (s)pi[s]

)]}
.

Substituting the definition of V
λt−1,i
t−1 (s[i]), we have the statement of the lemma

V
λt−1

t−1 (s) =
∑
i∈I

V
λt−1,i
t−1 (s[i]).

Lemma 4.2 shows that V λt
t (s) ≥ V t(s) for all s ∈ S, t = 1, . . . , T , showing that the

Lagrangian relaxation does indeed provide an upper bound on the robust MDP value
function.

Lemma 4.2. For any λt ≥ 0, V λt
t (s) ≥ V t(s) for all s ∈ S, t = 1, . . . , T .

Proof. We prove the statement by induction on t. The lemma statement is true for t = T ,
because V λt

T (s) = V T (s) in the final period.
We assume the statement for t and prove it for t − 1. For all a ∈ Āt−1(s), by

definition, bt−1 −Ct−1(s,a) ≥ 0 must hold. Because λt−1 ≥ 0 we have:

V t−1(s) ≤ max
a∈Āt−1(s)

[
r(s,a) + λt−1 · (bt−1 −Ct−1(s,a)) + β min

p∈Ps,a

∑
u∈S

p[u]V t(u)

]
.

Because Āt−1(s) ⊆ A(s),

V t−1(s) ≤ max
a∈A(s)

[
r(s,a) + λt−1 · (bt−1 −Ct−1(s,a)) + β min

p∈Ps,a

∑
u∈S

p[u]V t(u)

]
.

By the induction hypothesis and the definition of V λt
t (u),

V t−1(s) ≤ max
a∈A(s)

[
r(s,a) + λt−1 · (bt−1 −Ct−1(s,a)) + β min

p∈Ps,a

∑
u∈S

p[u]V λt
t (u)

]
= V

λt−1

t−1 (s),
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proving the lemma statement.

4.3. Linear programming approximation

The results of Section 4.2 show that performing Lagrangian relaxation decomposes
the problem and gives an upper bound on the value function of the big MDP. Using the
recursing in Lemma 4.2 we can solve for that upper bound given any specific value of the
Lagrange multiplier, λt. In this section we show how to compute the optimal value for
the Lagrange multiplier, in other words, the values that give the tightest upper bound.

We begin by writing the optimization problem to compute the Lagrangian relaxed
value function in Lemma 4.2. The following optimization problem is similar to the opti-
mization problem used to compute the value function for a standard MDP (Puterman,
2005). It has three main differences: 1) it is for a finite horizon problem, expressed by
constraints for each time period 2) it is for a robust problem, expressed by the minimiza-
tion operator within each constraint 3) it is for a decomposable problem, expressed by
the separate variables for each i ∈ I. We let α ∈ R|S| to denote a probability distri-
bution on the initial states of the big MDP, however all we require below is that it is a
non-negative vector. The following optimization problem computes the expected payoff
of the big MDP under the Lagrangian relaxed value function:

min
λt,V

λt,i
t (·),∀i,t

∑
s∈S

α[s]
∑
i∈I

V λ1,i
1 (s[i]) (2)

V
λt−1,i
t−1 (s) ≥ λt−1 · bt−1

|I|
+ ri(s, a)− λt−1 · Cit−1(s, a) + β min

pi∈Pis,a

∑
u∈Si

pi[u]V λt,it (u)

∀s ∈ Si, a ∈ Ai(s), t ∈ {2, . . . , T}

Now, lets consider the following lemma which appears as Lemma 1 (Nilim and Ghaoui,
2005), the proof of which we provide here for completeness:

Lemma 4.3. Consider the problem:

η = min
v1,...,vT−1

q · v1

vt ≥ gt(vt+1), ∀t = 1, . . . , T − 1,

where vT is a given vector of constants, and the vi for i = 1, . . . , T − 1 are vectors of
variables all of the same size. If we have that q ≥ 0 and u ≤ w =⇒ gt(u) ≤ gt(w), where
q, u, w, gt(·) are vectors or vector valued functions, then the optimal solution is

vt = gt(vt+1) ∀t = 1, . . . , T − 1.

Proof. The proof here comes from the component-wise monotonicity of the g functions.
In particular, let the proposed optimal solution in the lemma statement be v∗t . It is
feasible by construction. But, also, for any solution, we have vT−1 ≥ gT−1(vT ) =
gT−1(v∗T ) = v∗T−1, because all solutions have one and the same value at T (no decisions
are made and all values are fixed constants). From the monotonicy of gT−2, we have
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vT−2 ≥ gT−2(vT−1) ≥ gT−2(v∗T−1) = v∗T−2. Continuing this argument in an inductive
way, we have v1 ≥ v∗1 , which combined with q ≥ 0 proves the result.

So, if we can express problem (2) in the form of the problem in Lemma 4.3, and if
we can prove that the corresponding g functions are component wise monotone, then we
can derive an optimal solution to problem (2).

So, we re-write problem (2) in an appropriate form. Let vt denote the vector with

components V λt,it (·),∀i. Let vit denote the coordinates of vt that correspond to little
MDP i. We can then rewrite problem (2) as

η = min
v1,...,vT−1

q · v1 (3)

vt ≥ gt(vt+1), ∀t = 1, . . . , T − 1,

where gt(vt+1) returns the vector v that minimizes:

gt(vt+1) = argmin
v

min
λt

1 · v (4)

vi[s] ≥ λt · bt
|I|

+ ri(s, a)− λt · Cit(s, a) + β min
pi∈Pis,a

∑
u∈Si

pi[u]vit+1[u]

∀i ∈ I, s ∈ Si, a ∈ Ai(s).

The vector q in (3) equates to α[s] in problem (2). Intuitively, the main step in the
transformation is that we moved the optimization over λt in problem (2) inside the
definition of gt in (3).

Theorem 4.4. The optimal objective function values of (2) and (3)-(4) are the same.
In addition, any optimal solution to (3)-(4) is also optimal in (2).

Proof. Any v1, v2, . . . , vT−1 and λ1,λ2, . . . ,λT−1 feasible in (3)-(4) is also feasible in (2)
with the same objective function value.

Consider any feasible solution to (2), λ̂t and V̂ λt,it (·). We group the values V̂ λt,it (·)
across little MDPs into vectors v̂1, v̂2, . . . , v̂T−1. We define vmin

t = gt(v̂t+1). For t = T ,
we have that gT−1(v̂T ) = vmin

T−1 ≤ v̂T−1 The first equality follows by the definition of
vmin
T−1, the inequality follows from the definition of gT−1(·) and the fact that v̂T is feasible

in (2). We assume the monotonicity of the gt functions momentarily, to be shown in
Lemma 4.5, and proceed by induction on t. The induction hypothesis is gt−1(v̂t) ≤ v̂t−1.
By induction: gt−2(vmin

t−1) ≤ gt−2(v̂t−1) = vmin
t−2 ≤ v̂t−2. The first inequality follows from

applying the monotonic gt−2(·) to both sides of the induction hypothesis and substituting
the definition of vmin

t−1 . The second equality is the definition of vmin
t−2 . The third inequality

follows from the fact that v̂t−2 is feasible in (2). By this inductive argument, we have
vmin
1 ≤ v̂1, and gt(v

min
t+1) ≤ vmin

t for t = 1, . . . T − 1. Thus we constructed a solution to
(3)-(4) with a smaller value as q ≥ 0.

The only thing left to show is the monotonicity of the gt(·) function defined in (4).
That monotonicity is required in two places. First, we used it in the proof of Theorem 4.4.
Second, it is required by Lemma 4.3 to provide a solution method for problem (3)-(4).
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Lemma 4.5. Let gt(v) be as defined in (4). Then u ≤ w =⇒ gt(u) ≤ gt(w).

Proof. Let λt
w, pi,w be values of λt and pi that produce the argmin for gt(w). Plug the

same values into gt(u), and we’ll get a component-wise smaller vector. This is because

β min
pi∈Pis,a

∑
s∈Si

pi[s]ui[s] ≤ β
∑
s∈Si

pi,w[s]ui[s] ≤ β
∑
s∈Si

pi,w[s]wi[s] = β min
pi∈Pis,a

∑
s∈Si

pi[s]wi[s],

where the first inequality comes from plugging a specific value into the minimization prob-
lem; the second inequality follows from the fact that w is component wise greater than u,
and the last equality follows from the definition of pi,w. Thus we have: βminpi∈Pis,a

∑
s∈Si p

i[s]ui[s] ≤
βminpi∈Pis,a

∑
s∈Si p

i[s]wi[s]. Plugging λt
w into the definition of gt(u), shows that gt(u)

is component wise smaller than gt(w), thus completing the proof.

5. Solving the Model

The following steps compute strategies for the robust, decomposable, finite horizon
MDP. We begin by sketching the process from the top-down, starting with the goals and
getting to specifics. We then conclude with the explicit steps to compute a strategy.
At an intuitive level, the process involves a variant of back-propagation, followed by a
computation of strategies on an as-needed basis.

Computing a strategy is an optimization problem, if we are given the values of the
future states as input. Thus, we would like to compute the values of the future states,
V t+1(s) if we are in time period t. Computing these values is computationally difficult,
for example, a big MDP composed of 10 little MDPs each with 5 states requires the
computation of 510 values in each time period. Instead we compute upper bounds on the

values, based on the Lagrangian relaxation of the robust, decomposable MDP, V
λt+1

t+1 (s).
By Lemma 4.1 we only have to compute 5 · 10 = 50 values for the Lagrangian relaxation
of the big MDP composed of 10 little MDPs with 5 states each, instead of 510. In fact,
we compute the smallest upper bounds, optimizing over the Lagrange multipliers. To
do this, we would like to solve problem (2). That problem, however, includes non-linear
terms in the constraints. By Lemmas 4.3 and 4.5, we can solve problem (4) instead of

problem (2) to get the values V
λt+1

t+1 (s) and the optimal Lagrange multipliers. Finally,
to solve problem (4), we observe that the expression βminpi∈Pis,a

∑
u∈Si p

i[u]vit+1[u] can

be optimized over pi ∈ Pis,a to produce a constant, since the values vit+1 are specified as
input to gt(vt+1). This gives the complete set of steps required to produce a strategy for
the robust, decomposable, finite horizon MDP:

1. Begin by specifying I,Si,Ai(s), ri(s, a), Cit(s, a), T, bt and V T (s) for i ∈ I, s ∈ Si,
a ∈ Ai(s), t ∈ {1, . . . , T −1}. This defines the robust, decomposable, finite horizon
MDP and assigns values to the horizon states.

2. Back-propagate, repeatedly solving problem (4) to compute values V λt
t (s).

(a) Start with t = T − 1 and vT = V T (s).
(b) Solve the inner problems minpi∈Pis,a

∑
u∈Si p

i[u]viT [u]. This step assumes we

can optimize over the uncertainty sets Pis,a. We save the optimal solution pi∗s,a.
(c) Solve the outer problem, problem (4) to find gT−1(vT ), by substituting the

objective values found in the previous step into the constraints of problem (4).
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(d) This gives values for vT−1, which specify V
λT−1

T−1 (s). Repeat these steps to
continue the back-propagation until t = 1.

3. Using the computed values for V λt
t (s), compute strategies for the robust, decom-

posable, finite horizon MDP. These strategies can be computed on an as-needed
fashion. In other words, given a state s, which specifies s[i], and time period t, we
can solve the MIP:

max
xi
a[i]

∑
i∈I

∑
a[i]∈Ai(s[i])

xia[i](ri(s[i],a[i]) +
∑
u∈Si

pi∗s[i],a[i][u]V
λt+1

t+1 (u)) (5)

s.t.
∑

a[i]∈Ai(s[i])

xia[i] = 1, ∀i ∈ I

∑
i∈I

∑
a[i]∈Ai(s[i])

Cit(s
i,a[i])xia[i] ≤ bt

xia[i] ∈ {0, 1}, ∀i ∈ I,a[i] ∈ Ai(s[i]).

In (5), xia[i] = 1 if action a[i] is taken in time period t in little MDP i and zero
otherwise. The objective maximizes the total expected reward from taking the selected
actions, a[i], across all little MDPs. The first constraint ensures that only one action
is taken in each little MDP, the second constraint ensures that all actions across all the
little MDPs are within budget, and the last constraint ensures that xia[i] is binary. We

observe that solving the above program with the true state values, V t+1(s), as opposed

to the upper bounds, V
λt+1

t+1 (s), would yield an optimal strategy.
Even for a small example problem, solving the robust big MDP directly, computing

the value for each big MDP state, as opposed to the Lagrangian relaxation we propose,
involves solving a complex non-linear, non-convex optimization problem to find the worst-
case transition probabilities. Because a generic algorithm to optimally solve non-linear,
non-convex problems is not known, it is unlikely that the robust big MDP can be solved
directly. Intuitively, the big MDP has a transition uncertainty set that is significantly
different than that of Nilim and Ghaoui (2005), and the tools employed there are not
applicable. We discuss a direct solution further in Appendix B. In contrast, the method
described in this section is tractable and requires solving T linear programs in step 2
and T integer programs, on an as-needed fashion, with some additional optimization
problems to compute worst-case transition probabilities.

6. Computational Results

In this section we apply the developed method to determine a funding policy for a
stylized school district composed of four schools: a small wealthy (SW), a small impov-
erished (SI), a large wealthy (LW), and a large impoverished school (LI). The district
has a finite budget per planning period, and would like to find a funding policy for a
finite planning horizon, in our case 12 periods, that maximizes the school district’s total
expected reward over the planning horizon. It helps to think of each period represent-
ing a single year, and we are tasked with finding a funding policy for a 12 year period.
Once a school receives its funding for a year, that school may choose to do with the
budget anything it sees fit, such as hire more teachers, acquire more equipment, or fund
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different programs. The implicit assumption in this model is that each school needs a
certain amount of money to keep itself sustained, and additional funding may help it
improve. Our results may be extended for any finite number of years, however we think
that political and educational policies change so often that even 12 years may be too
long for a single school district.

For our stylized example, a school receives income in two ways: 1) directly from
the school district and 2) directly from the community. Some communities are able to
collect more funds due to the makeup of the community than others, thus making some
schools wealthier than others. These wealthy schools may have enough community funds
to operate and fund all of their programs, and that makes them less responsive to any
additional funds they may receive from the school district. With this perspective, in the
stylized example, we assume wealthy schools’ transition probabilities are independent of
the district’s funding actions. On the other hand, impoverished schools do not receive
much funding through the local community and must depend on the school district for
the majority of their funding.

Further, we assume that schools may be small or large. Small schools have fewer
students than larger schools and thus need a lower amount of resources to function.
However, if large schools are not performing well, to be defined later on in this section,
it means that more students are also not performing well. Thus, the district receives a
larger negative reward from large schools not performing well than from small schools.

Each of the four schools may be in one of five states: failing, poor, average, good,
excellent. A school’s state is determined by its performance on a yearly exam. Depending
on how the students of that school perform, the school is given a performance grade that
has the same value as its state. As mentioned previously, the school district would like
to maximize its performance over the planning horizon, and the school district receives a
reward for each school depending on the school’s state at the end of each year. If a large
schools is the good state, then it means that more students are in the good state than
when a small school is in the good state. Therefore, the reward the district receives also
depends on the size of the school. In this example, a district receives rewards of −10, −5,
0, 5, 10 for small schools and rewards of −20, −10, 0, 10, 20 for large schools being in
states failing, poor, average, good, excellent respectively. Further, as large schools have
more students than small schools, they also require more funding to keep their programs
running. Each year, the school district can only decide if it will give a school small,
medium, or large funding level. For the stylized example, large schools cost the district
0, 1, 3 and small schools cost the district 0, 1, 2 to have funding levels of small, medium,
or large, respectively.

Each year the school district has to decide what action it should take, i.e., what
funding should the district give to each school. However, given the current state of
schools and the funding decision taken, it is not clear to the school district what state
a schools will be in the following year. Not only does the district not know the exact
state, but the district also does not have an exact distribution on the future states given
a state, action pair. The district may, at best, have a range, upper and lower bounds, on
the likelihood of each future state given a state, action pair. It is with this range that
we construct an uncertainty set on the probability of future states. We give a complete
parameterization of the stylized example in Appendix D.

One possible comparison for this stylized example, is to compare policies derived from
the robust, decomposable, finite horizon MDP to an average case policy, derived by as-
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suming fixed transition probabilities. Although Nilim and Ghaoui (2005) do not consider
coupled MDPs, their robust aircraft routing example highlights that average case policies
may perform worse than a robust policy. The main purpose of our example is illustrate
our method and compare it, at least in a stylized setting, to a school funding policy
inspired by the real-world. An example that shows the robust policy performing better
than the average policy is possible, though we do not think such an example will add
to the understanding of the proposed method, especially since such a demonstration has
already been done by Nilim and El Ghaoui. For completeness, we present a comparison
of the average case policy to the robust policy for our example in Appendix C.

We compare funding policies resulting from the robust, decomposable, finite horizon
MDP to a baseline policy inspired by a funding policy used in practice today, No Child
Left Behind. No Child Left Behind, as implemented by the state of New Jersey (New
Jersey Department of Education, Office of Student Achievement and Accountability,
2011), is rather complex, so the baseline that we use is a simplified abstraction of what
is used in practice. We model No Child Left Behind by having a school be eligible to
receive large funding if that school has reduced its performance this year relative to the
previous year and its current performance is less than good. Of all the schools that are
eligible to receive large funding, those schools with the lowest current state will receive
funding first, and if multiple schools have the same current state, then larger schools are
given preference. After large funding is allocated to some schools, the remaining budget
is used to fund schools at the medium level, with schools with the lowest state given
preference and large schools given preference over small schools.

In the remainder of this section we compare the funding policy determined using
our method—referred to RMDP for the remainder of this section—to that of the pol-
icy inspired by No Child Left Behind—referred to iNoChild for the remainder of this
section—in the four school stylized example described above. We consider two possible
situations: 1) State evolution based on the worst case transition probabilities as defined
by the uncertainty set and 2) State evolution based on a collection of random draws
from the uncertainty set, i.e., a point within the uncertainty set for the possible transi-
tion probabilities. The developed method, RMDP , is expected to perform well in the first
case as the funding policy itself is designed assuming worst case transition probabilities.
This may give this policy an unfair advantage over iNoChild , therefore, we also consider
random draws from the feasibility set.

In Figure 1 we plot the cumulative expected reward the school district receives as-
suming worst case transition probabilities. RMDP , whose policy is targeted to worst case
transitions, outperforms iNoChild across all budget values. In this figure, we omitted the
plots of budgets of 5 and 4, as they are qualitatively similar to that of budgets of 6 and 3,
respectively. Finally, for budgets of 2 and 1, shown in Figures 1(c) and 1(d), we note that
though both policies provide negative cumulative reward, RMDP still performs at least
as well, statistically speaking, as iNoChild , even in the first few years of the planning
horizon.

In Figure 2 we plot the cumulative reward the school district receives assuming ran-
dom draws from the transition probability uncertainty set. It is not surprising that the
expected cumulative reward is higher for these types of transitions, relative to the worst
case transitions. What may be surprising is that RMDP is still performing better than
iNoChild . The only thing to note is that RMDP tends to perform a little worse on
average terms, though equivalently, from a statistical perspective, than iNoChild when
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(a) Budget is 6 (b) Budget is 3

(c) Budget is 2 (d) Budget is 1

Figure 1: The cumulative expected rewards for the school district assuming worst case transition prob-
abilities, with 95% confidence interval about each point
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(a) Budget is 6 (b) Budget is 3

(c) Budget is 2 (d) Budget is 1

Figure 2: The cumulative expected rewards for the school district assuming random draws from the
transition probability uncertainty sets, with 95% confidence interval about each point

the budget is low, 2 or 1 in the initial two years. This may be an artifact from the fact
that all schools start initially in the average state in our stylized example. Or, it may
indicate that RMDP is too conservative initially as it considers performance over the
entire planning horizon.

As mentioned earlier, funding to wealthy schools does not influence their transition
probabilities. With this perspective, we would like any funding strategy to allocate
funding to impoverished schools, and not spend resources on schools that do not respond
to additional funding. In a sense, this part of the stylized example can be viewed as a
sanity check. We expect RMDP to perform as well as iNoChild , in terms of school state,
for all wealthy schools. Figures 3, 4 and 5 display the school states over the planning
horizon under worst case transition probabilities for both RMDP and iNoChild . In
Figure 3 we show that for both large and small wealthy schools, RMDP performs as well
as iNoChild .

In Figure 4, we notice that RMDP spends resources in maintaining and improving the
state of impoverished schools, agreeing with the sanity check. Qualitatively, the RMDP
funding policy performs better then iNoChild for all impoverished schools for budget
values of 5 and 6, under these budget constraints both the large and small impoverished
school may be funded at the same time. However, for budgets of 4 and 3, it is impossible
to give large funding or medium funding to both the large and the small school in the same
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(a) Large school, worst case probability (b) Large school, average case probability

(c) Small school, worst case probability (d) Small school, average case probability

Figure 3: The state of small and large wealthy schools for worst case and average case probabilities with
a budget of 4. RMDP performs equivalently to iNoChild .

year. As shown in Figure 4(c), the large impoverished school receives more support, and
thus has a better state than the small school. This policy makes sense as more students
are affected from funding decisions in the large school than in the small school. We
observe the same behavior when we consider an average case probability realization.

Interestingly once the budget level is 2, in Figure 5, we notice that RMDP supports
the small impoverished school more, as it can actually provide large funding to the small
school where it can not for the large school. With a budget of 1, the RMDP policy again
diverts more support to the large school and tries to provide medium funding year to year.
We observe these trends for the worst case probability realizations in Figure 5(c), as with
the previous figure, similar results hold for the average case of probability realizations.

7. Discussion and Conclusion

In this paper we propose a method to compute an approximate value function for
robust, decomposable, finite horizon MDPs and show how to tractably derive a feasible
policy from the approximate value function. The method is motivated by an application
to school funding allocation and we apply it to a stylized school district. We compare
our funding policies to those of a policy inspired by No Child Left Behind, and show that
our policies perform well in comparison. At least based on the stylized example, this
indicates that if decision makers make funding allocation decisions based on uncertain
transition probabilities, it may lead to better results than making those decisions simply
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(a) Large school, budget 4 (b) Small school, budget 4

(c) Large school, budget 3 (d) Small school, budget 3

Figure 4: The state of small and large impoverished schools for worst case probabilities with a budget
levels of 4 and 3. The large school receive large funding, and are thus in a better school state than the
small school.

on the last observed transition as in the policy inspired by No Child Left Behind.
All school funding decisions are ultimately the result of a political process, and it is

unrealistic to expect that the results of an optimization model would be used directly.
Instead, the model we propose could be used to gain insight into the types of funding
decisions that could lead to good outcomes. One way the model can be parameterized is
by the decision maker experts directly, through specifying ranges of possible impacts to
funding decisions. Another possible way to parameterize the model is through analyzing
large data sets on school funding. New Zealand, for example, maintains a history of school
funding and school performance on national exams (New Zealand Ministry of Education,
2013). It may be possible to statistically derive uncertainty sets from such a large data
set, based on school characteristics. A real-world application of an optimization model
to school funding allocation is an outstanding open problem. Inspired by this problem,
the main contribution of this paper is the definition of, and suggested solution approach
to robust, decomposable MDPs. These MDPs represent a fundamentally new type of
control problem, different from both the decomposable MDPs and robust MDPs studied
in the past.

There are a number of additional theoretical problems for future research. Currently,
to the best of our knowledge, there is no known tractable method to compute optimal
strategies for robust, decomposable MDPs. In addition, for realistic applications, both
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(a) Large school, budget 2 (b) Small school, budget 2

(c) Large school, budget 1 (d) Small school, budget 1

Figure 5: The state of small and large impoverished schools for worst case probabilities with a budget
levels of 2 and 1. With a budget of 2, small schools receive more funding, and thus have a better state
than large schools. However, as the budget level drops, we notice that large schools again have a better
state than small schools.
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the rewards and the transition probabilities between little MDPs may be coupled. For
example, a school district may be interested in equity–having all the schools at about the
same level. Such considerations create difficulties for the decomposition approaches we
take. The decomposition approaches ultimately work by decomposing the value function
of the big MDP. If equity is a consideration, ultimately the value of a state in the big
MDP is very much dependent on the states of all the little MDPs. The development of
solution methods for such situations would be an interesting, though we believe difficult,
theoretical contribution.
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Appendix A. Approximate Dynamic Programming

We begin by assuming that the big MDP value function has the form V t(s) = θt +∑
i∈I V

i
t (s[i]) and writing the standard LP form for finding the values of each state:

Hθ(α) = min
V it (·),∀i,t

θ1 +
∑
s∈S

∑
i∈I
αi[s[i]]V

i
1 (s[i]) (A.1)

θt−1 +
∑
i∈I

V it−1(s[i]) ≥
∑
i∈I

ri(s, a) + β min
p∈Ps,a

∑
u∈S

∏
i∈I

pi[u[i]]

[
θt +

∑
i∈I

V it (u[i])

]

∀s ∈ S,a ∈ Āt(s), t ∈ {2, . . . , T}.

Moving the constant θt out of the optimization objective, and using the same sequence
of algebraic manipulations as in Lemma 4.1 we can rewrite the above as

Hθ(α) = min
V it (·),∀i,t

θ1 +
∑
s∈S

∑
i∈I
αi[s[i]]V

i
1 (s[i]) (A.2)

θt−1 − βθt +
∑
i∈I

V it−1(s[i]) ≥
∑
i∈I

ri(s, a) + β
∑
i∈I

min
pi∈Pis[i],a[i]

(∑
u∈Si

V it (u)pi[u]

)

∀s ∈ S,a ∈ Āt(s), t ∈ {2, . . . , T}.

Proposition 3 of Adelman and Mersereau (2008) holds, by the same reasoning as in their
paper, giving that the parameters θ does not change the objective function value of the

above LP. In other words, Hθ(α) = Hθ′
(α) for any two values θ and θ′.

In addition, the remaining ADP results of Adelman and Mersereau also hold in the
robust, decomposable, finite horizon MDP above. For example, their Proposition 4,
stating that the ADP value approximation of each state is bigger than the true value
of the state can be shown by an inductive argument similar to that in Theorem 4.4.
Similarly, the equivalents of their Theorem 1 and Corollary 1 can be shown by taking
an optimal solution to model (2), creating the same relationship between θ and λ as in
their paper, and showing that it is feasible in model (A.2).

Because the same theoretical results hold in the robust, decomposable, finite horizon
MDP, the ADP approximation gives more accurate value function approximations than
the Lagrangian relaxation. However, the key problem with utilizing the ADP approxima-
tion is solving model (A.2). It has an exponential number of constraints, and in addition,
unlike in Adelman and Mersereau, it has a non-linear term inside the constraints. Thus,
standard column generation or row generation approaches can not be applied.

We sketch two possible computational approaches to solving model (A.2), however
we believe both are complex and practically not scalable. The first is the standard
coordinate-wise optimization approach often taken in non-linear programming. In this
approach, we alternate between solving for the values of V it (·) given fixed values of the
pi, then solving for the pi given fixed values of the V it (·). While this solution approach
is common, we have no theoretical guarantees that it converges or produces optimal
solutions. On the other hand, there may be applications where this approach works well.
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Our second approach involves both row generation, for the constraints based on s ∈
S,a ∈ Āt(s) and column generation for decision variables pi. The basic idea behind the
approach is re-writing model (A.2) in the form

Hθ(α) = min
V it (·),z,x

θ1 +
∑
s∈S

∑
i∈I
αi[s[i]]V

i
1 (s[i])

θt−1 − βθt +
∑
i∈I

V it−1(s[i]) ≥
∑
i∈I

ri(s, a) + β
∑
i∈I

zt,s[i],a[i] (A.3a)

∀s ∈ S,a ∈ Āt(s), t ∈ {2, . . . , T}

zt,s[i],a[i] ≥
∑
u∈Si

V it (u)p̂i[u]−M(1− x
p̂i

) (A.3b)

∀s ∈ S,a ∈ Āt(s), t ∈ {2, . . . , T}, p̂i ∈ Ext(Pis[i],a[i])∑
p̂i∈Ext(Pis[i],a[i]

)

x
p̂i

= 1 (A.3c)

∀s ∈ S,a ∈ Āt(s), t ∈ {2, . . . , T}
x
p̂i
∈ {0, 1} (A.3d)

∀s ∈ S,a ∈ Āt(s), t ∈ {2, . . . , T}, p̂i ∈ Ext(Pis[i],a[i]),

where Ext(Pis[i],a[i]) is the set of extreme points of the uncertainty set Pis[i],a[i].

The idea behind reformulation (A.3) is to assume the uncertainty sets are polyhedrons
and rewrite the optimization over the uncertainty sets as a selection of a single extreme
point. In particular, constraints (A.3b)-(A.3d) select a single extreme point, and the
variables zt,s[i],a[i] compute the objective value of inner optimization problems. The
reformulation removes the non-linearities in model (A.2), however it also introduces many
more constraints. However, we can use a combination of row and column generation to
solve model (A.3) to optimality.

Suppose we start with an incomplete version of model (A.3), in the sense that it
only includes some subset of the extreme points in constraints (A.3b)-(A.3d) as well
as only some of the constraints (A.3a) based on a subset of pairs (s,a). Suppose that
the incomplete version of the model is small enough that we can solve the mixed integer

program (MIP) to optimality, finding solution values V̂ it (·), ẑ. We can check if the solution
we received is optimal to the full model with the following two steps:

1. Solve the problems

min
pi∈Pis[i],a[i]

(∑
u∈Si

V̂ it (u)pi[u]

)
.

Let the optimal value, say z∗t,s[i],a[i], occurs at an extreme point p̂i. The values
z∗t,s[i],a[i] give us what the true values of the z variables should have been, had we

included all extreme points in the formulation, and the extreme point, p̂i gives us
a new extreme point to include in constraints (A.3b)-(A.3d). This is the column
generation part of the solution approach.
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2. Solve the problem

max
∀s∈S,a∈A(t)s,t∈{2,...,T}

∑
i∈I

ri(s, a)−
∑
i∈I

V it−1(s[i]) + β
∑
i∈I

z∗t,s[i],a[i]∑
i∈I

Cit(s[i],a[i]) ≤ bt.

This problem is the same knapsack problem that Adelman and Mersereau (2008)
solve for the computational approach in their paper. If the objective function value
of the problem is greater than zero, it generates a new pair (s,a) to add to our
incomplete version of constraint (A.3a). If the objective function value is zero or
less, then all the constraints in the full formulation (A.3) are satisfied. This is the
row generation part of the solution approach.

As we repeat the above two steps, if it is ever the case that we do not generate new
extreme points in step one, or new constraints in step two, then we know we have found
an optimal solution to the full problem. This approach will terminate in a finite number
of iterations, simply because there are only finitely many extreme points and constraints
we can generate. However, it could potentially take a long time, as with many row and
column generation schemes.

Appendix B. Finding an Exact Solution Directly

Here, we illustrate that a direct method to solve the big MDP involves solving non-
linear, non-convex optimization problems. The direct problem to solve for the values of
all states of the big MDP is

min
V t(·),∀t

∑
s∈S

α[s]V 1(s) (B.1)

V t−1(s) ≥ r(s,a) + β min
p∈Ps,a

∑
u∈S

p[u]V t(u)

∀t ∈ {2, . . . , T}, s ∈ S,a ∈ Āt(s).

In general, there is no guarantee that if the value function in the last time period is
decomposible, V T (u) =

∑
i∈I V

i
T (u[i]), then the value funciton of the previous time

period V T−1(u) will be as well. In fact, that is the entire reason for the Lagrangian
relaxation and ADP approaches, which work to achieve this decomposibility. Given a
non-decomposible value function, consider the problem of finding the worst case transi-
tion probabilities minp∈Ps,a

∑
u∈S p[u]V t(u). Expanding the definition of Ps,a, we can

re-write this problem as:

min
pi∀i

∑
u∈S

[∏
i∈I

pi[u[i]]

]
V t(u)

pi ∈ Pis[i],a[i].

The product in the objective function makes this problem non-linear, and non-convex
even if the individual uncertainty sets for the little MDPs, Pis[i],a[i] are polyhedrons.
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Ultimately, the uncertainty set of the big MDP has a different structure than that
used by Nilim and Ghaoui (2005), and so no known method exists to solve the big
MDP exactly. To the best of our knowledge, there is no solver currently available that
always solves (B.1) to optimality, and thus we are not able to compare our decomposition
methods to an optimal solution.

Appendix C. Computational experiment

In this section we compare the performance of the robust policy to the average policy,
the policy determined by considering the average transition probabilities between states.
This policy substitutes the polyhedral uncertainty set with the expected value of a uni-
form distribution over all points in the polyhedron. The average policy is determined
using the decomposition approach introduced by Adelman and Mersereau (2008). In Fig-
ure C.6 we show the cumulative awards for both policies, where RobustL, is the robust
policy, and AverageL, is the average policy. The cumulative rewards shown in Figure C.6

(a) Cumulative Reward assuming average
case draws.

(b) Cumulative Reward assuming worst
case draws.

Figure C.6: Cumulative Rewards for a budget of 5 using average and robust policies

are qualitatively the same across all funding levels. As such, it is natural to ask if the
robust policy adds any value over the average policy. The observed performance may be
an artifact of the example we consider. Intuitively, the transition probability uncertainty
is small, i.e., the average transition probability is not much different from the worst
case transition probability. One way to address this issue is to have one or more cases
with high negative payoff but relatively low probability of occurring. In addition, if our
probability uncertainty sets are not convex, then the average transition probability could
lie outside the set. Creating an example where robust policies perform differently than
average policies is outside the scope of our contribution. As we mention in Section 6, the
purpose of our schools example is to convey that our algorithm may be used to solve a
plausible practical problem. Nilim and Ghaoui (2005) already demonstrate that average
case policies may perform worse than robust policies.

Appendix D. Parameterization of Stylized Example

In this section we describe the parameters used in our stylized computational exper-
iment in Section 6. In the example we consider four schools: small wealthy (SW), small
impoverished (SI), large wealthy (LW), and large impoverished (LI). Each school can be
in one of five states: failing, poor, average, good, or excellent. Large schools provide the
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school district rewards of −20, −10, 0, 10, 20 for being in each of the five respective
states. Small schools provide the district rewards of −10, −5, 0, 5, 10 for being in each
of the five respective states. At each planning epoch, the district determines the funding
level for each school to be either small, medium, or large The cost for each funding level
is 0, 1, and 2 for small schools, and 0, 1, and 3 for large schools, respectively.

Wealthy schools’ transitions are independent of the actions taken by the school dis-
trict, thus the transition uncertainty sets are only a function of a school’s current state.
In Table D.1 we list the box uncertainty sets for wealthy schools.

current state
next state

failing poor average good excellent

failing [0, 0.1] [0.1, 0.5] [0, 0.3] [0, 0.1] [0, 0.01]
poor [0.05, 0.1] [0, 0.01] [0.1, 0.5] [0, 0.3] [0, 0.1]

average [0, 0.05] [0.05, 0.1] [0, 0.2] [0.1, 0.5] [0, 0.2]
good [0, 0.01] [0, 0.1] [0.1, 0.3] [0, 0.5] [0, 0.3]

excellent [0, 0.01] [0, 0.05] [0, 0.2] [0.2, 0.5] [0, 0.4]

Table D.1: The box uncertainty sets for wealthy schools.

Unlike wealthy schools, impoverished schools respond to external funding levels, and
thus the box uncertainty sets are a function of both the current state and the action.
The uncertainty sets are listed in Table D.2.

current state, action
next state

failing poor average good excellent

failing, small [0.7,1] [0, 0.3] [0, 0.1] [0, 0.05] [0,0]
failing, medium [0.4,1] [0.2, 0.3] [0, 0.15] [0, 0.1] [0, 0.05]

failing, large [0.1, 0.2] [0.4,1] [0.2, 0.5] [0, 0.15] [0, 0.1]
poor, small [0.7,1] [0, 0.3] [0, 0.1] [0, 0.05] [0,0]

poor, medium [0.1,1] [0.3, 0.5] [0, 0.2] [0, 0.1] [0, 0.001]
poor, large [0, 0.1] [0, 0.3] [0.45, 0.8] [0, 0.2] [0, 0.1]

average, small [0.1, 0.3] [0.3, 0.6] [0, 0.2] [0, 0.1] [0,0]
average, medium [0, 0.2] [0.1, 0.4] [0, 0.5] [0, 0.3] [0, 0.1]

average, large [0, 0.1] [0.05, 0.6] [0, 0.8] [0, 0.7] [0, 0.3]
good, small [0, 0.2] [0, 0.3] [0.3, 0.6] [0, 0.4] [0, 0.1]

good, medium [0, 0.1] [0, 0.2] [0.1, 0.4] [0, 0.6] [0, 0.3]
good, large [0, 0.05] [0, 0.1] [0.05, 0.2] [0, 0.8] [0, 0.6]

excellent, small [0, 0.1] [0, 0.2] [0, 0.4] [0.2, 0.8] [0, 0.4]
excellent, medium [0, 0.05] [0, 0.1] [0, 0.2] [0.1, 0.6] [0.3, 0.7]

excellent, large [0,0] [0, 0.05] [0, 0.1] [0.05, 0.15] [0.5, 0.99]

Table D.2: The box uncertainty sets for impoverished schools.

Using the parameters above we solve the stylized example with the method outlined
in Section 4 to generate the figures in Section 6.
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