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Summary. Most statistical process control (SPC) programmes in healthcare focus on surveil-
lance of outcomes at the final stage of a procedure, such as mortality or failure rates. This
approach ignores the multi-stage nature of such procedures, in which a patient progresses
through several stages prior to the final stage. In this paper we introduce a novel approach
to SPC programmes in healthcare. Our proposed approach uses regression adjustment, vari-
ance propagation and multi-stage control charts that have been in use in industrial applications
for decades. A test statistic for the control charts is proposed. Simulations are performed to
test the control charts and the results are summarised using a probability of true detection.
An illustrative example using data from a maternity unit is included. Our results show that the
multi-stage approach has two main advantages: (i) enables a closer study of all stages of a
procedure and thus a clearer understanding of the potential sources of excess variation that
lead to a shift in final stage outcome rates, (ii) changes in mid-stage outcomes rates can serve
as a warning of pending changes in final stage outcomes rates if left unchecked.

1. Introduction

Healthcare procedures generally comprise multiple stages. For example, in a major surgical
procedure the patient is prepared for the operation, anaesthetised and the surgery is then
carried out. A poor outcome at an upstream stage is likely, through variance propagation,
to result in poor outcomes at downstream stages. Most studies on healthcare performance
monitoring focus on monitoring end-stage clinical outcomes1,2,3,4,5, ignoring what occurs in
the earlier stages of the procedure. In this paper we propose that healthcare performance
monitoring should encompass all stages of a procedure. This approach has a three-fold
advantage. First, the correlation and variance propagation across the various stages will
be better understood and taken into account. Second, explicit monitoring of upstream
stages may detect trends in practice that, if continued, will lead to more poor end-stage
clinical outcomes. This allows these trends to be curtailed before they reach a level where
they cause excessive poor end-stage outcomes. Third, when monitoring multiple stage
procedures, understanding the impact of each stage is important for allocation of resources
for quality improvement6.

The multi-stage nature of some healthcare procedures has parallels in manufacturing,
where a production process comprises various stages. Examples are numerous and include
vehicle assembly7 and semiconductor manufacturing8,9. This paper presents a new ap-
proach, Multi-Stage O/E (MSOE) control charts, for monitoring outcomes of multi-stage
healthcare procedures. The approach we propose is based on regression adjustment10,11

and variance transmission models12 in that the outcome variable at each stage is regressed
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on a subset of process and upstream outcome variables, but with two main differences.
First, rather than charting residuals from the regression models, which we believe are hard
to interpret, our approach charts a ratio of observed to expected outcomes. The expected
outcomes are based on predictions from the regression model. Secondly, in healthcare, pa-
tients have different underlying risks for a given outcome. Therefore, in addition to the
process and upstream quality variables, we regress the quality variable on patient-specific
risk factors that influence the quality variable. To our knowledge this is the first time that
a multi-stage process approach has been proposed for monitoring health outcomes. One
main advantage of this approach is that it allows a whole system approach to the moni-
toring process, which in turn allows better understanding of patterns in outcomes seen in
end-stage results.

The proposed approach is illustrated using outcomes from a maternity delivery unit.
As a first step, we construct the joint conditional distribution for all outcome variables.
A graphical model is used to represent the decomposition of this joint distribution into a
product of conditional independence distributions, each of which determines the structure
of the regression model for each outcome variable. In our application we use a combination
of expert knowledge, literature and empirical analysis to determine the structure of the
graphical model and no discussion is made of a statistical approach to estimation of the
graph structure. We use simulations to examine the sensitivity of our proposed control
charts to various types of shifts within the process.

The layout of the paper is as follows. Section 2 provides a review of multi-stage control
charts in industrial applications. Section 3 describes the motivating example for the paper
and Section 4describes our proposed control charts and computation of control limits. Sec-
tions 5 and 6 give simulation and application results, respectively, and these are discussed
in Section 7.

2. Multi-stage control charts in industrial applications

Mandel (1969) proposed a model-based approach to monitor a quality variable, man-hours
used to process mail, that was highly correlated with a process input, mail volume13. The
cause-selecting chart14 and the regression adjustment method10,11 extended Mandel’s ap-
proach to multi-stage processes. In the cause-selecting approach, the quality variable at a
given stage is regressed on a quality variable at a previous stage. The residuals from the
regression model of each stage are then charted and monitored. The regression adjustment
approach extended this idea by regressing the quality variable at a given stage on any subset
of the other quality variables. The capability of these approaches in modelling interstage
correlations makes them particularly suited to monitoring of multistage manufacturing pro-
cess (MMP)15. If any quality or process variable undergoes a parameter shift, either in mean
or variance, it may affect some or all of the quality variables in succeeding stages, but none
in the preceding stages. The regression adjustment technique was also implemented by Rao
et al (1996)16 in a Bayesian framework to monitor multistage semiconductor manufacturing
processes.

Interstage correlations are the result of variance transmission from upstream to down-
stream stages in a MMP. The monitoring schemes can be extended further to estimate
variance components due to the different stages. A variance transmission model was devel-
oped by Lawless et al. (1999)12 for this purpose and reviewed by Agrawal et al. (1999)17.
A first order autoregressive model given by
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Y1 ∼ N(µ1, σ
2
1) (1)

Yi = αi + βiYi−1 + ei, i = 2, . . . ,M (2)

was used, where M is the number of stages. The model assumes that the output at stage
i given all other preceding stages depends only on what is presented to it from stage i− 1.
Taking the variance of both sides in equation (2), we can see that the variance of the output
at stage i decomposes into variation transmitted to Yi from stage i− 1 and variation added
at stage i12.6, present a further development of this model in which quality variable(s) at
stage i are allowed to depend on process variables, Xi, at stage i as well as quality variables
at any of the preceding stages, Yk, k ∈ Di, where Di = {1, 2, . . . , i − 1}. The resulting
model is written as a system of simultaneous equations given by

Yij =

pi∑
l=1

αijlXijl +
∑
k∈Di

qk∑
l=1

βijklYkl + εij , (3)

where at stage i, i = 1, . . . ,M and quality variable j = 1, . . . , qi:

αijl = direct effect of lth process variable (PV) on ijth quality variable (QV),

Di = set of preceding stages,

βijkl = direct effect of lth QV at stage k, k ∈ Di, on ijth QV,

εij = random error term with mean zero and variance σ2
ij .

Zantek (2002) then showed that through the model in (3) above, the variance of each
quality variable can be decomposed into components attributable to each stage6.

The cause-selecting and regression adjustment charts are based on normal linear regres-
sion models, and therefore assume that each quality variable follows a Gaussian distribution
and that there are linear relationships between the variables. The regression adjustment ap-
proach was further extended to cope with non-linear relationships between quality variables
from different stages. Generalized linear models (GLM) were used to investigate cases with
a count response18 and a gamma-distributed response19. Robust generalized linear models
were used to address outliers in the historical data used to design the control charts8.

3. The multistage process in a maternity unit

Broadly speaking, the process of delivery can be divided into three stages: Dilation, Birth
and Post-partum period20. Each stage has at least one outcome measure and may or
may not have associated process variables and patient-specific risk factors that affect each
outcome variable.

The first stage, Dilation, consists of a latent and established first stage of labour. We
have defined one outcome variable for this stage: length of Stage I labour. Pro-longed labour
poses a risk to the infant and the mother. In practice the infant’s vital signs are monitored
during this stage and intervention is indicated when the risk is perceived to be too high.
Labour is considered prolonged if it continues for longer than 18 hours in a primi-paras
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(first time) mother or longer than 12 hours in a multi-paras mother20. Note that in some
cases, the first stage may be skipped due to an elective or emergency Ceasarean-section. In
such cases, we set the length of the first stage to zero.

The second stage, Birth, consists of a passive and an active second stage of labour. We
have defined two outcomes for this stage: length of Stage II labour and excessive maternal
injury (third or fourth degree tear). Once labour is over the infant must be delivered quickly
to minimise risk, and care must be taken not to cause excessive injury to the mother in
the process. The second stage is pro-longed if it continues for more than two hours in a
primi-paras mother or longer than one hour in a multi-paras mother20.

The third stage, Post-partum period, is the time from the birth of the baby to the birth
of the placenta. We have defined two outcomes for this stage: the infant status and amount
of maternal blood loss. Infant status is commonly measured using the Apgar score21,22,
a composite measure on a scale from 0 (worst) to ten (best) used to assess the health of
newborn infants. If, at five minutes after birth, a baby scores seven or more on the Apgar
scale, they are considered to be in good health. A number of different definitions have
been used for postpartum haemorrhage (PPH). The most common of these defines PPH
as blood loss of more than 1000ml if delivery is through Caesarean section or more than
500ml without a Caesarean section23.

3.1. Model specification for the delivery process

There are three major stages with a total of five outcome variables in the delivery process
as stated above. We define the five binary outcome variables as follows:

Y1 =

{
1 if L1 > 18 hours and Parity=0 or if L1 > 12 hours and Parity≥ 1

0 otherwise

Y2 =

{
1 if L2 > 2 hours and Parity=0 or if L2 > 1 hour and Parity≥ 1

0 otherwise

Y3 =

{
1 if a 3rd or 4th degree tear occurs

0 otherwise

Y4 =

{
1 if 5-minute Apgar score < 7

0 otherwise

Y5 =

{
1 if maternal blood loss > 500ml with no Caesarean, or > 1000ml with a Caesarean

0 otherwise,

where L1 is the length of the first stage and L2 is the length of the second stage.

Each outcome variable is influenced by one or more process variables or risk factors,
and may also depend on an upstream outcome variable. We consider the following process
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variables

X1 =

{
1 if labour induced

0 otherwise

X2 =

{
1 if mechanical instruments used during the second stage

0 otherwise

and risk factors:

Z1 =

{
1 if presentation is posterior or transverse

0 otherwise

Z2 =

{
1 if it is the mother’s first birth

0 otherwise

Z3 = length of gestation (weeks)

Using a combination of literature24,23,25,26, expert knowledge (Sibanda T, personal com-
munication) and empirical evidence, we determined the model structure representing the
relationships among the outcome, process and risk factor variables. The model structure
we adopted is presented using a graphical model as shown in Figure 1.

The graphical model in Figure 1 can be viewed as a Bayesian network27,28. A Bayesian
network is a directed acyclic graph (DAG) with node set V representing random variables,
Y = {Yv∈V } having a joint probability distribution function that can be written as

P (Y) =
∏
v∈V

P (Yv|Ypa(v)). (4)

The term pa(v) represents the set of parent nodes of the node v. The power of a DAG
representation is that once the structure is known, the joint probability distribution of Y can
be written in the form of 4 using the conditional independence axioms introduced by Dawid
(1979)29. In Equation (4), each node is conditionally independent of all non-descendants,
given its parent nodes. Based on the DAG structure in Figure 1 we can write:

P (Y1, Y2, Y3, Y4, Y5|X,Z)

= P (Y5, Y4|Y1, Y2, Y3,X,Z)P (Y2, Y3|Y1,X,Z)P (Y1|X,Z)

= P (Y5|Y1, Y2,X,Z)P (Y4|Z)P (Y3|Y2,X,Z)P (Y2|X,Z)P (Y1|X,Z) (5)

We can therefore fit a separate regression model for each outcome variable conditional
on its parents, which are the relevant process variables, risk factors and upstream outcome
variables. Each of the outcome variables Y1, . . . , Y5 is binary and an appropriate model is
a logistic regression model. Using the formulation of generalised linear models, the model
equation for outcome Yi, i = 1, . . . , 5 is given by:

g(πi) = ηi = αi +

p∑
l=1

βlixl +

q∑
l=1

γliyl +

r∑
l=1

δlizl + εi (6)
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Fig. 1. Directed acyclic graph showing the model structure for a multi-stage process in a mater-
nity unit. Edge directions indicate the direction of relationships and edge labels are the regression
coefficients for the model in equation (6).
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Table 1. Parameter estimates and standard
errors for the logistic regression models rep-
resented in Figure 1 and equation (6).
Parameter Estimate Standard Error

β11 -1.550 0.458
δ11 0.688 0.281
β12 0.287 0.105
δ12 1.544 0.127
δ22 1.383 0.086
β23 0.678 0.162
γ23 0.426 0.163
δ13 0.414 0.209
δ23 0.851 0.149
δ34 -0.272 0.050
β15 0.325 0.117
β25 1.157 0.118
γ25 0.491 0.117
γ35 1.277 0.148
δ25 0.341 0.103

where πi = E(Yi) and

βli = direct effect of lth process variable on Yi

γli = direct effect of lth outcome variable on Yi

δli = direct effect of lth risk factor on Yi

p, q, r = number of process, outcome and risk factor variables respectively

εi = random error term with mean zero and variance σ2
i

Assuming a logit link function and using matrix notation, we can re-write 6 as

log(πi/(1− πi)) = ηi = αi + X′βi + Y′γi + Z′δi

and

πi =
exp(ηi)

1 + exp(ηi)
=

exp(αi + X′βi + Y′γi + Z′δi)

1 + exp(αi + X′βi + Y′γi + Z′δi)
. (7)

for i = 1, . . . , 5.
We used data from the Southmead maternity unit in Bristol, updated from that pub-

lished in a previous paper4 to obtain model parameter estimates and these are shown in
Table 1. We then used these model parameters to inform our simulations for testing the
control charts discussed in the sections that follow.

4. Multi-stage O/E (MSOE) control chart

Previous research on control charts for multistage process control charts has been based
largely on charting residuals19,9. We propose a new multi-stage control chart based on the
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ratio of the number, O, of observed counts to the number, E, of expected counts of the
outcome variable of interest, for monitoring outcomes in multistage healthcare processes.
The ratio O/E is an intuitive and easily interpretable statistic. It has been used in the
past for cross-sectional provider profiling30. The idea of comparing observed and expected
counts is not new to control charts for longitudinal performance monitoring. Based on31,
a cumulative sum (CUSUM) chart using an unadjusted32 and a risk-adjusted33 difference
between O and E was proposed for monitoring surgical outcomes. The control chart we
propose can be used for surveillance of outcome rates over time within a single provider,
where shifts from historical practice are the main targets for detection. It can also be used
by a central governing body for surveillance of multiple providers individually over time
where deviation from agreed national or regional standards is the main focus.

4.1. Test statistic
To detect deviation from historical or standard rates for an outcome variable Yi, for patients
in a given unit, we compare the number of observed outcomes to that predicted using a
model developed from historical or standard practice. That is we test the hypotheses:
H0 : Ri = Oi/Ei = 1 vs H1 : Ri 6= 1. As the model predictions are based on historical
practice and outcomes, we expect a change in either to result in significant differences
between observed and expected counts of a given outcome.

Suppose we have a sample of n patients whose outcomes we wish to monitor. These
patients must be independent of those whose data is used for model development. We
observe the ith binary outcome, yij , for patient j, j = 1, . . . , n, and the vectors (xj ,yj , zj).

Denote the coefficient estimates obtained from historical data as Θ̂i = (α̂i, β̂i, γ̂i, δ̂i). The
predicted value for patient j is

π̂ij =
exp(η̂ij)

1 + exp(η̂ij)
, (8)

where η̂ij = αi + x′jβ̂i + y′j γ̂i + z′j δ̂i.
We propose that the test statistic, Oi/Ei, be calculated at regular time intervals, for

example, on a monthly basis. For a given month we observe oi =
∑n
j=1 yij patients with

Yij = 1. Under the assumption that the logistic model with coefficient estimates Θ̂i is
correct and that outcome rates remain unchanged in the new set of n patients, Ei the
expected value of Oi is estimated by Êi =

∑n
j=1 π̂ij . Therefore at each time interval the

statistic charted is given by:

R̂i = oi/Êi.

4.2. Control limits for MSOE control charts
Control charts consist of a centre line (CL) and upper (UL) and lower (LL) limits. The
centre line is plotted at the value of the test statistic under the null hypothesis. The upper
and lower limits are the confidence limits for a 100(1 − α)% confidence intervals. The
observed values R̂i are plotted, and a point outside the limits is evidence against H0 for
that time interval.

For our control chart, if H0 is true we expect Ri = Oi/Ei = 1. Therefore the centre
line will be at drawn at 1 for all time points. To determine the control limits we consider
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confidence interval for Ri. A number of approaches have been proposed in literature and
we consider three of those approaches here: (1) treat Êi as fixed due to unknown V ar(Θ̂i)
34; (2) assume an approximately normal distribution for Ri

35 and use V ar(Θ̂i) to estimate
V ar(Êi) and V ar(Oi/Êi); (3) assume an approximately log-normal distribution for Ri

36,35

and use V ar(Θ̂i) to estimate V ar(Êi) and V ar(ln(Oi/Êi)).

4.2.1. Estimating V ar(Êi), V ar(Oi/Êi) and V ar(ln(Oi/Êi))
Let us assume that a development dataset, SD with nD patients, is used to fit logistic
regression models for all binary outcome variables. We assume also that, as a minimum,
we have available the estimated coefficients and an estimate of the covariance matrix of the
estimated parameters for each fitted logistic model. For each successive month during the
time period whose outcomes we are monitoring we have a monitoring sample, SM with nM
patients.

Given the logistic regression model fitted using SD, we denote the estimated parameters

and estimated covariance matrix for the ith outcome variable as Θ̂D
i and Ŝ(Θ̂D

i ) respectively.
The estimated covariance matrix is given by

Ŝ(Θ̂D
i ) = (WD′V̂D

i W
D)
−1
, (9)

where WD = (XD,YD,ZD) is the matrix of covariates from SD and V̂D
i is the nD×nD

diagonal matrix that contains the model-based estimates of V ar(Yij) for j = 1, . . . , nD with

V̂D
i = diag{π̂ij(1− π̂ij)}nD

34.
Given that Oi =

∑nM

j=1 Yij and assuming independence among patients in SM we can
write

V ar(Oi) =

nM∑
j=1

V ar(Yij |wM
j ) =

nM∑
j=1

πij(1− πij) (10)

for which a consistent estimator is

V̂ ar(Oi) =

nM∑
j=1

π̂ij(1− π̂ij). (11)

This can be expressed more concisely in matrix form as V̂ ar(Oi) = 1′V̂M
i 1, where V̂M

i

is the nM ×nM diagonal matrix, V̂M
i = diag{π̂ij(1− π̂ij)}nM

and 1 = {1}nM
an nM vector

of ones.
Êi is given by Êi =

∑nM

j π̂ij , the sum of predicted probabilities, π̂ij, for individuals

in SM , where π̂ij is given by (8). Since Êi is based on predictions of new observations, to

work out V ar(Êi), we consider variability in π̂ij and in Θ̂D
i

34. The asymptotic (n → ∞)

variance of Θ̂D
i is given by equation (9).

An approximation of the variance matrix for π̂i = {π̂i1, π̂i2, . . . , π̂im} can be found using
the delta method as follows:

V ar(π̂i)nM×nM
=

(
∂πi
∂ΘD′

i

)
nM×p

V ar(Θ̂D
i )p×p

(
∂πi
∂ΘD

i

)
p×nM

.

This can be written more concisely in matrix form as
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V ar(π̂i) = VM
i WM (WD′VD

i W
D)
−1

WM ′VM
i ,

since ∂πi

∂ΘD′
i

= VM
i WM . We can therefore write

V ar(Êi) = V ar

nM∑
j=1

π̂ij

 = 1′V̂M
i WM Ŝ(Θ̂D

i )WM ′VM
i 1 (12)

We now consider various options for computing confidence intervals for the ratio Ri =
Oi/Êi.

4.2.2. Control limits with fixed Êi
In this first approach we assume that only the model coefficient estimates Θ̂D

i obtained

using SD are available and that WD
i is not available for the calculation of Ŝ(Θ̂D

i ). This
may be the case where detailed historic data is not available and predictions are obtained
from published risk stratification tools. In such a case we calculate exact or approximate
confidence limits for Oi and divide these by Êi.

Assuming Oi is asymptotically normally distributed, that is Oi
approx∼ N(µi, σ

2
i ), with

µi =
∑
j E(Yij |wj) and σ2

i =
∑
j V ar(Yij |wj). This assumption holds only when µi is

sufficiently large, usually > 10.
Based on the normal assumption and equation (11), approximate 100(1−α)% confidence

limits for Oi can be calculated using

oi ± Z(1−α/2)

√√√√nM∑
j=1

π̂ij(1− π̂ij).

The control chart with fixed Êi for outcome variable Yi can then be constructed using

CL = 1

LCL = 1− Z(1−α/2)

√∑nM

j=1 π̂ij(1− π̂ij)

Êi

UCL = 1 + Z(1−α/2)

√∑nM

j=1 π̂ij(1− π̂ij)

Êi
, (13)

4.2.3. Control limits for Normal Ri
We now consider the case where Ŝ(Θ̂D

i ) is available and Ri is assumed to be approximately
normally distributed. The 100(1− α)% confidence interval for Ri in this case is given by

oi
ei
± z(1−α/2)

√
V ar

(
Oi

Êi

)
.

Following35 we can find an approximation of the variance of Ri using a first-degree
Taylor expansion:



Monitoring multistage processes 11

V ar

(
O

Ê

)
≈ 1

e2
V ar(O) +

o2

e4
V ar(Ê) (14)

where V ar(O) and V ar(Ê) are given in equations (10) and (12), respectively.
Using equation (14) we can therefore write

V ar

(
O

Ê

)
≈ 1

e2

nM∑
j=1

πij(1− πij) +
o2

e4
1′V̂M

i WM Ŝ(Θ̂D)WM ′VM
i 1. (15)

Therefore, when we assume that Ri is approximately normally distributed, the control
chart would have

CL = 1

LCL = 1− z(1−α/2)

√
V ar

(
O

Ê

)

UCL = 1 + z(1−α/2)

√
V ar

(
O

Ê

)
, (16)

where V ar(O/Ê) is given in equation (15).

4.2.4. Control limits with log-Normal Ri
We will now consider the case where Ŝ(Θ̂D

i ) is available and Ri is considered to be log-
normally distributed. An approximation of the variance of logRi can be found using the
delta method as follows34,35:

V ar

[
ln

(
O

Ê

)]
≈ 1

o2
V ar(O) +

1

e2
V ar(Ê). (17)

Therefore, when we assume that Ri is approximately log-normally distributed, the con-
trol chart will have

CL = 1

LCL = exp

(
−z(1−α/2)

√
V ar

(
ln
O

Ê

))

UCL = exp

(
z(1−α/2)

√
V ar

(
ln
O

Ê

))
, (18)

with V ar(ln(O/Ê)) given by (17).

In equations (13), (16) and (18), the centre line is placed at 1 as that is the value of Ri
when H0 : Ri = 1 is true. A value of Ri that falls outside the control limits as described
above indicates statistically significant differences betweeen Oi and Ei. Assuming the model
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used to determine Ê is correct, differences between Oi and Ei could be due to a number
of reasons. We use simulations to determine the probability of detecting departures from
the null hypothesis that occur as a result of the changes listed below. For each scenario
we introduce changes of various sizes in the appropriate parameter and then determine
the proportion of times an out-of-control signal occurs in the control charts. To allow
comparisons across the different types of changes, we focus on changes that affect Y3 and
Y5.

(a) Change in Xi or Zi. For example, there may be a change in P (X2 = 1), the probability
of mechanical instrument use in a given month. Based on the depedencies shown in
Figure 1 this is will, in turn, result in a change in Ê3 and Ê5.

(b) Change in the effect, Θi of one or more of X, Y or Z on Yi. We expect this to be
the most frequently detected change. Êi will be based on predictions that assume the
effects found in SD still apply, when Oi will be drawn from a population where these
effects no longer apply. We therefore expect that Oi will differ considerably from Êi.

5. Simulation results

In this section we present results of simulations for the types of shifts listed at the end
of section 4.2. For each type of shift, we simulate a reduction or increase in the ap-
propriate parameters for data in SM . We then generate 500 sets of monthly data with
the simulated shifts applied. For each shift we estimate the probability of true detection,
PD = Pr(true detection | shift) as

PD =


n(lower out-of-control signals | reduction)

n(monthly data sets)

n(upper out-of-control signals | increase)
n(monthly data sets)

(19)

5.1. Change in process variable or risk factor
We investigate shifts in Yi due to changes in E(Xl) or E(Zl), with βli or δli remaining
unchanged. This would occur if there was a change in practice policy or a change in
the underlying population. For example, a change in practice policy may result in fewer
mechanical instruments being used (that is a reduction in E(X2) and this may, in turn, lead
to a change in the associated outcome variables. Changes of various sizes are introduced to
the proportion of instrumental deliveries (E(X2)) in the period being monitored, with no
change in the effect of X2 on any of the outcome variables. The probability of true detection
under various shifts is shown in Table 2 and an example set of charts is shown in Figure 2.

5.2. Change in effect of process variable or risk factor on outcome
We investigate shifts in Yi due to changes in βli, the effect of process variable Xl on Yi, or
δli, the effect of risk factor Zl on Yi, with E(Xl) and E(Zl) remaining unchanged. Such
changes would occur if, for example, new staff or equipment are introduced whose outcome
rates differ from those in the past. For example, a new brand of mechanical instrument
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Fig. 2. MSOE control charts for a simulated change where E(XM
2 ) = 2E(XD

2 ), that is a doubling of
rate of deliveries using mechanical instruments. This results in increased rates of Y3 (3rd/4th degree
tears) and Y5 (PPH) as shown by most points on the corresponding graphs lying above the centre
line. The change is more marked for Y5 than for Y3 as the effect of X2 is larger for Y5. Control limits
are as follows: (- - - - - Fixed Êi), (—– Normal Ri), (- - - - - log-Normal Ri)
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Table 2. Proportion of points outside the lower (LL) and upper (UL) limits following change in E(X2), whereby
E(XM

2 ) = cE(XD
2 ) and the change factor, c, is as shown. The probability of true detection is shown in bold font

where applicable.
Change Variable Fixed Ê Normal Ri Log-normal Ri

factor, c % ≤ LL % ≥ UL Total % ≤ LL % ≥ UL Total % ≤ LL % ≥ UL Total

0.1

Y1 0.020 0.024 0.044 0.020 0.016 0.036 0.000 0.036 0.036
Y2 0.022 0.028 0.050 0.020 0.020 0.040 0.010 0.030 0.040
Y3 0.014 0.040 0.054 0.008 0.026 0.034 0.000 0.054 0.054
Y4 0.000 0.014 0.014 0.000 0.004 0.004 0.506 0.040 0.546
Y5 0.116 0.006 0.122 0.108 0.006 0.114 0.046 0.006 0.052

0.5

Y1 0.010 0.034 0.044 0.010 0.024 0.034 0.000 0.042 0.042
Y2 0.026 0.026 0.052 0.026 0.022 0.048 0.014 0.028 0.042
Y3 0.018 0.042 0.060 0.018 0.028 0.046 0.000 0.054 0.054
Y4 0.000 0.004 0.004 0.000 0.000 0.000 0.536 0.038 0.574
Y5 0.032 0.022 0.054 0.030 0.018 0.048 0.004 0.026 0.030

1.5

Y1 0.008 0.032 0.040 0.008 0.026 0.034 0.000 0.040 0.040
Y2 0.020 0.022 0.042 0.018 0.016 0.034 0.008 0.024 0.032
Y3 0.008 0.056 0.064 0.008 0.034 0.042 0.000 0.062 0.062
Y4 0.000 0.002 0.002 0.000 0.000 0.000 0.528 0.030 0.558
Y5 0.000 0.316 0.316 0.000 0.276 0.276 0.000 0.338 0.338

2.0

Y1 0.014 0.020 0.034 0.014 0.020 0.034 0.000 0.030 0.030
Y2 0.026 0.020 0.046 0.024 0.018 0.042 0.012 0.026 0.038
Y3 0.014 0.064 0.078 0.012 0.036 0.048 0.000 0.068 0.068
Y4 0.000 0.002 0.002 0.000 0.000 0.000 0.524 0.022 0.546
Y5 0.000 0.620 0.620 0.000 0.574 0.574 0.000 0.630 0.630

4.0

Y1 0.016 0.036 0.052 0.016 0.026 0.042 0.000 0.048 0.048
Y2 0.028 0.020 0.048 0.024 0.014 0.038 0.008 0.026 0.034
Y3 0.002 0.094 0.096 0.002 0.028 0.030 0.000 0.070 0.070
Y4 0.000 0.002 0.002 0.000 0.000 0.000 0.476 0.024 0.500
Y5 0.000 0.998 0.998 0.000 0.996 0.996 0.000 0.998 0.998
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Fig. 3. MSOE control charts for a simulated change where βM
2i = 2βD

2i , for i = 3, 5. That is, we
simulate a doubling of the effect of use of a mechanical instrument on the risk of 3rd or 4th degree
tears and the risk of post-partum haemorrhage. This results in increased rates of Y3 (3rd/4th degree
tears) and Y5 (PPH) as shown by most points on the corresponding graphs lying above the centre
line. The change is more marked for Y5 than for Y3 as the effect of X2 is larger for Y5. Control limits
are as follows: (- - - - - Fixed Êi), (—– Normal Ri), (- - - - - log-Normal Ri)

may be introduced that results in reduced post-partum haemorrhage rates. As illustrative
examples, changes of various sizes are introduced to β23 and β25, the regression coefficients
for X2 in the regression models for Y3 and Y5, respectively. The probability of true detection
under various shifts is shown in Table 3 and an example set of charts is shown in Figure 3.

In Table 3 and Figure 3 we simulated shifts in both β23 and β25, the direct effect
of X2 on Y3 and Y5, respectively. The graphical model presentation in Figure 1 shows
that Y3 is upstream of and has an effect on Y5. Therefore changes detected in Y5 in the
simulations above will be due to a combination of the direct effect of the X2 on Y5 and an
additional indirect effect of X2 through Y3. An important question is whether any change
would detected in Y5 if there was no change in β25, but there is a change in β23. In other
words, are indirect effects of process variables or risk factors transmitted through upstream
outcomes detectable on downstream outcomes? As an example, we introduce a number of
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Table 3. Proportion of points outside the lower (LL) and upper (UL) limits following change in β2i, whereby
βM
2i = cβD

2i , for i = 3, 5 and the change factor, c, as shown. The probability of true detection is shown in bold
font where applicable.
Change Variable Fixed E Normal Log-normal
factor, c % ≤ LL % ≥ UL Total % ≤ LL % ≥ UL Total % ≤ LL % ≥ UL Total

0.1

Y1 0.018 0.024 0.042 0.014 0.014 0.028 0.000 0.032 0.032
Y2 0.010 0.060 0.070 0.008 0.052 0.060 0.000 0.062 0.062
Y3 0.106 0.000 0.106 0.102 0.000 0.102 0.000 0.002 0.002
Y4 0.000 0.030 0.030 0.000 0.000 0.000 0.524 0.030 0.554
Y5 0.402 0.000 0.402 0.384 0.000 0.384 0.204 0.000 0.204

0.5

Y1 0.030 0.020 0.050 0.026 0.010 0.036 0.000 0.034 0.034
Y2 0.020 0.064 0.084 0.016 0.056 0.072 0.004 0.066 0.070
Y3 0.076 0.008 0.084 0.076 0.008 0.084 0.000 0.012 0.012
Y4 0.000 0.030 0.030 0.000 0.000 0.000 0.516 0.030 0.546
Y5 0.200 0.000 0.200 0.190 0.000 0.190 0.098 0.000 0.098

1.5

Y1 0.024 0.020 0.044 0.020 0.018 0.038 0.000 0.032 0.032
Y2 0.002 0.060 0.062 0.002 0.042 0.044 0.000 0.064 0.064
Y3 0.014 0.016 0.030 0.010 0.012 0.022 0.000 0.028 0.028
Y4 0.000 0.032 0.032 0.000 0.000 0.000 0.522 0.032 0.554
Y5 0.002 0.202 0.204 0.000 0.152 0.152 0.000 0.214 0.214

2.0

Y1 0.024 0.012 0.036 0.018 0.006 0.024 0.000 0.022 0.022
Y2 0.018 0.074 0.092 0.016 0.062 0.078 0.010 0.078 0.088
Y3 0.002 0.074 0.076 0.002 0.050 0.052 0.000 0.096 0.096
Y4 0.000 0.036 0.036 0.000 0.000 0.000 0.542 0.036 0.578
Y5 0.000 0.704 0.704 0.000 0.654 0.654 0.000 0.720 0.720

4.0

Y1 0.010 0.030 0.040 0.010 0.016 0.026 0.000 0.038 0.038
Y2 0.012 0.066 0.078 0.008 0.046 0.054 0.004 0.074 0.078
Y3 0.000 0.958 0.958 0.000 0.938 0.938 0.000 0.962 0.962
Y4 0.000 0.022 0.022 0.000 0.000 0.000 0.534 0.022 0.556
Y5 0.000 1.000 1.000 0.000 1.000 1.000 0.000 1.000 1.000



Monitoring multistage processes 17

0 20 40 60 80 100

0.
5

1.
5

Y1 : Pro−longed stage I labour

Sample

O
/E ●

●

●●
●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●●

●

●

●

●
●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●
●

●

●

●

●

●

●

●

●

●
●

●●

●

●●
●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●
●
●

●

●

●

●

●

●

●
●
●
●

●

●

●

●

●●

●
●

●●
●

●

●

●

●

●●
●
●
●●

●

●

●
●
●●

●

●●

●

●
●

●

●

●●

●

●
●

●●

●

●

●

●

●●

●

●
●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 20 40 60 80 100

0.
8

1.
4

2.
0

Y2 : Pro−longed stage II labour

Sample

O
/E

●●●

●

●

●●

●

●●

●●●

●●●

●

●
●

●

●●

●●
●

●

●

●

●

●

●
●

●

●

●

●
●●

●
●
●●

●

●
●
●

●●

●
●●

●

●

●

●

●
●

●

●●

●

●●●

●

●
●

●
●●

●●
●
●●

●
●
●

●

●
●●

●

●●●

●

●

●

●

●●

●

●

●
●●

●

●●
●

●
●

●

●

●
●

●●●●●
●●

●

0 20 40 60 80 100

0.
5

1.
5

Y3 : 3rd/4th Degree Tears

Sample

O
/E

●

●●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●●

●●●

●
●

●

●

●
●

●

●

●

●
●●

●
●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●
●
●

●

●

●
●
●

●

●●
●

●

●

●
●●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●●

●

●

●

●
●●

●●

●

●●
●
●
●

●

●

●
●

●

●●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●
●

●

●●●●
●
●

●●
●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●●
●
●

●

●

●

●

●
●
●●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●●

●

●
●
●●

●
●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●
●
●

0 20 40 60 80 100

−
2

0
2

Y4 : Low Apgar

Sample
O

/E

●●

●

●

●

●●

●

●●●●

●●

●

●

●

●●●

●

●

●

●●●

●

●

●●

●●

●

●

●●

●●

●

●

●●

●●●

●

●

●

●●

●

●●

●

●

●

●●

●

●●●

●●●●●

●●

●

●●

●

●●●●

●

●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●●

●

●

●

●

●

●●

●●

0 20 40 60 80 100

0.
8

1.
4

2.
0

Y5 : Post−partum Haemorrhage

Sample

O
/E

●●●

●
●●

●●

●
●

●●

●●

●

●●

●●
●
●

●

●
●

●●

●
●

●●
●

●

●
●

●

●

●
●
●
●

●
●

●

●

●

●●

●

●●●

●●

●
●

●

●

●

●
●●

●

●

●●
●●

●

●

●●

●

●

●

●

●

●

●●●

●●

●

●
●●

●●

●●●

●

●

●

●

●

●●

●

●

●

●

●
●

●●●

●
●

●

●
●

●
●

●

●●
●●

●

●

●

●

●

●●

●

●

●
●●

●

●●

●

●

●●
●●

●
●
●

●

●

●

●
●●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●
●

●

●

●

●
●●

●●●●
●
●

●

●●

●

●
●●●

●

●

●

●
●

●
●

●

●●

●
●
●
●
●
●
●

●

●

●

●

●

●
●
●
●

●

●
●
●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●
●
●●

●

●

●
●

●
●

●
●

●●

●●

●

●

●●

●

●

●

●
●

Fig. 4. MSOE control charts for a simulated change where βM
23 = 2βD

23. That is, we simulate a
doubling of the effect of use of a mechanical instrument on the risk of 3rd or 4th degree tears. There
is an increased rate of Y3 (3rd/4th degree tears) as shown by most points on the corresponding
graphs lying above the centre line. There is no shift in Y5 (PPH). Control limits are as follows: (- - - -
- Fixed Êi), (—– Normal Ri), (- - - - - log-Normal Ri)

changes of different sizes in β23, but none in β25 and assess the probability of true detection
in Y3 and Y5. The results are shown in Table 4 and example charts are shown in Figure 4.

6. Application to Southmead Maternity Unit data

In this section we present results of an illustrative example in which multi-stage control
charts were applied to data from a maternity unit. Data used were for deliveries carried
out in 2008 at a large tertiary unit with about 5000 births a year on average. Deliveries
with a breech presentation or those resulting in multiple births were excluded. Data for the
first three months of the year (1204 births) were used to fit the model presented in Figure
1. The fitted model was then used to determine and to estimate expected counts for each
of the outcome variables Y1, . . . , Y5 for the rest of the year. Observed counts were obtained
and control charts constructed for the rest of the deliveries on a fortnightly frequency, with
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Table 4. Proportion of points outside the lower (LL) and upper (UL) limits following change in β23, whereby
βM
23 = cβD

23 and the change factor, c is as shown. The probability of true detection is shown in bold font where
applicable.
Change Variable Fixed E Normal Log-normal
factor, c % ≤ LL % ≥ UL Total % ≤ LL % ≥ UL Total % ≤ LL % ≥ UL Total

0.1

Y1 0.020 0.046 0.066 0.018 0.032 0.050 0.000 0.054 0.054
Y2 0.040 0.008 0.048 0.032 0.004 0.036 0.010 0.010 0.020
Y3 0.036 0.020 0.056 0.034 0.014 0.048 0.000 0.022 0.022
Y4 0.000 0.166 0.166 0.000 0.000 0.000 0.502 0.166 0.668
Y5 0.010 0.048 0.058 0.008 0.036 0.044 0.000 0.054 0.054

0.5

Y1 0.020 0.034 0.054 0.020 0.024 0.044 0.000 0.044 0.044
Y2 0.028 0.018 0.046 0.024 0.012 0.036 0.012 0.020 0.032
Y3 0.030 0.014 0.044 0.024 0.006 0.030 0.000 0.018 0.018
Y4 0.000 0.118 0.118 0.000 0.000 0.000 0.548 0.118 0.666
Y5 0.006 0.028 0.034 0.006 0.016 0.022 0.002 0.040 0.042

1.5

Y1 0.012 0.044 0.056 0.012 0.030 0.042 0.000 0.062 0.062
Y2 0.044 0.012 0.056 0.042 0.006 0.048 0.006 0.014 0.020
Y3 0.004 0.098 0.102 0.004 0.066 0.070 0.000 0.128 0.128
Y4 0.000 0.124 0.124 0.000 0.000 0.000 0.516 0.124 0.640
Y5 0.016 0.050 0.066 0.010 0.036 0.046 0.002 0.062 0.064

2.0

Y1 0.016 0.062 0.078 0.014 0.028 0.042 0.000 0.094 0.094
Y2 0.022 0.014 0.036 0.018 0.010 0.028 0.006 0.016 0.022
Y3 0.000 0.228 0.228 0.000 0.192 0.192 0.000 0.270 0.270
Y4 0.000 0.112 0.112 0.000 0.000 0.000 0.536 0.112 0.648
Y5 0.018 0.042 0.060 0.014 0.018 0.032 0.000 0.052 0.052

4.0

Y1 0.024 0.046 0.070 0.022 0.024 0.046 0.000 0.066 0.066
Y2 0.034 0.014 0.048 0.030 0.012 0.042 0.016 0.016 0.032
Y3 0.000 0.994 0.994 0.000 0.984 0.984 0.000 0.996 0.996
Y4 0.000 0.168 0.168 0.000 0.000 0.000 0.476 0.168 0.644
Y5 0.010 0.056 0.066 0.010 0.040 0.050 0.002 0.056 0.058
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Fig. 5. Multi-stage O/E control charts for deliveries carried out in 2008 at a tertiary maternity unit.
Control limits are as follows: (- - - - - Fixed Êi), (—– Normal Ri), (- - - - - log-Normal Ri)

an average of 196 births a fortnight. The charts obtained are shown in Figure 5.

The MSOE charts in Figure 5 show a marked upward trend in rates of pro-longed stage
II labour. Although all points are within the control limits for Y3 , 80% of them are below
the central line indicating lower than expected rates of 3rd or 4th degree tears. The chart
for Y5 indicates higher than expected rates for post-partum haemorrhage. There is no
indication that rates for pro-longed stage I labour and low Apgar scores are different to
those predicted by the model.

7. Discussion

In this paper, we proposed the use of multi-stage O/E (MSOE) control charts for monitoring
outcomes of healthcare procedures. A multi-stage approach tracks outcomes at all stages of
the procedure and takes into account the inherent correlation among these outcomes that
exists due to variance propagation from upstream to downstream stages. We proposed use
of O/E, the ratio of observed to expected outcomes, as the test statistic as this is easier to
interpret than the residuals that are typically plotted in multi-stage control charts.

We investigated three options for constructing the control limits. Our simulation results
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showed similarity in true detection rates between confidence limits based on a fixed Ê and
those based on a normal distribution assumption for the ratio O/E. The normal and log-
normal approximations work well when O and Ê are sufficiently large. When they are small
(O,E less than about 10), then the use of exact methods is recommended.

We further investigated the true detection rate for various types of changes in outcome
rates and found that the true detection rate is dependent on the size and type of change.
Changes in the effect of a process variable or risk factor are detected quicker than changes
in the population distribution of these variables. For example, a doubling in the effect of X2

(use of mechanical instruments) on Y5 was detected about 70% of the time for all three types
of confidence limits. On the other hand, when the number of deliveries in which mechanical
instruments were used doubled, the resulting increased post-partum haeomorrhage rate was
detected about 60% of the time.

The true detection rate was based on the number of points outside the control limits
and are thus the minimum detection rates. Detection rates can be improved by the use
of run rules. For example, in Figure 5 the chart for Y2 shows a steady upward trend, but
with none of the points falling outside the control limits. A run rule such as ‘five or more
successive points above or below the central line’37 would allow the change to be detected
earlier than if the rules were based only on points outside the limits.

When comparison is to be made to historical practice, data from past patients is used
to construct logistic regression models for each of the outcome variables. The models
constructed at this stage are key to the entire procedure and must be well calibrated and
have good predictive ability. In addition, the choice of candidate explanatory variables must
be made carefully. As the goal of the monitoring exercise is to inform practice during the
procedure, any information that is only available after completion of the procedure should
be excluded. For example, an association between high birth weight and the risk of third
or fourth degree lacerations has been reported in a number of articles38,26. However, as
birthweight is not available to practitioners until after birth, it cannot be included as a
predictor in the regression model for the control charts. Ideally, the time period to use for
obtaining SD, the historical data, should be a time when practice and outcomes were at
acceptable levels. For example, if a hospital has always had unacceptably high rates of one
of the outcome variables, then SD should ideally consist of births from other hospitals.

If there are no established models identifying relevant explanatory variables to each
quality variables, then the model construction stage can be used to test hypotheses about
these relationships. Note that even if there are published and accepted models, it is worth
going through this testing exercise as the models determined from one institution may not
hold true for another institution. For example, one hospital may have an established practice
of delivering breech presentations by ceasarean section. When assessing whether the type of
presentation affects, say the risk of a prolonged labour in such a hospital, the model would
indicate an association between breech presentation and reduced labour duration. This is
counterintuitive and reflects the result of practice rather than an actual causal effect and
it would therefore be prudent to exclude breech presentations from model construction.
It is likely that a hospital that does not have this practice will see breech presentations
associated with prolonged labour. Therefore model construction has to take into account
local practice and guidelines.
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