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Abstract

In this paper we study the Pólya - Aeppli process (PAP). We define PAP from three
different points of view: as a compound Poisson process, as a delayed renewal process
and as a pure birth process. We show that these definitions are equivalent. Also, using
these definitions we identify several interesting characterizations of PAP.

Key words: Pólya - Aeppli distribution, compound distribution, delayed renewal process,
pure birth process.

AMS subject classifications: 60G51; 60G55; 60G10.

1 Introduction

The standard, widely used model for count data is the Poisson process with intensity λ > 0
and probability mass function (PMF) given by

P (N1(t) = k) =
(λt)k

k!
e−λt, k = 0, 1, . . . .(1)

One of the most important properties of the Poisson process is its equidispersion, i.e., the
Poisson variance and mean are equal. Then the corresponding Fisher index, which is defined
as the ratio of the variance to the mean, is equal to one. In many practical applications, the
equidispersion property of the Poisson process is not observed in the count data at hand, so
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it motivates the search for more flexible models for this type of data. The most commonly
used generalization of the Poisson process is the compound Poisson process. It is the basic
counting process in risk models. The compound Poisson model is very useful for modeling
batch arrivals in queueing systems, as well as cluster data. In Minkova [7] a compound
Poisson process with geometric compounding distribution is defined and some of its possible
applications in risk models, including a discussion on related ruin probability are given. The
corresponding counting process is called a Pólya - Aeppli process. Here we use the acronym
PAP for the Pólya - Aeppli process. For details on the Pólya-Aeppli distribution, see Johnson
et al. [4], and also Minkova [5, 6].

The paper is organised as follows. In Section 2 we consider three equivalent definitions
of PAP. The equivalence of the definitions is discussed in Section 3. Section 4 deals with
some properties of PAP. Useful characterizations of PAP are derived in Section 5. Section 6
concludes this study.

2 Definitions of PAP

In what follows we view PAP from different viewpoints and offer several possible definitions
of this process. In Section 3 we show that these definitions are equivalent.

2.1 PAP as a compound Poisson process

Now, consider {N(t), t ≥ 0} as a counting process, i.e., N(t) is equal to the number of arrivals
in the interval (0, t]. Let X1, X2, . . . be i.i.d. integer valued random variables. Suppose that
N(t) is given by the sum

N(t) = X1 + . . .+XN1(t),(2)

where N1(t) is a homogeneous Poisson process with intensity λ > 0, independent of {Xi}∞1 .
Then, the process defined in (2) is called a compound Poisson process.

Suppose that X1, X2, . . . are geometrically distributed with parameter 1−ρ, ρ ∈ [0, 1) and
support {1, 2, . . .}, which is denoted by X ∼ Ge1(1− ρ). Then the probability mass function
(PMF) and the probability generating function (PGF) of X are given as follows:

P (X = i) = ρi−1(1− ρ), i = 1, 2, . . .(3)

and

ψ1(s) = EsX =
(1− ρ)s

1− ρs
.(4)

Then, using (4), the PGF of N(t) can be expressed as

ψN(t)(s) = e−λt(1−ψ1(s)).(5)

Based on the above construction, it is easy to see that N(t), which is the number of
arrivals in the interval (0, t], is Pólya-Aeppli distributed with parameters λt and ρ ∈ [0, 1),
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i.e., N(t) ∼ PA(λt, ρ), i.e., the probability mass distribution function of N(t) is given by:

P (N(t) = m) =


e−λt, m = 0

e−λt
m∑
i=1

(
m− 1

i− 1

)
[λt(1− ρ)]i

i!
ρm−i, m = 1, 2, . . . .

(6)

Now, we are ready to give the first definition of the Pólya - Aeppli process.

Definition 2.1 (Minkova [7]) A counting process {N(t), t ≥ 0} is said to be a Pólya - Aeppli
process with parameters λ and ρ if

(i) it starts at zero, N(0) = 0;
(ii) N(t) is a process with independent increments;
(iii) for each t > 0, the number of arrivals N(t) in any interval of length t is Pólya - Aeppli

distributed with parameters λt and ρ.

To express the fact that a counting process {N(t), t ≥ 0} is a Pólya - Aeppli process with
parameters λ and ρ, we use the notation N(t) ∼ PAP (λ, ρ). If ρ = 0, then PAP (λ, 0)
simplifies to the homogeneous Poisson process with intensity λ. The mean and variance of
PAP (λ, ρ) are given by

E(N(t)) =
λt

1− ρ
and V ar(N(t)) =

λt(1 + ρ)

(1− ρ)2
,

and related Fisher index is equal to

FI(N(t)) =
V ar(N(t))

E(N(t))
= 1 +

2ρ

1− ρ
> 1.

Therefore, not only Poisson process is a particular case of Pólya-Aeppli process, but for ρ 6= 0
the Pólya-Aeppli process is over - dispersed, which provides a greater flexibility in modeling
count data than the standard Poisson process.

2.2 PAP as a delayed renewal process

Our second PAP definition views the process as a delayed renewal process. Consider PAP (λ, ρ)
and denote by T1 the time to the first arrival and by T2, T3, . . . the consecutive interarrival
times. Suppose that T1, T2, . . . are mutually independent random variables. Moreover, as-
sume that T1 is exponentially distributed with parameter λ and T2, T3, . . . are exponentially
distributed with mass ρ at zero, which is denoted by T2 ∼ exp(λ, ρ), with corresponding
distribution function

FT2(t) = 1− (1− ρ)e−λt, t ≥ 0.(7)

It is easy to verify that

FT1(t) =
1

ET2

∫ t

0
[1− FT2(x)]dx.(8)

Then, our second definition of PAP (λ, ρ) is as follows:

Definition 2.2 The delayed renewal process {T1, T2, . . .} is called a Pólya - Aeppli process
with parameters λ and ρ.
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2.3 PAP as a pure birth process

Next, noticing that the construction of PAP (λ, ρ) allows the process to be defined as a pure
birth process, our third PAP definition is as follows:

Definition 2.3 A counting process {N(t), t ≥ 0} is said to be a Pólya - Aeppli process with
parameters λ and ρ if

(a) N(0) = 0;
(b) N(t) is a process with independent and stationary increments;
(c) the state transition probabilities are defined as follows:

P (N(t+ h) = n | N(t) = m) =

{
1− λth+ o(h), n = m,
(1− ρ)ρi−1λth+ o(h), n = m+ i, i = 1, 2, . . . ,

(9)

for every m = 0, 1, . . ., where o(h)→ 0 as h→ 0.

3 Equivalence of PAP definitions

In what follows we show that the three PAP definitions given in Section 2 are equivalent.

Proposition 3.1 The definition 2.1 and definition 2.2 of the Pólya - Aeppli process are equiv-
alent.

Proof. Let τn = T1 + . . . + Tn, n = 1, 2, . . . be the waiting time until the nth arrival. The
well known relation

P (N(t) = n) = P (τn ≤ t)− P (τn+1 ≤ t)

shows that the condition N(t) ∼ PA(λt, ρ) and the assumptions related to T1, T2, . . . in Section
2.2 are equivalent, see Minkova [7]. Therefore, the Pólya - Aeppli process is a delayed renewal
process. Due to condition (8), it is a stationary renewal process, see Serfozo [8], p. 145.

2

Proposition 3.2 The definition 2.1 and definition 2.3 of the Pólya - Aeppli process are equiv-
alent.

Proof. The interpretation of condition (9) is that geometrically distributed clusters (or
batches) arrive randomly with arrival rate λ. Let Pm(t) = P (N(t) = m), m = 0, 1, 2, . . . .
Then (9) yields the following Kolmogorov forward equations:

P ′0(t) = −λP0(t),

P ′m(t) = −λPm(t) + (1− ρ)λ
∑m
j=1 ρ

j−1Pm−j(t), m = 1, 2, . . . ,
(10)

with initial conditions

P0(0) = 1 and Pm(0) = 0, m = 1, 2, . . . .(11)

Next, we show that the solution of equations (10), with initial condition (11), is given by (6).
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Let us consider the PGF

h(s, t) =
∞∑
m=0

smPm(t)

of the process N(t). Multiplying the mth equation of (9) by sm and summing for all m =
0, 1, 2, . . . , we get the following differential equation

∂h(s, t)

∂t
= −λ[1− ψ1(s)]h(s, t).(12)

The solution of (12), with the initial condition P0(0) = 1, is

h(s, t) = e−λt[1−ψ1(s)],

which is the PGF of the PAP (λ, ρ), given by (5), which leads to (6).
2

Therefore all three PAP definitions introduced in Section 2 are equivalent and represent
PAP from different viewpoints, using different mathematical apparatus with specifics that
could be advantageous in practical applications related to count data.

4 Properties

Next, we study some interesting properties of PAP, with arrival times 0 = τ0 < τ1 ≤ . . . .

Proposition 4.1 (The waiting time distribution) The distribution function of the wait-
ing time τn is given by

Fτn(t) = 1− e−λt
n−1∑
i=0

(
n− 1

i

)
(1− ρ)iρn−1−i

i∑
j=0

(λt)j

j!
, n = 1, 2, . . . .(13)

Proof. To prove the statement we will use mathematical induction.

• For n = 1 we get the the distribution function of τ1 = T1

Fτ1(t) = 1− P (N(t) = 0).

Applying (6) for m = 0, it follows that

Fτ1(t) = 1− e−λt t > 0.

According to the basic properties of the counting processes we have the following relation

Fτn(t) = Fτn−1(t)− P (N(t) = n− 1), n = 2, 3, . . . .(14)

• For n = 2, the distribution function of τ2 = T1 + T2 is

Fτ2(t) = Fτ1(t)− P (N(t) = 1) = 1− (1 + (1− ρ)λt)e−λt.
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• Suppose now that for n ≥ 2, the distribution function of the waiting time is given by

Fτn−1(t) = 1− e−λt
n−2∑
i=0

(
n− 2

i

)
(1− ρ)iρn−2−i

i∑
j=0

(λt)j

j!
.(15)

Then, applying (6) for m = n− 1 and after substituting (15) into (14) and simplifying,
we obtain (13).

2

Remark 4.1 The distribution function (13) is a generalization of the Erlang distribution. In
the case ρ = 0 it simplifies to the distribution function of Erlang(λ, n).

Proposition 4.2 (Martingale property) For N(t) ∼ PA(λt, ρ), the process M(t) = N(t)−
λ

1−ρt is a martingale.

Proof. Since λ
1−ρt is non - random, E

(
N(t)− λ

1−ρt
)

= 0 and M(t) has independent incre-

ments. Therefore, for s ≤ t and Ft = σ{N(s), s ≤ t}, we have

E

[
N(t)− λ

1− ρ
t|Fs

]
= E

[
N(t)−N(s)− λ

1− ρ
(t− s)|Fs

]
+N(s)− λ

1− ρ
s

= N(s)− λ

1− ρ
s,

as required.
2

5 PAP Characterizations

Our next goal is to derive the characterization properties of the Pólya - Aeppli process,
but before doing so, we need to study the characterization properties of the exponential
distribution with mass at zero.

5.1 Characterization I

In Galambos and Kotz [3], p.12, the authors show that the following conditions

[1− F (x)]′ = −λ[1− F (x)] and
∫ ∞
z

[1− F (x)]dx =
1

λ
[1− F (z)], z ≥ 0(16)

with

F (0+) = 0(17)
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provide a characterization of the exponential distribution with parameter λ. The condition
(17) is significant in their proof. Furthermore, if the condition (17) is omitted, they show,
that the class of functions

F (x) = 1− ce−λx, c ∈ (0, 1], x ≥ 0(18)

satisfies the conditions (16), where the choice of the constant c characterizes the distribution.
For example, c = 1 provides a characterization for the exponential exp(λ) (condition (17) is
satisfied). For c ∈ (0, 1), it provides a characterization for the exponential distribution with
mass (1− c) at zero. The corresponding distribution in (18) with c = 1− ρ < 1, is exp(λ, ρ),
given in (7).

Let T2 be a random variable with distribution function FT2(x) and finite mean ET2 <
∞. Define a random variable T1 with distribution FT1(z) = 1

ET2

∫ z
0 [1 − FT2(x)]dx. Then the

following characterization result holds.

Lemma 5.1 The random variable T1 is exponentially distributed with parameter λ if and only
if T2 ∼ exp(λ) or T2 ∼ exp(λ, ρ).

Proof.

• From the second part of (16), it follows that exponential distribution of T2 implies
exponential T1. Also, it is easy to check that if T2 ∼ exp(λ, ρ), then the random variable
with distribution function FT1(z), is exponentially distributed with parameter λ.

• The converse result is also true. If T1 ∼ exp(λ), then from (8), it follows that FT2(x) =
1− ET2λe−λx, i.e., FT2(x) belongs to the class (18), with c = λET2.

– If ET2 = 1
λ
, then c = 1, and T2 ∼ exp(λ).

– If ET2 = 1−ρ
λ
, then c = 1− ρ, and T2 ∼ exp(λ, ρ).

2

Theorem 5.1 T1 ∼ exp(λ) and T2 ∼ exp(λ, ρ) iff N(t) is a Pólya-Aeppli process.

Proof. The proof follows from Lemma 5.1 and the equivalence of Definition 2.1 and Definition
2.2, given in Section 2.

2

5.2 Characterization II

Our second PAP characterization is based on Serfozo’s result in [8], p.145, which gives char-
acterization properties of the delayed renewal processes. We summarize this result in the
following lemma:

Lemma 5.2 The delayed renewal process N(t) with intensity µ > 0 is stationary if and only
if

C1: E(N(t)) = µt and
C2: FT1(t) = µ

∫ t
0 [1− FT2(x)]dx.
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The second PAP characterization is based on Lemma 5.2, and it is given by the following
theorem:

Theorem 5.2 The delayed renewal process with finite number of arrivals over a finite interval
is stationary if and only if it is a Pólya - Aeppli process.

Proof.

• Firstly we show that PAP is delayed stationary renewal process.

According to the Definition 2.2, PAP can be viewed as a delayed renewal process, (see
subsection 2.2), with first arrival time T1 ∼ exp(λ) followed by i.i.d. interarrival times
T2 ∼ exp(λ, ρ). Using the fist definition of PAP as a compound Poisson process, we know
that EN(t) = λ

1−ρt. Next, using C1 of Lemma 5.2, we set µ = λ
1−ρ . Next we use (7) and

the definitions of T1 and T2, with

ET2 =
1− ρ
λ

,

which leads to C2 with the same value of µ. Therefore, PAP satisfies Lemma 5.2, hence
PAP can be viewed as a delayed stationary renewal process.

• From Lemma 5.1 and the condition C2 of Lemma 5.2 it follows immediately that the
stationary delayed renewal process is PAP.

2

5.3 Characterization III

Let us consider the point process 0 = τ0 < τ1 ≤ . . . , such that Ti = τi−τi−1, i = 1, 2, . . . . Then
N(t) is the number of points in the interval (0, t]. The next theorem gives the characterization
of the Pólya - Aeppli process as a point process.

Theorem 5.3 A counting process N(t) defined on the points 0 = τ0 < τ1 ≤ . . . , has stationary
independent increments, a finite number of arrivals on finite time intervals, and satisfies the
condition

P (τi = τi+1) = ρ, i = 1, 2, . . .(19)

iff it is a Pólya - Aeppli process.

Proof.

• Firstly, we note that if a process is PAP, then it has stationary and independent incre-
ments. Moreover, due to definition 2.2, the distribution of the second onwards interar-
rival times is exponential with ρ mass at zero, i.e., P (Ti = 0) = ρ for i = 2, 3, . . . , which
is equivalent to (19).
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• Now we aim to prove that if a point process with finite number of arrivals on a finite time
interval has stationary and independent increments over the points 0 = τ0 < τ1 ≤ . . .
and satisfies (19), then it is PAP.

In Th.2.2.II, p.27 in Daley and Vere-Jones [2], the authors show that if a point process
is with stationary and independent increments and has a finite number of arrivals over
finite time interval, then it can be viewed as a compound Poisson process. The condition
(19) means that for i = 1, 2, . . .

P (Ti+1 = 0) = ρ.(20)

Therefore, the first interarrival time is exponential (due to Th. 2.2.II, p.27 in Daley and
Vere-Jones [2]) followed by i.i.d. exponentially distributed with ρ mass at zero interar-
rival times (due to (20)), which according to definition 2.2, means that the considered
point process is PAP.

2

Remark 5.1 If the counting process is defined on the points 0 = τ0 < τ1 < . . . , the statement
of the Theorem 5.3 gives a characterization of the homogeneous Poisson process, see Cont and
Tankov [1], Lemma 2.1 and Serfozo [8], p. 110, Remark 21. This is the case when ρ = 0 and
the geometric compounding distribution degenerates, so its support becomes {1}.

6 Conclusions

In this paper we have studied Pólya - Aeppli process, as an extension of the standard ho-
mogeneous Poisson process, aiming to address the equidispersion of the Poisson process. As
mentioned earlier, the equidispersion property of the Poisson process could be unacceptable
in some situations when dealing with modelling of count data. We have shown that Pois-
son process is a particular case of Pólya - Aeppli processes and that Pólya - Aeppli process
could be over-dispersed, which provides greater flexibility in modeling count data. We have
identified three possible definitions of the Pólya - Aeppli process in prove that these defini-
tions are equivalent. These definitions allow for further study of this process using variety of
mathematical tools. Some interesting and important properties of the Pólya - Aeppli process
are also included in this study. Moreover, we formulated three characterization results for the
Pólya - Aeppli process, which is of significant interest in the studies related to point processes.
Next we will focus on further exploration of PAP and its possible applications. For example,
inference related to PAP is an open interesting question that we aim to address in our future
studies.
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