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1 Autoregressions and long range prediction

The aim of this report is to illustrate the application of a class of linear time series models,
called ZAR models, which have been introduced to the literature in recent years. They are
a generalization of linear autoregressive (AR) models that have the potential to improve the
long range prediction of time series by extending the dependence on past values to high lags.
We will review earlier work on these models at the end of this section, we describe them in
section 3, and present their properties and estimation procedures in the following sections.
A ZAR model is specified by its order, p, and a smoothing coefficient, 6, and reduces to an
AR(p) model when 6 = 0. Standard AR (and ARIMA) models are widely and successfully
used, but there are examples which suggest that we should be able to improve upon the
predictions that they furnish. The specific example we use to illustrate the topics in this
report is the series of the monthly USA unemployment rate from January 1968 to August
2009. In this section we consider long range forecasting issues typified by this example series,
and in the next section we present forecasts of the series which illustrate the ability of the
ZAR model to address these issues.

The upper two plots in Figure 1 show the monthly and annual raw unemployment rates.
The lower two plots show the seasonally adjusted (S-A) rate and its logarithms, which we
use for most of our statistical analyses for reasons given at the start of the next section.
We comment that the main features are the same in all these series: the slow rise and fall
of the overall level similar to a random walk (we will call this the walk feature) and the
approximate five year economic cycle (the cycle feature). Seasonal adjustment is carried
out because the seasonality evident in the first series obscures the underlying level that is
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Figure 1: The USA unemployment rate: (a) raw values from January 1968 to August 2009,
(b) the annual average rate from 1968 to 2008, (c) seasonally adjusted values from January
1968 to August 2009 and (d) logarithms of seasonally adjusted values from January 1968 to
August 20009.

important for monitoring movements in the series from one month to the next. Forecasters
are interested in predicting the series for periods of possibly several years ahead and it is
usual to use S-A monthly data for this purpose. Two considerations that arise from the
specific characteristics of this example are that:

1. the most notable features (walk and cycle) of the data are associated with low fre-
quencies and long periods relative to the length of the series and the monthly sampling
frequency, and

2. forecasts are desired to high lead times with respect to the monthly sampling frequency.

The first of these points raises the issue that standard AR models, selected using information
criteria, do not have the flexibility to fit features within the small fraction of the frequency
range that is associated with these long period movements. The upper plots in Figure 2 show
the (unsmoothed) log spectra of the logarithms of the raw and adjusted series. Evidence for
the walk and cycle features in the series is only barely visible in a collection of narrow peaks
below frequency 0.02 in both these plots, i.e. within 5% of the range shown. The second
point is an issue because standard AR models are fitted to predict just one step ahead. A
further consideration in this respect is the effect of seasonal adjustment on the series. Figure
2(c) shows those parts of the log spectrum of the adjusted series for which the spectrum



is less than one half of that of the raw series. These illustrate that, in general, seasonal
adjustment can introduce dips in the spectrum of the adjusted series around the frequencies
of the seasonal harmonics.
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Figure 2: Log scale spectra of logarithms of the monthly unemployment rate (a) for the
unadjusted series, (b) for the S-A series, (c) those parts of the log spectrum of the adjusted
series for which the spectrum is less than one half of that of the raw series and (d) the sample
acf of the adjusted series.

The low frequency spectral peaks are strongly evident in the un-logged spectra (not shown).
However, a model fitted to minimize the one-step ahead error sum of squares is generally
influenced by fluctuations of the series spectrum on the log scale. The structure associated
with dips in the spectrum of the adjusted series at seasonal harmonic frequencies may then
have an influence on the fitting of a parametric model that is comparable with that of the
low frequency peaks. Given a sufficiently long series a standard AR model selected by the
AIC, Akaike (1973), will consistently estimate the whole spectrum, Shibata (1980). However,
for the series we are considering, the selected model may be inadequate to provide a good
fit both to the cyclical features in the lower 5% of the range and to the pattern over the
remaining 95% that is affected by seasonal adjustment. Note, from Figure 2(c), that the
lower frequencies associated with the walk and cycle features are not affected by seasonal
adjustment.

The time domain viewpoint is that the AR model essentially captures the lagged sample
correlations (acf) of a series up to the order of the model, and the order of model required
might be expected to be at least comparable with the time period of the cycles, of about 60
months. Figure 2(d) shows the sample autocorrelations of the logarithms of the seasonally



adjusted series. Evidence for the approximate five year economic cycle in the acf is obscured
by the effect of the walk, and lags up to several multiples of the cycle period are needed to
reveal it.

In section 3, and those following, we describe the ZAR model, and methods for fitting this
model, which address the issues raised in the previous paragraphs as follows:

1. the flexibility of the model lies in fitting features at low frequencies,

2. the method of fitting allows more weight to be placed on lower frequencies.

The corresponding time domain properties are that the model places weight on past data up
to higher lags, and the fitting method also seeks to minimize the prediction error over high
lead times.

For many years there has been an ongoing interest in methods for improved forecasting at
higher lead times. This is based on the recognition that minimizing single-step forecast
error variance, which is equivalent to maximum likelihood model estimation, can be far
from optimal for higher lead time forecasting if the model is not correct. This may be
true even if the mis-specification may appear relatively minor in the sense that residual
diagnostics do not readily reveal model inadequacy. Much ground-breaking work in this
area was presented in Findley (1983, 1985, 1990, 1991) and discussion with Dr Findley
when he visited Lancaster lead to the development of Haywood and Tunnicliffe Wilson
(1997), on fitting models by minimizing squared multistep-ahead errors. Our extension of
this idea to the construction of a test for improved multi-step forecasting, Haywood and
Tunnicliffe Wilson (2009), includes a review of more recent work by other authors in this
general area. We showed that for commonly occurring models our approach implicitly gave
greater weight to the lower frequencies in the data, but this weight was model dependent.

The ZAR modeling approach is based on a very different idea, but is similar in that it has the
capacity to give greater weight to lower frequencies in the data. However, this weighting is
prescribed and not model dependent. The ideas of ZAR modeling may be traced back to the
generalized continuous time shift operator and Laguerre filters of Wiener (1949). Discrete
time versions have, more recently, been used extensively in systems modeling, Wahlberg
(1991). These ideas have been introduced by Wahlberg and Hannan (1993) in a class of
time series models very closely related to the ZAR models of this report. Our formulation of
the discrete time ZAR model developed from a continuous time model presented in Belcher
et al. (1994). It is first found in Morton and Tunnicliffe Wilson (2004) where the model
is equivalent to that in Wahlberg and Hannan (1993), and slightly different from the one
presented in this report. Underlying the models is the idea of basis functions for the space
of past observations and an excellent mathematical background to these concepts can be
found in Partington (1997). Multivariate time series applications are presented in Morton
and Tunnicliffe Wilson (2001), Tunnicliffe Wilson et al. (2001) and Tunnicliffe Wilson and
Morton (2004), as also are continuous time versions of the model. The Ph.D. theses of
Morton (2000), Ibafiez (2005) and Lo (2008) study, respectively, the multivariate continuous
time model, non-linear ZAR models and multi-step prediction properties of ZAR models.
The findings of the second thesis are summarized in Ibanez and Tunnicliffe Wilson (2007).
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2 Some forecast comparisons

In this section we compare predictions of the unemployment series using both the standard
AR (and ARIMA) model and the ZAR model. All the models are fitted to the logarithms of
the data then transformed back to display forecasts. The results are not, however, particu-
larly sensitive to this transformation. There is not a great difference in appearance between
Figures 1(c) and (d), but transformation does give a more similar appearance to the five
or so peaks seen in the series. The asymmetry in the rise and fall of the peaks is evidence
of some non-linear behavior which is not treated by the logarithmic transformation. The
models presented in this report are all linear, but nevertheless have the capacity to reflect,
in their predictions, the pattern of cycles evident in the past. All predictions are out of
sample, 7.e. the models are fitted to data up to the chosen origin then forecasts made over
the remaining period. The error limits shown on all forecasts are designed for 90% coverage
at any given point.
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Figure 3: Forecasts of the USA unemployment rate from May 2001: (a) for the raw series
with results corrected for a fixed annual cycle, and (b) for the seasonally adjusted series.

Consider first the raw monthly series. A Box-Jenkins seasonal ARIMA model, Box and Jenk-
ins (1970), fits this well with non-seasonal autoregressive, differencing and moving average
orders set to p = 2, d = 0 and ¢ = 1, corresponding seasonal orders P =0, D = 1 and Q) = 1,
and seasonality set to s = 12. This model is encompassed by the default set of models used
by the PICKMDL procedure of X-12-ARIMA. Residual diagnostics were good except for a
hint of some calender effects. The estimated non-seasonal autoregressive operator charac-
terizes irregular cyclical behavior, and this is to some extent reflected in the forecasts from
May 2001, shown in Figure 3(a), which hint at the oscillation observed in future values. In
order to show the pattern of forecasts more clearly we have subtracted from the series and
forecasts displayed in this graph a fixed annual cycle, obtained by regression on the set of
seasonal harmonics. Because the seasonality is not constant some evidence of this remains
in the figures.

Forecasts of the seasonally adjusted series are shown, from the same origin, in Figure 3(b).
The non-seasonal ARIMA model used for this had orders p = 3, d = 0 and ¢ = 2. All
parameters were significant and residual diagnostics were very good. The forecasts from this
model, shown in Figure 3(b), are not very markedly different from those for the raw series,

bt



but fail to show any hint of the future cycle.
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Figure 4: Forecasts of the S-A monthly USA unemployment: (a) from May 2001, using an
AR(6) model, (b) from May 2001, using a ZAR(14) model, (c¢) from March 1997, using a
ZAR(14) model, and (d) from January 1993, using a ZAR(14) model.

[lustrations of forecasts obtained by application of the ZAR model to the seasonally adjusted
series are shown in Figure 4, except that in Figure 4(a) the results are from the model
restricted to the special case of the standard AR model for which AIC selects the order 6
and the forecasts are similar to those in Figure 3(b) from the ARMA model. The remaining
frames of this figure show forecasts made using a ZAR model of order 14 from origins of
May 2001, March 1997 and January 1993, which are respectively 400, 350 and 300 months
from the start of the series. The forecast functions in all cases reflect quite well the cyclical
pattern in the future values with realistic error limits, which is encouraging. However, on
the logarithmic scale of the series, the ratio of the forecast error sum of squares up to 6
years ahead for the ZAR(14) model, is greater than that of the AR(6) model by a factor
of 1.38 for the forecasts from May 2001 shown in Figure 4(a) and (b). Simple models
with forecast functions showing persistence, or mean reversion as in Figure 4(a) can be
hard to beat, though, overall, the more accurate forecast might be judged to be that of
the ZAR(14) model in Figure 4(b) when the much more precise error limits are taken into
account. A similar comparison of forecasts from March 1997 and April 1993 results in ratios
of respectively 0.79 and 0.33, strongly favoring the ZAR(14) model. This model, i.e. its order
p = 14 and ZAR coefficient § = 0.94, was selected in preference to the mean-reverting AR(6)
model, using an information criterion described in section 6. This is an extension of the
AIC which provides protection against the over-fitting of these more complex models. We
recall the cautious advice of Tukey (1986) regarding attempts to extract too much structure
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from data, but he also makes a positive point that we should “look for appearances” in the
data, and the cycles are quite apparent here, so a cautious attempt to include them in the
results is recommended. Another point made in that article, specific to time series, is that
one is fortunate if a sufficient length of data is available to determine its structure, without
some change of structure occurring over that time span. For the unemployment series it
would not be surprising if structural breaks and lack of stationarity occurred over the 40
year span we are modeling: the last few points reflect the most recent dramatic break and
lie well outside the forecast limits of the ZAR model. Nevertheless, substantial economic
shocks have previously had their impact on the recorded unemployment, and the dynamic
behavior of the series seems to persist. The application to the unemployment series is very
useful for illustrating the motivation and methodology, but it is a testing example, which we
offer for critical re-assessment by anyone who may wish to investigate these models further.
We have used ZAR models and methods successfully in other contexts, including extensions
to vector time series, and are confident of their value and potential in appropriate situations.
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Figure 5: Forecasts of the average annual USA unemployment rate: (a) from the year 2000,
using an AR(3) model,(b) from the year 2000, using an AR(12) model, (c¢) from the year
1996, using an AR(12) model and (d) from the year 1992, using an AR(12) model.

To complete this section we consider the annual average series. Our point is to emphasize that
our advocacy of the ZAR model is related to the higher, monthly, sampling frequency that
makes it challenging for the standard AR to model the series parsimoniously. In contrast,
the standard AR model can be applied to give annual forecasts that parallel those shown for
the monthly ZAR model in Figure 4. Inspection of information criteria displayed in Figure
6 suggested two possible orders, 3 or 12. The modest forecasting performance of the AR(3)
is shown in Figure 5(a), and is comparable with the forecast of the S-A monthly series in
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Figure 4(a). Forecasts from the same origin for the AR(12) model are shown in Figure 5(b).
These are quite close to the actual and comparable to those from the ZAR(14) model for the
S-A monthly series in Figure 4(b). Similarly, forecasts from the earlier origins of 1996 and
1992, shown in Figures 5(c) and (d), though not so close, are comparable to those in Figure
4(c) and (d): they reflect well the cyclical pattern of the future values.

The order 12 was determined by application of the AIC to the whole series. This is shown
in Figure 6(a) together with three other criteria. The first is the modified AIC of Hurvich
and Tsai (1989), which it is appropriate to consider when the order of model is a substantial
fraction of the series length, as in this application: an order 12 model is fitted to just 29
points in the example shown in Figure 5(c). The second is the Hannan and Quinn (1979)
criterion, and the third is the Schwarz (1978) criterion. All these select order 3 except the
AIC which selects order 12. Knowing the tendency of the AIC to over-estimate the true
order of a model, one might hesitate to select the order 12 as over-fitting the data. To
avoid the loss of degrees of freedom suffered by simple lagged regression, which is serious for
short series and high order models, we have used the exact likelihood for estimation, and in
the information criteria. However, the exact log-likelihood can be far from quadratic in its
parameters, and care is needed to locate the MLE.
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Figure 6: (a) Autoregressive modeling of the average annual unemployment rate: (a) order
selection criteria, respectively the AIC, the Hannan-Quinn, the Hurvich-Tsai and the Schwarz
criteria in increasing value at order 14, and (b) the sample (solid line) and model (dotted
line) spectra of the series fitted by an AR(12).

The comparison between the AR model for the annual and the ZAR model for the monthly
series is further illustrated by Figure 6(b) which shows how the spectrum of the AR(12)
model matches the sample spectrum of the annual series. This is the raw (unsmoothed)
spectrum and the tallest peak is at the lowest harmonic frequency of the series. Such a
peak is typical of a mean corrected (near) random walk process which gives the illusion of
a cycle with period close to the series length. Such behavior appears to be a component
feature of the series. The fact that the spectral peaks of the fitted model are higher than
those of the sample spectrum is due to the use of exact maximum likelihood estimation of
the model. The peak just below frequency 0.2 one would associate with the economic cycle
which is the other main component feature with approximate period of 5 years. The peak
just above frequency 0.1 (period 10 years) corresponds to no immediately visually evident
feature in the series. The testing of spectral peaks to avoid spurious detection of cycles has



a long history, see Priestley (1981, p.406) and we must interpret this apparent cycle with
caution, even though supported by an AR model. The successful extrapolations from this
model suggest, however, that the implied spectral peaks are important.

To return to the comparison with modeling the monthly S-A series, this is much longer, 500
instead of 41 values, but it does not contain much more information about the cycles. It just
contains the extra 95% or so of higher frequency spectral components shown in Figure 2.
One strategy for obtaining well-fitting AR models from high frequency data is subsampling
as in this example, using annual averages of monthly values. But to forgo monthly records
and monthly forecasts for such a reason is not desirable. ZAR models enable us to avoid the
sub-sampling strategy whilst retaining well-fitting models.

3 ZAR models

In the remainder of this report we present the ZAR model, state and explain its properties
including how it is fitted to data, and illustrate its application to the unemployment series.
The reader is referred for derivations, proofs and further explanations to the papers referenced
earlier, and to the forthcoming book, Reale and Tunnicliffe Wilson (to appear). The models
are based on the generalized shift operator Z, acting on present and past values of a series
and defined in terms of the backward shift (or lag) operator B as

_B_e_ 2 2 2 P3
= = O (1= P)BHIB + B+

where 6 is a specified smoothing coefficient, or discount factor, which lies in [0,1). We shall
also write Zy to indicate the dependence of the operator upon 6, except that for convenience
of notation we shall only use this form when some other symbol than 6 is used, and will
omit the subscript when the symbol is . The acronym ZAR is motivated by the use of this
notation. In the case # = 0 we have Z = B. In practice the calculation of s, = Z x; is by
the recursion:

Sy = Tyq — Oz + 0544 (1)

and Z may be applied repeatedly to construct a set of series that we will call ZAR states
sgk) = Z¥z,, including S,EO) = x4. The effect of Z on a slowly varying series is similar to
applying a lag of £ = (14 6)/(1 — ). This is illustrated using § = 0.9 in Figure 7(a) which
shows the S-A unemployment series x, with Z x; and Z3 x, for which the approximate lags
are 19 and 57 months. Initial values of the states have to be assigned to start the recursions
in (1). We describe in section 5 how these can be set to reduce the errors generated in
subsequent states. However, these errors are transient, decaying in general like 6".

Algebraic manipulation shows that Z~! = (B~'—0)/(1—0B~!) and is an operator on present
and future values. The operator Z is unimodular, i.e. if we take B = exp 2w f, a value on
the unit circle |B| = 1, then Z = exp2wig, is also a value on the unit circle |[Z| = 1. A
consequence is that for any k, Z*z, has exactly the same lagged covariances and spectrum
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Figure 7: (a) The S-A monthly unemployment series z; (solid line) with Z x; (dotted line)
and Z3 z; (fine dotted line) formed using the generalized shift operator with § = 0.9, (b) the
weights implicitly applied by Z3 to lagged values of z; in the construction of Z3 ;.

as x; (just as is true for B¥z,). The dependence of g on f is given by

(1+ 6?)cos2nf — 20
1+ 6% —20cos2r f

(2)

cos2mg =

and is illustrated later in Figure 8(a) for = 0.6, where it is used to give insight into ZAR
models. It is known as a frequency warp, a term which has a long history; see e.g. Braccini
and Oppenheim (1974). We shall also find useful the expression for the derivatives

dg 1 R
df  1+62—20cos2nf an dg 1462 +20cos2ng’

(3)

Our ZAR models are motivated by expressing the predictor of the future value Zp_la:t as a
linear combination of the finite set of present and past values x;, Z xy, ..., ZP~' x;, where we
note that the operator Zp_1 acting on the future may in general be chosen to have a different
discount coefficient from that used to construct the predictors. In fact Z;lxt attaches weight
of —p to the present value of x;, but it is useful to consider it essentially as a function of
the future. In constructing this predictor the choice of the explicitly specified coefficient
p provides a robust alternative to the choice of the simple one step ahead predicted value
Z11, although this possibility can be included by setting p = 0. For a slowly varying series,
Z,'xy is an approximation to 4, where £ = (14 p)/(1 — p), and we shall see from our
example that choosing a quite modest value of p = 0.5, for which ¢ = 3, can substantially
improve the accuracy of multi-step forecasts generated by the ZAR model. The predictors
Z*z, in the ZAR model depend on the coefficient § which is not explicitly displayed. The
choice of # and the model order p allows the prediction to depend on values of x; at lags
up to and somewhat beyond p(1+ 60)/(1 — @), as illustrated in Figure 7(b). We shall again
see from our example that this is essential if the predictor is to use information from the
past in an efficient manner. In section 6 we will show how an information criterion that
generalizes the AIC can be used to select both the coefficient # and order p, but the choice of
p remains to a large extent subjective. This is similar to the choice of lead time to use when
fitting models for multi-step prediction. As for classical ARMA modeling, if the specified
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model is correct, i.e. it does exactly represent the series, estimation is optimally achieved by
minimizing the one-step ahead forecast error, i.e. by setting p = 0. However, in a realistic
situation, approximating a multi-step predictor by using a value of p > 0 can give improved
prediction over a range of lead times. Moreover, the loss of efficiency from using p > 0 even
when the model is correct, is not necessarily substantial.

We now specify the ZAR(p, #) model. We shall in fact set down three forms of the model: first
the general form, with p unrestricted. The second is the predictive form which is motivated
by restricting p = 0 and the third is the natural form, in which p is set equal to . The
important point is that these three forms are ezactly equivalent — there is only one ZAR(p, 6)
model, which is most sensibly expressed as the predictive form. The prediction coefficients
in any one of these models can be algebraically transformed to those of any other form in a
quite simple manner. The coefficient p is important for influencing the fitting of the model
but is not included as a parameter of the model with p and 6. The coefficients of the general
form of model obtained by regression of Zp_lxt on xy, Zxy, ..., ZP" 1 x;, will depend on the
choice of p, but can be transformed to those of the predictive form of the model which would
realize exactly the same prediction of Z;lxt.

For a mean-corrected stationary process we express the models in the conventional manner,
with the present value x; given in terms of a set of predictors and an error term. To derive
this from the motivating prediction of Z, 'z, by 2y, Zxy, ..., ZP~" x;, we simply multiply
all terms by Z,. The general form of model is then:

xt:Zp(Clxt+CQth+~-~+Cpr*1xt)—i—nt. (4)

We remark immediately that, except in the case p = 0, the (so-called) predictors on the RHS
of this model are linear functions of the present value z;, as well as lagged values. Before
considering further the implications of this fact, particularly regarding the error term n;, we
consider the predictive form of model obtained by setting p = 0, so that Z, = B:

z=bm+&aZua++ 2P e (5)

The predictors are now proper linear combinations of past values alone, and we assume e,
to be white noise uncorrelated with all past values xz;_, for k > 0, i.e. the linear innovation
process of x;. We also write the predictive form of model in operator notation as

{1—-B&(2)}x, = ey,

where
§(Z) :€1+€2Z+---+§pzp—1.

Returning to the general form of model (4), the assumption that the prediction error in
7 'xy is orthogonal to z;_, for k > 0 implies that n, follows the AR(1) model

ny = pne— + &¢. (6)
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The process ¢, is white noise, proportional to the innovation series e; of the predictive form:
g = Mey.
We can then express the general form of model in operator notation as
(1=pB){1—=2Z,((Z)} v = &,

from which the algebraic equivalence with the predictive form of model is found as

(1—pB){1-Z,((2)} = M{1 - B{(Z)}.

Depending on which of £(Z) and ((Z) is to be derived from the other, we can determine
M = {1+pC(—0)} or M = (1— %)/{1 — pE(—)}, where 7 = (0 — p)/(1 — p).

Finally, the natural form of model is obtained by setting p = 6 and hence Z, = Z in the
general form, to give:

T =p1Zx+ 220w+ + YA S
where (1 — 6 B)n;, = ¢;. We will also write this model as ¢(Z)x; = n; where

P(Z2)=1=p1Z —paZ° — - — 9, 2P,

There are several important properties of these models that we now state.

1. Each model represents a stationary process if, when transformed to the natural form,
the operator p(Z) satisfies the stationarity condition of the standard AR model,
i.e. considering Z as a complex variable, ¢(Z) has no zeros inside or on the unit
circle.

2. For any non-deterministic stationary process x;, let coefficients of the model in the
general form be determined for fixed p, # and p by projecting x; on to the predicting
variables Z,Z"x;, k = 0,1,...,p — 1, on the RHS of (4). Then the ZAR model so
derived will satisfy the stationarity condition. Moreover, in the limit as p — oo, the
projection error n; will converge in mean square to a process that follows the AR(1)
model (6) with &; proportional to the innovation series of x;. In this sense the models
can approximate xz; to any arbitrary level of precision.

3. The model can be expressed as a restricted ARMA(p,p — 1) of the form
gb(B)xt = (1 — ¢1B — ¢232 . — ¢po)xt — (1 _ eB)p—let'

This expression is useful for deriving some properties of the model but is of little prac-
tical value because for models of reasonably high order, the parameterization typically
leads to collinearity problems if used in model fitting. Note however that the reciprocal
zeros 1y, of ¢(B), which characterize the dynamics of the process z, i.e. the decay rate
and period of any cyclical component of the correlations, are related to the recipro-
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cal zeros ¢ of p(B) by r, = (0 + q1)/(1 + 6 qx), and will generally be much closer
to the unit circle. The ZAR model can therefore capture long-term dynamics with a
parameterization that does not suffer the problems of zeros of ¢(B) close to the unit
circle, which can lead to highly collinear estimates of model coefficients in standard
AR models, due to the highly correlated predictors. The predictors of the ZAR model
are in general less highly correlated.

4. There is a simple state space representation of the predictive form of the model, in
terms of the ZAR states. The state transition equation is:

1 o --- 0 52(50) & & - & 51(52)1 €
6 1 0 -- s 1 6 0 - st 0
1 1 :

0 6 1 5P e 018 s D 0

or LS; = RS;_1 + E;, where S; is the state vector at time t. The first row of the
equation is simply the predictive model and the remaining rows represent the recursive
calculation of the states. The conventional form of a state space representation is
obtained on premultiplying through by L~!, leading to the state transition matrix
T = L7'R. The observation equation is simply z; = s§°>. This representation is useful
for calculating model properties, constructing predictions and model estimation. In
particular the covariance matrix Vg of the state vector S; can be calculated using
standard methods, and then Vs = Cov (S, S;_1) = T*Vs. The first element in this

matrix is Cov (zy, T4 _f).

4 Understanding the ZAR model

Insight into the nature of the ZAR model for any stationary process x; is given by defining,
for any fixed t, a related process:

Xy = s = A

Then X, k = ...,—1,0,1,2,... is also a stationary process, with the terms for £ < 0
providing a basis for x,, s < t and the terms for £ > 0 providing a basis for z,,s > ¢t. That
X, is stationary is verified by deriving its lagged covariances from the spectrum S, (f) of z;:

0.5 0.5
Dy = Cov (Xp, Xpso) = / 257008, (f)df = / 205, (f)df. (7)
—0.5 —0.5

which depends only upon v. To clarify this derivation, we have set B = exp2mif in Z =
(B — 0)/(1 — B) within the integral and used the property that Z = Z~!. Further insight
is now obtained by transforming the integral (7) by substituting f in terms of g as defined
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in (2). Then, on including the Jacobian of the transformation via (3),

0.5 1 — 92
I'x, = 2mivg)S, d
X, /0.5 exp(2mivg) {f(g)}l 6% + 2608 279 g

We deduce that the spectrum of X} is given in terms of that of z; by:

1— 02
1+ 62+ 20cos2mg

Sx(g) = S{f(9)}
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Figure 8: The frequency warp map shown in (a) transforms the bimodal spectrum in (b) of
the process z; into the spectrum in (c) of the process Xj. The dotted line spectrum also shown
in (b) is that of a Yule-Walker approximating AR(4) model; a ZAR(4,0.6) approximating
spectrum is indistinguishable from that of x; and is not plotted. The warped spectrum of
this ZAR approximation is the Yule-Walker AR(4) approximation to the spectrum in (c)
and is again not shown because it is almost indistinguishable from the spectrum of Xj.

Figure 8 illustrates the effect of the frequency warp, shown in Figure 8(a), on transforming the
spectrum of a univariate process z;, shown by the bimodal solid line plot in Figure 8(b), into
the (warped) spectrum of the corresponding process X, shown in Figure 8(c). The process
x; used in this illustration is constructed as the sum of three independent components, an
AR(1) which contributes the spectrum peak at frequency zero, an AR(2) which contributes
the spectral peak close to frequency 0.07, and a uniform white noise. The value of 8 = 0.6
was used in this illustration. At frequency zero the gradient (3) of the transformation (2) is
(146)/(1—0)=4.0, so the frequency range of the main features of the spectrum in Figure
8(b) is expanded by a factor of approximately 4 in Figure 8(c).

If 2, follows the natural ZAR(p, §) model ¢(Z)x; = n;, by applying Z~* we obtain that X
can be represented by ¢(Z)X; = N, where Z is the shift operator on k and Ny = Z *n,.
Moreover the spectrum of n; is warped into the spectrum of Ny, which is that of white noise.
This representation of X}, is therefore a standard AR(p) model with the same coefficients as
the natural ZAR model. The autocovariances of X}, and hence the covariances between the
ZAR states sgk) for fixed ¢, can then be derived as those of a standard AR(p). Furthermore,
the approximation of a general process x; by a natural ZAR(p, #) model then corresponds
exactly to the Yule-Walker approximation of the process X, with the warped spectrum.
This is also illustrated in Figure 8(b) and (c). A Yule-Walker approximating AR(4) model
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spectrum for x; fails to resolve the two peaks in Figure 8(b). An approximating ZAR(4,0.6)
model spectrum is, however, so close as to be indistinguishable and is not plotted. The
warped spectrum of this ZAR approximation is the Yule-Walker AR(4) approximation to the
warped spectrum in Figure 8(c) and is again not shown because it is almost indistinguishable
from the spectrum of Xj.

The concept of the frequency warp gives real insight into the capacity of the ZAR model to
approximate certain processes much better than the standard AR model, as illustrated in
Figure 8. There are two aspects to this, but both apply when the spectrum of x; is generally
confined to low frequencies. The first aspect is that the warp spreads out the low frequency
features of the spectrum so that it is more readily approximated by a standard AR spectrum
of relatively low order. Looked at in reverse, on the scale of the original frequencies, the ZAR
model has much more flexibility for approximation at low frequencies. This is determined
by the choice of . Secondly, the warp affects the weight applied at different frequencies in
approximating the spectrum. It can be shown that fitting the general ZAR model corresponds
to minimizing a weighted Whittle criterion on the original scale of frequencies:

/ w(f) {1og Sulf) + g0 } . ()

Here S,,(f) is the spectrum of the model to be fitted and S,(f) is the spectrum of the
process to be approximated, or the sample spectrum of this process if it is required to fit to
a sample series. The weight function w(f) depends only on the choice of the coefficient p
which defines the future value Zp_lsct that is to be predicted in fitting the model. It is the
spectrum of an AR(1) model with unit variance and coefficient p given by

1+ p? —2pcos(2nf)

w(/f)

Even for the modest value of p = 0.5 which approximates a lead time of 3, almost 50% of
the weight is attached to frequencies below 0.1, and for p = 0.7 the relative weight falls to
nearly 25% at frequency 0.1. In particular, for a seasonally adjusted monthly time series the
parts of the spectrum close to the seasonal harmonic frequencies, that are generally depleted
by seasonal adjustment, will carry much less weight in the fitting criterion. An inevitable
consequence of using a value of p > 0 is some loss of efficiency in estimation of a correct
ZAR model, but this need not be large. A simple illustration is in the fitting of a standard
AR(1) model z; = ¢ x;_1 + €, but viewed as a ZAR(1,0.0) model. The coefficient ¢ can be
recovered from the coefficent ¢ of the regression of x; on Z,x; in the general model form, by
¢ = (C+p)/(1+Cp). It is left as an exercise for the reader to show that the relative efficiency
of an estimate of ¢ found in this manner is (1 — p?)/(1 — p?¢?), which has the value 94% for
the quite realistic coefficients ¢ = 0.9 and p = 0.5.
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5 ZAR model estimation

We present, in outline, three approaches to estimation of the general form of the ZAR(p, 0)
model for a process x;, given observations from ¢t = 1 to n. For simplicity we will assume that
the series has been mean corrected. A major challenge is to handle the end effects, which
are quite evident for ZAR models because the ZAR states sgk) = ZFx, at any given time
depend to some extent upon unobserved values of x; for t < 0. We will refer to the three
approaches as the Yule-Walker, regression and likelihood methods. The estimation methods
are a prerequisite for constructing criteria for selecting both the order p and discount factor
 of the model. These criteria will also depend on the value of the discount factor p of the
general form of model used for estimation. We do not propose any objective criterion for
selecting p, but suggest that selection of p and 6 be carried out for a small number of values

of p, chosen to investigate the sensitivity of the selected model to values other than zero.

The Yule-Walker method for determining the parameters in the general form of model is to
project the variable Y = Z;l r, on the variables X_, = Z*x, for k = 0,1,...,p — 1. The
equations for the coefficients in this projection involve the estimated covariances between
these variables. We suggest that these are constructed numerically using frequency domain
methods as

05
Cyxp = COV(Z;I AR / Z,Z S5 (f)df,
—0.5
and
- 0.5
Cx., = Cov(ZF 2y, 281 ;) = / Z°S*(f)df,
—05
where

2

i xp exp(2mift)

t=1

S:(f) = (1/n)

is the sample spectrum of the observed series. The estimated coefficients are the solution of:
Cyxr=CCxr+CGCxp1+ -+ GCxkpp1 for E=0,1,...,p—1,

and the variance of the error is

5721 = CX,O - CICY,X,O - C2CY,X,1 -t CpCY,X,pfl-

Note that in the case of the natural model for which p = 0, we obtain Cy x ; = Cx +1 and
the equations are identical in form to the classical Yule-Walker equations. If § = 0 they
reduce to the standard Yule-Walker equations in the usual sample covariances. This spectral
approach seemingly overcomes the end effect problem, but in fact it implicitly substitutes
zero for the unknown values of z; for t < 0 and t > n. This results in estimation bias as
in the case of classical Yule-Walker equations, but the bias can be substantially reduced if
tapering is used in the construction of the sample spectrum, as in Zhang (1992). We could go
further into the properties of the estimates obtained in this way, but our main point is that
they are of value as providing rapidly estimated and consistent starting values for estimation
by the likelihood method.
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For the regression method we first construct a response vector with elements y;, = Zp*1 x; and
regression vectors with elements sgk) = 7%z, by applying the respective operators to x; taking
all unknown values of x; for ¢ < 0 and t > n as zero. Thus we use y; = 401 — pTr + PYi11
fort =n,n—1,...,1, setting z,,1 and y,,.1 to zero to start the recursions. Similarly we
use sgl) =xq — O + ngl for t = 1,2,...,n setting xy and s((]l) to zero, and similarly
for the higher order states sl(gk). We then introduce further regressors to compensate for the
transient errors introduced by this treatment of the end effects. The transient error in y; is
P N (@pi1 + pYni1), so we introduce the regressor p"* to allow for this. The transient errors
in the regression vector sgk) depend on séj ) for j < k and span a space of dimension k. The
space for k = p — 1 contains the space for all lower values of k so that the effect of these
transient errors on the prediction also belongs to this space. To allow for these errors we
therefore include in the regression a further set of p — 1 basis vectors of this space, which are
easily generated as impulse responses of the unknown series value zy on 32(51), ey sip R
p = 0 the regressor for the transient error in y; is simply an indicator for the last time point
and if # = 0 the regressors for the transient errors in the states are simply indicator variables
for the time points t = 1,...,p — 1. These time points are then effectively removed and the
effect is exactly the same as in lagged regression where the starting time point is taken as
t = p+ 1 so as to include only known values in lagged variables. The regression approach

for the ZAR model is therefore a direct generalization of that for lagged regression.

The large sample properties of the estimates are that, under wide conditions, n: (é — () ~
N(0,V;) where V, is defined in terms of the error variance o2, the variance Vg and covariances
Vs = Cov(Sy, Si—i) of the p dimensional state vector S; and the transition matrix 7"

Vo= ot Vs ( > pWS*) Vil = (Vo) TV Ve )

k=—o0

This may be consistently estimated from the fitted model parameters. Note that V; reduces
to 02 V! for the predictive model with p = 0.

Lagged regression for the standard AR(p) model does however lose information if the order p
is large, and the so-called exact likelihood estimation method has been developed to overcome
this. We now generalize this method for the ZAR(p, #) model and first describe its form in
the case p = 0 for which the likelihood of the observations is what we require. Important to

the derivation is the idea that given the vector s of initial (unknown) states 51(50), Cey sgp ) at
t = 0, the vector e = ey, . . ., e, of innovations may be directly constructed from the predictive

form of model after recursively generating the subsequent states from the observations up
to time n — 1. From this the initial state vector s may be estimated, i.e. its expected
value s found as a linear function of the known observations, and the series innovations
vector € regenerated using this initial vector. Furthermore, the initial state vector may be
transformed to a set of state innovations f = RS, where R depends only on the model
parameters through the natural form. The value of minus twice the log-likelihood, which we
will call the deviance, D({), may then be expressed (up to a fixed constant) as

D(¢) = SS/O’? +n log(ag) — 2log|R| + log |W|
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where SS = d’a is the sum of squares of a concatenated innovations vector a = (¢, f),
02 = Var(e;) and W is derived from the regression matrix used to estimate the initial state
vector. Both R and W are functions of the model parameters only, excluding 2. The first
term in the deviance is the dominant one and maximum likelihood estimation by numerical
minimization of the deviance is generally not difficult. One of the advantages of maximum
likelihood, shared by the Yule-Walker method, though not by the regression method, is
that the estimated parameters are constrained to satisfy the stationarity conditions, because
—2log |R| diverges to infinity at the boundary of the stationarity region.

The extension of this approach to the general form of model is to construct a modified, or
quasi-deviance, in which the vector ¢ is replaced by the vector with terms which approximate
the prediction error in Zp_lsct of that model. These are generated as n; = pny.1 + Meé; for
t=n,n—1,...,1, where we recall that M is the factor relating the general model errors to
the innovations. We take n; = 0 for ¢t = n + 1 because there is no information about this
term in the observed series. However, these modified errors must also be inversely weighted
in the sum of squares by their relative standard deviations d, = M{(1— p*n=t+D) /(1—p?)}3,
and the corresponding term ;" | 2log d; added to the quasi-deviance. Because p is fixed it
is actually sufficient just to add the term 2nlog M to the deviance.

We call this a quasi-deviance because the error terms in the sum of squares are now corre-
lated. The sum of squares term, as a function of the model parameters, will be asymptotically
equivalent to the sum of squares in the regression method. However, besides avoiding the
loss of information suffered by the regression approach, the likelihood approach retains the
contribution from the initial states which adds the stability constraint on the parameters.
The general model parameters (; are not however directly estimated by this approach. Con-
struction of the quasi-deviance is more conveniently implemented using the parameters of
the predictive form.

6 ZAR model selection

We will use the quasi-deviance function of the likelihood approach in the selection of the
order p and coefficient 6, given a fixed value of p in the general form of model. We use the
concept of the final prediction error (FPE) in constructing a penalty term to add to the
minimized quasi-deviance to form a criterion for selecting p and 6. The FPE requires the
calculation of two terms; the bias correction or under-estimation of the error variance due
to fitting the model and the excess variance arising in the error from the use of estimated
parameters for out of sample prediction. For the general ZAR(p,6) model the expected
values of these two terms, as a proportion of the variance of the model error n;, are both
equal in large samples of size n, to n~1b(p, #) where from (9)

- 1 1—6%) o(—
b(p,ﬁ,p):aitr%vsztrzp|k\T\k|:p( p0) (10 ¢(=7)

(1—p8) (U= po)2 p(—7)
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Here, ¢/(Z) is the derivative of the natural model form operator ¢(Z) and, as before, 7 =
(0 — p)/(1 — pf). The relationship between the eigenvalues of T" and the zeros of p(Z) are
used to derive the final formula, which reduces to the standard value of p when p = 0. The
model selection criterion is then

~

ZI1C(p,0) = D(¢) +20b(p, 0, p). (10)

In practice we have also applied a modification of Hurvich and Tsai (1989) to b(p, 0, p),
which for smaller n gives a slight improvement in accuracy. Figure 9(b) shows a plot of
the mean deviance bias of a ZAR(4,0) model for a range of values of . The mean bias is
the average from 1000 simulations of a series of length 500, of the difference between the
deviance evaluated for the simulated series at the true and estimated model parameters. A
value of p = 0.7 was used for fitting all the models. Also plotted are the mean bias correction
evaluated for the fitted model parameters of the simulations and the bias correction evaluated
for the true model parameters used in the simulation. These two lines are so close that
they are barely distinguishable. Figure 9(a) shows a typical sample series generated by the
simulation model with a value of 6§ = 0.9 with appearance broadly similar to that of the
monthly S-A unemployment rate. These simulations reassure us of the accuracy of the bias
correction formula for use in model selection.

(a) (b)

Typical simulated ZAR process Deviance bias for ZAR models

5 J 20 -
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Time 0

Figure 9: (a) A typical ZAR(4,0.9) series used in simulations with appearance broadly
similar to that of the monthly S-A unemployment rate and (b) mean deviance bias from
1000 simulated samples (dashed line) with large sample bias correction calculated from true
model parameters (solid line) and the mean of the large sample bias correction calculated
from estimated model parameters (dotted line, almost co-incident with solid line). A value
of p = 0.7 and the range of 6 shown was used in model simulation and estimation.

The bias correction formula is strictly only applicable to a valid model, i.e. one that is fitted
with an order at least equal to that of the true model. The second term of the formula is
therefore unreliable if evaluated for a model that is fitted with an order less than this. To
avoid this difficulty we advocate an initial strategy of selecting an order p(#) for each of a
range of values of 6 using only the first term p(1 + pf)/(1 — pf). This is the only term that
changes as the order of the fitted model is increased from that of the true model. For orders
less than that of the true model and for sufficiently large sample sizes ZIC will be decreasing
with high probability. Figure 10 shows the results of a simulation exercise to illustrate the
order selection for a fixed value of 6 that was used in the ZAR(4,0.9) model from which the
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samples were generated. We investigated a further modification that is illustrated in the
figure. This is the use of the extra factor log(log(n)) as a multiplier of the penalty term in
the ZIC, motivated by the criterion of Hannan and Quinn (1979).

(a) (b) ()

Mean model selection criteria Orders selected by AIC type criterion Orders selected using Hannan-Quinn factor

Criterion

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
Order Order

Figure 10: (a) Mean model selection criteria derived from 1000 simulated samples of a
ZAR(4,0.9) process of length 500 estimated from the general model form with p = 0.7: the
bias corrected deviance (dashed line), AIC type penalized deviance (solid line) and Hannan-
Quinn type penalized deviance (dotted line). (b) The distribution of the model orders
selected using the AIC type criterion and (c¢) The distribution of the model orders selected
using the Hannan-Quinn type criterion.

Figure 10(a) shows plots of the mean values from 1000 simulations of the deviance corrected
only for the bias, i.e. D(() + b(p, 6, p), the ZIC as in (10) and the ZIC with the Hannan
and Quinn (1979) modification, i.e. D(¢)+2log(log(n)) b(p, d, p). The first of these levels off
from the true model order p = 4, the second has a minimum at the true model order but the
third has its minimum at p = 3. Figure 10(b) shows the distribution of model orders selected
using the ZIC and Figure 10(c) shows the distribution when the Hannan and Quinn (1979)
modification is applied. Order 3 is actually most frequently selected by both, which reflects
the fact that the fourth order coefficient is quite small and would only be more certainly
identified using a much larger sample. The use of the Hannan and Quinn (1979) modification
would appear to be advantageous because it greatly reduces the instances of over-estimation
of the model order.

The final step of the model selection strategy is to plot the criterion ZIC over the chosen
range of , using the order of model selected for each of those values. The full bias formula
(10) is used for this, applied to the parameters estimated for the selected order at each
value of #. The minimum of this plot is used to select 8. We have not yet carried out any
simulation study to support this strategy, but show its outcome for the S-A unemployment
series in Figure 11.

As advocated earlier, we applied this procedure for two values of p: p = 0 and p = 0.5.
Figure 11(a) shows the model orders selected over the range of 6 for each value of p and
Figure 11(b) shows the selection criteria over the range of §. The range of 6 is transformed
to its equivalent lag (1+6)/(1 —0) so as to understand better the implications of the model.
It is striking that for p = 0.5 the procedure selects models with equivalent lags for 6 in the
region of 30 to 50 months, with much higher orders. The model with § = 0.94 (equivalent
lag 32) and order p = 14 is the one selected for the forecasts in Figure 4(b),(c) and (d). For
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Figure 11: (a) The order p of the ZAR(p,d) model selected by the Hannan-Quinn type
criterion for the monthly unemployment rate series, for a range of values of #; (b) the value
of ZIC evaluated using the selected order and estimated parameters for each of a range of
values of . The solid line shows results from setting p = 0 and the dotted line the results
for p = 0.5 in the general model form used for estimation. Each line in (b) is corrected to
have its minimum value equal to zero.

model selection we did use the whole series, but all the forecasts were out of sample with the
parameters re-estimated from past values alone. For p = 0 the selected model order remains
relatively low over the range of 6 with the selected parameters being p = 3 at # = 0.5. These
resulted in rapidly mean-reverting forecast functions very close to that for the model with
p = 6 at 0 = 0, shown in Figure 4(a). The ZAR modeling methodology we have set out
therefore appears to achieve its objectives in this example, and we hope that others will be
encouraged to apply it to their own modeling tasks.
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