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Abstract. For study of two-way contingency tables, in this paper we derive
the inverse Fisher information matrix ��1 under the assumptions that the
sample schemes follow multinomial distribution. From the explicit form of ��1

we clarify mathematical properties of vector bY of components of chi-squared
statistic, then propose an approach for testing the hypothesis of independence
between two random response variables. The main idea is that based on a
unitary transformation, we turn vector bY into vector bZ which possesses the
same “statistical information” as bY but any statistics based on bZ, not only
chi-squared tests, has distribution free.

1. Introduction

Let X and Y denote two categorical response variables with (k + 1) and (l + 1)
categories corresponding. So the classifications of subjects on both variables have
M = (k+1)(l+1) possible combinations (i, j). As we know, to describe contingency
tables, there are several measures of associations between two random variables.
For example, (i) assume unrestricted sampling models, the simple model is that the
count in the (i, j) cell ⌫

ij

is a realization of a Poisson variable with expectation µ
ij

;
(ii) assume the total number of observations is fixed by n, the counts on cells are
multinomial distributed; (iii) assume the row totals are fixed, we have independent
multinomial distributions for each row.

Our study is considering case (ii) in which the parameters are maximum likeli-
hood estimators. Recall that the distribution of the frequencies ⌫

ij

is
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where p
ij

are the joint distributions of X and Y in cells (i, j). Let indexes i and
j be running from 0. Two response random variables X and Y are defined to be
independent if

H0 : p
ij

= a
i

b
j

for all i, j

in which a
i

and b
j

are marginal distributions:

a
i

=

P
l
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n
, b
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P
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.

It is obvious that
P

k

i=0 ai =
P

l

j=0 bj = 1. Since it can be said that a0, b0 is cor-

responding linear dependent on a = (a1, · · · , ak)T , b = (b1, · · · , bl)T the parameter
is ✓ = (aT , bT )T 2 R where  = k + l and a 2 Rk, b 2 Rl. The log-likelihood
function under the null hypothesis is:

`(✓) = log(n!)�
X
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log(⌫
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!) +
X
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log a
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X
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Then the maximum likelihood estimators ✓̂ = (âT , b̂T )T is

â
i

=
⌫
i+

n
, b̂

j

=
⌫+j

n
, i = 1, · · · , k, j = 1, · · · , l.(1.1)
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So the joint distribution is estimated by p̂
ij

= â
i

b̂
j

and estimated frequencies are
⌫̂
ij

= np̂
ij

. The most common way to test the statistical independence of X and Y
under the null hypothesis H0 is using chi-squared statistics �2 or Likelihood-Ratio
Chi-squared G2 where

�2 =
X

i,j

(⌫
ij

� np̂
ij

)2

np̂
ij

and

G2 = 2
X

i,j

⌫
ij

log

✓
⌫
ij

⌫̂
ij

◆

Here and below, notation
P

i,j

means
P

k

i=0

P
l

j=0. It is well known long time

ago that for testing statistical independence between X and Y , �2 and G2 has
chi-squared distribution with kl degree of freedom (Fisher, 1922).

As in 2013, Khmaladze([3]) introduced a new distribution free goodness of fit
tests for discrete distributions, and interestingly, we could apply the same idea for
this problem. One would start from considering vector bY of components of chi-
squared statistics calculated from estimated parameter then analyze its orthogonal
property in order to apply a unitary transformation onto it. The achieved result is
that we obtain a transformed vector bZ of bY such that, not only chi-squared tests
but any statistics based on it has distribution free.

2. Methodology

Let denote the true parameter by ✓0. As normal, the Fisher information matrix
is defined by

� =
X

i,j

ṗ
ij

(✓0)ṗij(✓0)T
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=
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T

,

where ṗ
ij

(✓0) is the vector of partial derivatives of p
ij

in ✓0.
We will see then the matrix � of dimension ⇥  is of the form

� =

✓
�
a

0
0 �

b

◆
.(2.1)

In fact, under the null hypothesis H0, we have
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If i 6= i0, then we have
X

z1,z2

@p
z1z2/@aip
p
z1z2

@p
z1z2/@ai0p
p
z1z2

=
X

z1,z2

b
z2

a
z1

1{z1=0} =
1

a0
.

If i = i0 then
X

z1,z2

@p
z1z2/@aip
p
z1z2

@p
z1z2/@ai0p
p
z1z2

=
X

z1,z2

b
z2

a
z1

[1{z1=0} + 1{z1=i}] =
1

a
i

+
1

a0
.

For all i, j, it is trivial to see that
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Hence, if we denote 1
k

= (1, · · · , 1)T 2 Rk and diagonal matrix

D
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and those with similar notation D(a), D(
p
a), . . . , then we have
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It is known that a matrix of the above form will have inverse matrix or square
root of inverse matrix, etc. of the same form.

Lemma 2.1. The inverse matrix of the Fisher information matrix in form of blocks

is
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✓
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a

0
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b

◆

where
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a
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b
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Proof. We only need to show that (2.4) is actually the inverse matrix of �
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where I
k

is notation for identity matrix of size k ⇥ k. At the same time,
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Lemma 2.2. We have
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⇣
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It is well known long time ago that under mild assumptions, the maximum
likelihood estimator is asymptotically linear

p
n(✓̂ � ✓0) = ��1

X

i,j

Y
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ṗ
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Y
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=
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(✓0)
.

According to Khmaladze([3]), let denote

bY
ij

=
⌫
ij

� np
ij

(✓̂)q
np
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then we have
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ṗ
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p
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And define

q
ij

= ��1/2 ṗ
ij

(✓0)p
p
ij

(✓0)
, i = 1, · · · , (k + 1), j = 1, · · · , (l + 1),(2.12)

where ��1/2 is defined in the sense of (��1/2)T��1/2 = ��1. Then we have con-
vergence in distribution of vector bY = (bY

ij

) 2 RM :

bY = X � hX,
p
pipp� hX, qiq,(2.13)

where
p
p = (

p
p
ij

) and X = (X1, · · · , XM

) denote a vector of M independent

standard normal random variables. It is already claimed in Khmaladze that bY is
the projection of vector X orthogonal to subspace generated by (+1) vectors

p
p

and q. Since the expression of matrix ��1 is clear, we also can get the explicit form
of vectors q = (q(1), · · · , q()).

Therefore, from the definition of q in (2.12), replacing what we achieved so far

for ��1 and ṗij(✓0)p
pij(✓0)

as in (2.2) and (2.3), each element of vector q(m) with m  k

will be

q(m)
z1z2

=

s
b
z2

a
z1

⇥p
a
m

1{z1=m} � c
a

p
a
m

a
z1 1̄{z1=k+1} ± 1{z1=k+1}

p
a0
p
a
m

⇤
(2.14)
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and for m � k + 1

q(m)
z1z2

=

r
a
z1

b
z2

hp
b
m�k

1{z2=m�k} � c
b

p
b
m�k

b
z2 1̄{z2=l+1} ± 1{z2=l+1}

p
b0
p
b
m�k

i
(2.15)

here by notation 1̄ define a function 1̄{z=k} = 1 if z 6= k and 0 otherwise.
By the idea suggested in Khmaladze([3]), if we apply a product of a series of

unitary operator on bY , we will finally get a transformed vector bZ which satisfies

bZ = X �
+1X

k=1

hX, r(k)ir(k),(2.16)

that means bZ is the projection of X orthogonal to the subspace generated by
specified vectors r(k). More specifically, the transformed vector bZ is obtained by

bZ =

 
+1Y

⌧=1

Ueq⌧ ,r⌧

!
bY ,(2.17)

where eq
⌧

are retrieved recursively

eq
⌧

=

0

@
Y

⇢⌧

Ueq⇢,r⇢

1

A q
⌧

and the unitary operator is defined as

U
q,r

= I � 1

1� hq, ri (r � q)(r � q)T .

3. Numerical illustrations

The main aim of this section is to illustrate that the demonstrated methodology
works properly and how user can apply this method in practice. Let consider the
Kolmogorov-Smirnov statistics

KS = sup
x

|F ⇤(x)� F0(x)|

where F ⇤(x) is the empirical distribution function based on the sampled data
and F0(x) is the true cumulative distribution function. In the sense of our problem,
we can clarifies the KS statistics by

KS1 = max
(0,0)(z1,z2)(k,l)

������

X

(i,j)(z1,z2)

bZ
ij

������

or

KS2 = max
1kM

�����

kX

x=1

bZ
x

����� ,

where bZ
x

is written in form of a vector of length M .
Figure 1 shows the cumulative distribution of statisticsKS1 for contingency table

of size 7⇥7. This cumulative distribution function is generated by simulation of 5000
iterations. Choose random parameter ✓0 be the true one. Generate realizations of
cell’s counts based on this true distribution then estimated â and b̂ as in (1.1).
Calculating vectors q = (q(1), · · · , q()) as in (2.14) and (2.15) but using estimated
â and b̂ instead of the true a and b. From that, we know the limit distribution of
vector bY and then apply unitary transformation U recursively as shown in (2.17).
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Figure 1. Distribution functions of KS1 with two di↵erent pa-

rameters ✓0

The specific set of vector r here is chosen to be
p
p and q but in case when

a
i

= 1
k+1 , bj =

1
l+1 . For user’s convenience, let see the explicit form of r:

r(0) =

 
1p

(k + 1)(l + 1)

!
(3.1)

and for m  k,

r(m)
z1z2

=

p
l + 1

k + 1


1{z1=m} �

c
a0

k + 1
1̄{z1=0} +

1p
k + 1

1{z1=0}

�

for m � (k + 1)

r(m)
z1z2

=

p
k + 1

l + 1


1{z2=m�k} �

c
b0

l + 1
1̄{z2=0} +

1p
l + 1

1{z2=0}

�
,

where c
a0 =

p
k+1

1±
p
k+1

and c
b0 =

p
l+1

1±
p
l+1

.

Actually, the simulation result is obtained by using constants c
a

, c
b

, c
a0, cb0 with

+ sign.
Figure 2 shows the graph of cumulative distribution functions of statistics KS2

for contingency table of size 5⇥ 6.
For using this approach in order to test the null hypothesis about statistical

independence of X and Y , note that we can always use the estimated parameters
in every calculation.

4. Discussion

The attempt to derive Fisher information matrix is in order to make the new
distribution free method more transparent. One may think that the transformation
is too complicated to apply but in fact, all of the calculation is linear, and can be
calculated computationally very easy. The benefit of this approach is that it gives
us
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Figure 2. Distribution functions of KS1 with two di↵erent pa-

rameters ✓0
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