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Abstract

In this study we define the Pólya - Aeppli process of order k as a compound Poisson

process with truncated geometric compounding distribution with success probability

1 − ρ > 0 and investigate some of its basic properties. Using simulation we provide a

comparison between the sample paths of the Pólya - Aeppli process and the Poisson

process. Also, we consider a risk model in which the claim counting process {N(t)} is

Pólya - Aeppli process of order k, and call it a Pólya - Aeppli of order k risk model.

For the Pólya - Aeppli of order k risk model we derive the joint distribution of the time

to ruin and the deficit at ruin as well as the ruin probability. We discuss in detail the

particular case of exponentially distributed claims and provide simulation results for

more general cases.
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1 Introduction

Assume that the standard model of an insurance company, called risk process {X(t), t > 0}
is given by

(1) X(t) = ct−
N(t)∑
i=1

Zi (
0∑
1

= 0).

Here c is a premium income per unit time, N(t) is the counting process, {Zi}∞i=1 is a se-

quence of independent identically distributed, positive random variables, independent of N(t)

with Zi representing the ith claim amount. We assume that the individual claim amounts

have a continuous distribution with distribution function F , F (0) = 0, and mean value

µ = EZ1 < ∞. In the classical risk model the process N(t) is a homogeneous Poisson pro-

cess, see for instance Grandell (1991), [6] and Rolski et all. (1999), [13]. The most popular

generalization of homogeneity is a compound Poisson process.

In this paper we suppose that the counting process N(t) is a compound Poisson process

with discrete compounding distribution, i.e. N(t) =
∑N1(t)

i=1 Yi, where Y1, Y2, . . . are inde-

pendent identically distributed random variables, independent of N1(t) and N1(t) ∼ Po(λt).

Let Y denotes the compounding random variable with probability generating function (PGF)

PY (s) = EsY . Then the PGF of the counting process is given by

(2) PN(t)(s) = e−λt[1−PY (s)].

In Section 2 we define the Pólya - Aeppli distribution of order k. The Pólya - Aeppli process

of order k as a pure birth process is given in Section 3. In Section 4 we consider the Pólya -

Aeppli of order k risk model and derive a differential equation for the joint distribution of the

time to ruin and the deficit at the time of ruin and an expression for the ruin probability. The

results are illustrated for the particular case of exponentially distributed claims. In Section

5, a simulation approach is reviewed and implemented for the risk model with exponential,

gamma and Weibull distributed claims.

2 The Pólya - Aeppli distribution of order k

The discrete distributions of order k were introduced in early eighties in Philippou et all.

(1983), [11], Philippou and Makri (1986), [12]. A good reference for the distributions of

order k is the book of Balakrishnan and Koutras (2002), [3]. The main property of the

distributions of order k is that they can be represented as Compound Generalized Power
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series distributions, where the compounding distribution is a discrete distribution over k > 1

points, see for example, Charalmbides (1986), [4] and Aki et all. (1984), [2].

All random variables considered in this study are assumed to be defined on a fixed prob-

ability space (Ω,F ,P). We consider a random variable N that is

(3) N = Y1 + Y2 + . . .+ YN1 ,

where Y1, Y2, . . . are mutually independent, non-negative, integer valued, identically distributed

random variables, independent of N1. The probability distribution of N is said to be a com-

pound distribution. Let PY (s), where Y is an arbitrary Yi, be the common PGF of the sequence

Y1, Y2, . . . . We suppose that the random variable N1 belongs to the family of Generalized Power

series distributions (GPSD), see for example Patil (1962), [10] and Johnson et all. (2005), [7].

The PGF of the random variable N is given by

(4) PN(s) =
g(θPY (s))

g(θ)
,

where θ > 0 is a parameter and g(θ) is a series function. The random variable N is said to

have a Compound GPSD. The distribution of Y is a compounding distribution.

Suppose that the random variable Y has a truncated geometric distribution with success

probability 1− ρ and probability mass function (PMF) and PGF, given by

(5) P (Y = m) =
1− ρ
1− ρk

ρm−1, m = 1, 2, . . . k

and

(6) PY (s) =
(1− ρ)s

1− ρk
1− ρksk

1− ρs
,

where k > 1 is fixed integer number.

If k →∞, the truncated geometric distribution approaches the Ge1(1− ρ) distribution.

In this section we introduce the Pólya - Aeppli distribution of order k as a compound

Poisson distribution with PGF given by

(7) PN(s) = eλ(PY (s)−1),

where PY (s) is the PGF of the compounding distribution.

Definition 2.1 The probability distribution defined by the PGF (7) and compounding distri-

bution, given by (5) and (6) is called a Pólya - Aeppli distribution of order k with parameters

λ > 0 and ρ ∈ [0, 1), denoted by PAk(λ, ρ).
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3 The Pólya - Aeppli process of order k

The Pólya - Aeppli process of order k is introduced in Minkova (2010), [9]. It is a compound

Poisson process with truncated geometric compounding distribution and PGF given by (2).

The second definition of the process is as pure birth process. Let N(t) represents the state

of the system at time t > 0. It is assumed that the process has state space N , the non-negative

integers. Let λ > 0 be any real number and ρ ∈ (0, 1).

We assume that, for any small interval h > 0 the system state transition probabilities are

as follows:

(8) P (N(t+ h) = n | N(t) = m) =

{
1− λh+ o(h), n = m,
1−ρ
1−ρk ρ

i−1λh+ o(h), n = m+ i, i = 1, 2, . . . , k

for m = 0, 1, . . ., where o(h)→ 0 as h→ 0. Note that this assumption implies that

P (N(t+ h) = m+ i | N(t) = m) = o(h), for i = k + 1, k + 2, . . . ,

Let Pm(t) = P (N(t) = m), m = 0, 1, 2, . . .. Then Eq. (8) yields the following Kolmogorov

forward equations:

(9)

P ′0(t) = −λP0(t),

P ′m(t) = −λPm(t) + 1−ρ
1−ρkλ

∑m∧k
j=1 ρ

j−1Pm−j(t), m = 1, 2, . . . ,

with the the following initial conditions

(10) P0(0) = 1 and Pm(0) = 0, m = 1, 2, . . . .

Let

h(u, t) =
∞∑
m=0

umPm(t)

be the PGF of the process N(t). Multiplying the mth equation of (9) by um and summing

over all m = 0, 1, 2, . . . we get the following differential equation

(11)
∂h(u, t)

∂t
= −λ[1− PY (u)]h(u, t).

The solution of (11) with the initial condition P0(0) = 1 is h(u, t) = e−λt[1−PY (u)], which is the

PGF of the PAk(λt, ρ) distribution, given by (2) and (6).

Definition 3.1 The counting process defined by (9) and (10) is called a Pólya - Aeppli process

of order k.

Remark 3.1 In the case of k →∞, the Pólya - Aeppli process of order k, coincides with the

Pólya - Aeppli process, defined in Minkova (2004), [8]. If ρ = 0, it is a homogeneous Poisson

process.
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3.1 Poisson decomposition

Let us rewrite the PGF of N(t) ∼ PAk(λ, ρ) in the following way:

PN(t)(s) = exp
(
λt
[

1−ρ
1−ρk (s+ ρs2 + . . .+ ρk−1sk)− 1

])
=
∏k

i=1 e
λt 1−ρ

1−ρk
ρi−1(si−1)

.

The above means that N(t) can be represented as a sum of k independent Poisson processes

M1(t), . . . ,Mk(t) with means EMi(t) = λ 1−ρ
1−ρk ρ

i−1t and PGFs PMi(t)(s) = e
λt 1−ρ

1−ρk
ρi−1(si−1)

,

i = 1, 2, . . . , k.

4 Application to Risk Theory

Consider the standard risk model {X(t), t > 0}, defined on the complete probability space

(Ω,F , P ) and given by (1). We consider the risk model (1), where N(t) is Pólya - Aeppli

process of order k and will call this process Pólya - Aeppli of order k risk model.

In this case the relative safety loading θ is defined by

θ =
EX(t)

E
∑N(t)

i=1 Zi
=

c(1− ρk)
λµ(1 + ρ+ ρ2 + . . .+ ρk−1 − kρk)

− 1.

In the case of positive safety loading θ > 0, the premium income per unit time c should satisfy

the following inequality

c >
λµ(1 + ρ+ ρ2 + . . .+ ρk−1 − kρk)

(1− ρk)
.

Let τ = inf{t : X(t) < −u} with the convention of inf ∅ = ∞ be the time to ruin of an

insurance company having initial capital u > 0. We denote by

(12) Ψ(u) = P (τ <∞)

the ruin probability. Let G(u, y) be the joint probability distribution of the time to ruin τ

and the deficit in prior to ruin D = |U(τ), i.e.

(13) G(u, y) = P (τ <∞, D 6 y).

and

(14) lim
y−→∞

G(u, y) = Ψ(u).
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Using the postulates (8), we get

G(u, y) = (1− λh)G(u+ ch, y)+

+
1− ρ
1− ρk

λh

[∫ u+ch

0

G(u+ ch− x, y)dF (x) + (F (u+ ch+ y)− F (u+ ch))

]
+

+
1− ρ
1− ρk

ρλh

[∫ u+ch

0

G(u+ ch− x, y)dF ?2(x) +
(
F ?2(u+ ch+ y)− F ?2(u+ ch)

)]
+

. . .

+
1− ρ
1− ρk

ρk−1λh

[∫ u+ch

0

G(u+ ch− x, y)dF ?k(x) +
(
F ?k(u+ ch+ y)− F ?k(u+ ch)

)]
+ o(h),

where F ?m(x), m = 1, 2, . . . is the distribution function of Z1 + Z2 + . . . + Zm. Rearranging

the terms leads to

G(u+ ch, y)−G(u, y)

ch
=
λ

c
G(u+ ch, y)−

− 1− ρ
1− ρk

λ

c

[∫ u+ch

0

G(u+ ch− x, y)dF (x) + (F (u+ ch+ y)− F (u+ ch))

]
−

− 1− ρ
1− ρk

ρ
λ

c

[∫ u+ch

0

G(u+ ch− x, y)dF ∗2(x) +
(
F ∗2(u+ ch+ y)− F ∗2(u+ ch)

)]
−

. . .

− 1− ρ
1− ρk

ρk−1
λ

c

[∫ u+ch

0

G(u+ ch− x, y)dF ∗k(x) +
(
F ∗k(u+ ch+ y)− F ∗k(u+ ch)

)]
+ o(h)

Let

H(x) =
1− ρ
1− ρk

[
F (x) + ρF ∗2(x) + ρ2F ∗3(x) + . . .+ ρk−1F ∗k(x)

]
be the non defective probability distribution function of the claims with

H(0) = 0, H(∞) = 1.

By letting h→ 0 we obtain the following differential equation

(15)
∂G(u, y)

∂u
=
λ

c

[
G(u, y)−

∫ u

0

G(u− x, y)dH(x)− [H(u+ y)−H(u)]

]
and in terms of the safety loading

(16)
∂G(u, y)

∂u

=
1− ρk

µ(1 + ρ+ . . .+ ρk−1 − kρk)
1

1 + θ

[
G(u, y)−

∫ u

0

G(u− x, y)dH(x)− [H(u+ y)−H(u)]

]
.
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4.1 Ruin probability

Theorem 4.1 The probability of ruin Ψ(u) satisfies the equation

(17)
dΨ(u)

du
=
λ

c

[
Ψ(u)−

∫ u

0

Ψ(u− x)dH(x)− [1−H(u)]

]
, u > 0.

Proof. The result follows from (15) and (14).

�

Theorem 4.2 The function G(0, y) is given by

(18) G(0, y) =
λ

c

∫ y

0

[1−H(u)]du.

Proof. Integrating (15) from 0 to ∞ with G(∞, y) = 0 leads to

−G(0, y) =

=
λ

c

[∫ ∞
0

G(u, y)du−
∫ ∞
0

∫ u

0

G(u− x, y)dH(x)du−
∫ ∞
0

(H(u+ y)−H(u))du

]
The change of variables in the double integral and simple calculations yield

G(0, y) =
λ

c

∫ ∞
0

[H(u+ y)−H(u)]du

and (18).

�

Theorem 4.3 The ruin probability with no initial capital satisfies

(19) Ψ(0) =
λµ

(1− ρ)(1− ρk)c
[1− (k + 1)ρk + kρk+1].

Proof. According to (18)

Ψ(0) = lim
y→∞

G(0, y) =
λ

c

∫ ∞
0

[1−H(u)]du.

Let X be a random variable with distribution function H(x). By the definition of H(x) and

EZ = µ, we obtain

EX =
µ

(1− ρ)(1− ρk)
[1− (k + 1)ρk + kρk+1].

Using the fact that EX =
∫∞
0

[1−H(x)]dx, we obtain (19).

�

Remark 4.1 Based on (19), it is easy to see that the ruin probability with no initial capital

dosn’t depend on t.
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4.2 Exponentially distributed claims

Let us consider the case of exponentially distributed claim sizes, i.e., F (x) = 1− e−
x
µ , x >

0, µ > 0. In this case, the function h(x) is a mixture of Erlang density functions and is

given by

h(x) =
k∑
i=1

qi

(
x
µ

)i−1
µ(i− 1)!

e−
x
µ , x > 0,

where qi = P (Y = i) = ρi−1(1−ρ)
1−ρk , i = 1, 2, . . . k is the mixing distribution, see Willmot and

Lin (2001), [16]. For the survival function we obtain

(20) H(x) =
k∑
i=1

F Y (i− 1)

(
x
µ

)i−1
e−

x
µ

(i− 1)!
, x > 0,

where F Y (0) = 1 and

F Y (i− 1) = P (Y > i− 1) =
k∑

m=i

ρm−1(1− ρ)

1− ρk
=
ρi−1(1− ρk−i+1)

1− ρk
, i = 2, 3, . . . , k.

Also, the survival function in (20) could be rewritten in the following form

H(x) =
e−

x
µ

1− ρk
k∑
i=1

(
ρx
µ

)i−1
(i− 1)!

[1− ρk−i+1], x > 0.

In addition, the result of Theorem 4.2, in the case of exponentially distributed claims,

modifies to

G(0, y) =
λµ

c

k−1∑
i=0

F Y (i)

i!
γ

(
i,
y

µ

)
,

where γ(i, x) =
∫ x
0
ti−1e−tdt is the incomplete gamma function.

5 Simulation

In what follows we briefly review a simulation approach for calculating the probability of

ruin suggested in Dufresne and Gerber (1989), [5] and apply this approach for the case of

exponentially distributed claims with initial capital u = 0. We confirm the validity of our

simulation results by matching them with the analytical value of the ruin probability computed

by using Eq. (19). In addition, we provide results for the case of non-zero initial capital not

only for exponentially distributed claims but also for the case of gamma and Weibull claim

distributions.
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5.1 The background of the simulation approach

When it comes to computing the probability of ruin, the traditional approach of repeated

simulations to observe the proportion of favourable outcomes is not applicable because of Eq.

(12), i.e., it requires infinite simulation runs, which is impossible. An elegant and easy to

implement approach for computing the ruin probability is proposed in Dufresne and Gerber

(1989), [5], which is based on the following two facts:

• the probability of ruin is equivalent to the stationary distribution of a specific process,

which is associated with the considered risk process;

• the stationary distribution of this associated process is computable by simulating its

trajectories.

Next, we briefly summarise this approach. Denote by

(21) S(t) =

N(t)∑
i=1

Zi and L(t) = S(t)− ct, t > 0,

i.e., L(t) is the accumulated loss at time t, and if

(22) M(t) = max 06z6tL(z ),

then it is the maximum loss experienced over the interval [0, t]. The probability of survival to

time t is equal to

(23) 1−Ψ(u, t) = P (M(t) 6 u),

i.e., it is given by the cdf of M(t). Also, if L = max t>0L(t), then the ruin probability is easily

expressed in terms of L as Ψ(u) = 1−P (L 6 u). Now, let us consider the following associated

process

(24) W (t) = L(t)−min06z6tL(z)

with distribution function V (x, t) = P (W (t) 6 x). The process W (t) is obtained from

L(t) by using a retaining barrier at 0. Rewriting the presentation of W (t) as W (t) =

max06z6t[L(t) − L(z)] and comparing it with Eq. (22), it follows that W (t) and M(t) have

the same distribution, see Seal (1972), [14]. Therefore,

(25) 1−Ψ(u, t) = V (u, t).

Let V (u) = limt→∞ V (t, u) be the stationary distribution of W (t). Therefore

(26) 1−Ψ(u) = V (u).
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The main idea in computing the distribution V (u) is as follows: let for a particular value of u,

D(u, t) be the total amount of time the process W (t) is below a predetermined level u before

time t. Then, due to the Strong Law of Large Numbers, e.g., see Sen and Singer (1993), [15],

it is true that

(27) lim
t→∞

D(u, t)

t
= V (u).

Based Eq. (26) and Eq. (27), the stationary distribution V (u) can be computed by simulating

the trajectories of the process W (t). For more details on this approach, pictorial representation

of the relationship between W (t) and L(t) and an efficient algorithm for computing V (u), see

Dufresne and Gerber (1989), [5].

5.2 Results

Next, we consider the case of exponentially distributed claims and no initial capital u = 0.

We verify the correctness of our simulation code, which is base on the discussion in subsection

5.1, by comparing the results for the probability of ruin produced by the simulator, given in

column “analytical“ with the value of the probability of ruin for the same model parameters

computed using Eq.(19), given in column “simulated“, see Table 1 below:

λ k ρ analytical Exp(1) simulated Exp(1)
2.0 10 0.4 0.256249 0.256224
3.0 6 0.2 0.287373 0.287782
1.5 4 0.8 0.256723 0.256906
1.0 15 0.6 0.207745 0.207708
2.5 3 0.9 0.344623 0.344557

Table 1

As expected the “analytical“ and “simulated“ results are very close. So, we use our simu-

lator, written in MATHEMATICA, to compute a reasonable approximation of the probability

of ruin for non-exponentially distributed claims and non-zero initial capital u 6= 0 and our

findings are summarised below.

5.2.1 Case 1: Exponentially distributed claims

Here, we extend section 4.2 by presenting some simulation results for the case of exponentially

distributed claims with non-zero initial capital.
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Figure 1: Probability of ruin: exponentially distributed claims

Comparing part(a) and part(b) of Figure 1, it is easy to see that the probability of ruin is

shifted downwards as the initial capital increases. If the initial capital is u = 0, the smallest

values for the probability of ruin is just above 0.18 for ρ = 0.1, whereas the analogous value

for u = 5 is just below 0.005. The depicted overall dependence on ρ, regardless of the value of

the initial capital, is as expected, the probability of ruin increases as ρ increases. The overall

trends depicted in part(c) and part(d) of Figure 1 also agree with our intuition. Namely, for

a fixed value of ρ, the probability of ruin is higher for low values of the initial capital and it

increases on k. It is worth to point out the sharp increase of the probability of ruin for large

values of ρ and large k, as shown in part(d) of Figure 1.
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5.2.2 Case 2: Gamma distributed claims

Next, we consider gamma distributed claims with parameters α and β, i.e., the density function

of the claim sizes is

f(x) =
1

βγ(α)

(
x

β

)α−1
e−

x
β , x > 0.

Suppose that α = 2 and β = 0.5. In this case the mean values of the claims are EZi = αβ = 1.

We present results for different values of the model parameters u, k and ρ.
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Figure 2: Probability of ruin: gamma distributed claims

The trends observed for the gamma distributed claims are similar to the one we have

presented and discussed for the case of exponentially distributed claims in subsection 5.2.1.

Here we depict the dependence of the probability of ruin from u, for similar ρ and k. Overall

the probability of ruin for lower value of the capital u is higher, similar to what we have

observed in the exponential case. In addition we see that for high values of u, and ρ, k have

a strong impact on the probability of ruin, e.g., see for ρ = 0.9, and u = 0 the range of the

probability of ruin is approximately (0.3, 0.6), whereas for u = 5 this range is much larger,

approximately (0.1, 0.45).

5.2.3 Case 3: Weibull distributed claims

Next we focus on Weibull with parameters α = 1.43552259 and β = 1.1013206 distributed

claims. Here α is the shape parameter and β is the scale parameter. The parameters of the

Weibull and gamma distributions were selected so that the three claim distributions considered

in sections 5.2.1, 5.2.2 and 5.2.3 have the same expectation µ = 1 and the Weibull and gamma

claims have the same variance.
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Figure 3: Probability of ruin: Weibull distributed claims

We were quite surprised to see that the behavior of the probability of ruin under Weibull

distributed claims, part(a) and part(b) in Figure 3, mimics quite closely the behavior of this

probability for gamma distributed claims. So, then the natural question is: under a risk model

based on the Pólya - Aeppli process of order k, are the mean value and the variance of the

claim distribution what determines the probability of ruin, i.e., the actual form of the claim

distribution does not affect the probability of ruin. At this point of our study we are not able

to answer to this question and further experimental and theoretical work is needed to address

it.

5.3 Sensitivity analysis regarding the claim distribution

Here we look at the impact of the claim distribution on the probability of ruin and provide

an illustration of our findings.

In part(a) and part(b) in Figure 4, we fix the value of the parameter k = 6, and illustrate

the dependence of the probability of ruin on u for two different values of ρ. As expected

the probability of ruin is a decreasing function of the initial capital u and its value is shifted

upwards for increasing values of parameter ρ. In addition, the values of the probability of

ruin are not very different for the three chosen claim distribution, with slightly higher values

of this probability for exponential claims than for the remaining two distributions. In parts

(c) and (d) in Figure 4, we fix u = 5 and depict the dependence of the probability of ruin

on k for two different values of ρ. It is easy to see that the probability of ruin behavior is

as expected, but the interesting observation here is that the exponential case provides an

upper bound for the probability of ruin, which we have also observed in all of our numerical
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Figure 4: Probability of ruin: sensitivity on the claim distribution

experiments. Therefore another interesting question could be posted: is this observation due

to our choice of the model parameters or it is a generally true statement for the risk model

based on the Pólya - Aeppli process of order k. Also it is interesting to address the following:

are there any condition on the mean and the variance of the claim size distributions that will

guaranty the satisfaction of some specified inequalities on the related ruin probabilities. Again

further numerical and theoretical studies are needed to gain some insight on these interesting

questions.

6 Conclusions

In the present study we have defined the Pólya - Aeppli process of order k as a compound

Poisson process with truncated geometric compounding distribution with success probability

1− ρ > 0. We have illustrated that the Pólya - Aeppli process of order k can be represented

14



as a sum of k independent Poisson processes and discussed some possible application of this

process in risk theory. We have studies the probability of ruin for the related risk model,

called a Pólya - Aeppli of order k risk model, and have derived an exact expression for the ruin

probability in the particular case of zero initial capital. Also, we summarised and adopted

a simulation approach, given in Dufresne and Gerber (1989), [5] for our particular model.

Using this simulation approach we provide results for more general cases of the model, such

as non-exponential claim distribution and non-zero initial capital. The simulation results

open for discussion several very interesting questions related to the probability of ruin for

Pólya - Aeppli of order k risk model. These questions, see subsections 5.2.3 and 5.3 will be

addressed in our future work. Another interesting extension of this study would be to develop

a multivariate version of the proposed model, along the lines summarized in Anastasiadis and

Chukova (2012), [1].
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