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Abstract

This literature review summarizes the results from a collection of research
papers that relate to modeling insurance claims and the processes associated
with them. We consider work by more than 55 authors, published or presented
between 1971 and 2008.
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1 Motivation

Consider an insurance company where customers may have several insurance poli-
cies of different types (for example: fire, health, vehicle, etc). It is unlikely that
claims to different policies are independent. A policy holder involved in a car ac-
cident will be likely to make claims on both their vehicle and health policies; a fire
may spread from one property to another resulting in claims from two or more pol-
icy holders; a single event may result in an ongoing series of claims against a single
policy.

Given a portfolio of policies it is desirable to accurately forecast the expected
liability of those policies. To assume that different policies are independent makes
computation of these liabilities straightforward but reduces the accuracy of the es-
timation. It is therefore worthwhile to develop tractable models with dependence
between claims in order to improve the accuracy of the estimation of the costs of
servicing different policies.

This literature review was undertaken to establish an understanding of the com-
mon approaches to modeling insurance claims and the processes associated with
them. We wish to build upon this understanding to later construct a model that
incorporates dependence between claim sizes and the frequency of claims. We pro-
pose a possible taxonomy of the research on insurance claims, aiming to classify
the approaches used in the modeling.
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This review considers 37 journal articles, 2 presentations and 4 other papers.
Four of the articles were published in the 1970’s, the rest of the work was pub-
lished or presented between 1997 and 2008. Approximately half the articles were
published between 2000 and 2005. This review covers writings by more than 55
authors some of whom have made a significant contribution to this field of study.

1.1 Definitions and Common Terms

The study of cost generating processes has been approached from numerous per-
spectives and contexts. Each context brings its own terminology to the problem.
We shall endeavor to use standardized terms in this review.

We shall refer to claims as the triggers that accrue costs against the insurer. These
may be referred to in the literature as events, business, shocks, damage, claims,
policies or risks.

The cost of a claim is the magnitude of the effect associated with it. These may
be referred to in the literature as magnitudes, loss, size or amount of damage.

A policy grants the policy holder the right to make claims and obliges the policy
issuer to accept claims.

We shall refer to the type of a claim as the group that it is classified as belonging
to. Unless stated otherwise types are non-overlapping and therefore partition the
set of all claims. These may be referred to in the literature as groups, portfolios,
class, book or businesses.

Many approaches use processes to describe how claims occur. It is necessary to
distinguish between two types of processes, occurrence processes and claim processes.
Occurrence processes are those that result in an event. Depending on the model
this event may correspond to a claim, to claims or to a non-claim event. Claim
processes are a special type of occurrence process: those that always result in a
claim of the specified type.

In the context of life insurance the risk of a policy is the likelihood that the policy
will generate a claim in the time period that the model is considering. An increase
in the risk to the insurer implies increased uncertainty for the insurer as to the total
cost of claims in the time period that the model is considering.

It is convenient to establish certain definitions beforehand.
A copula is a multivariate distribution with simple marginal distribution for all

the random variables (frequently uniform on the interval [0, 1]). Copulas are used
because it is often easier to model dependency between tractable random variables
and then to transform to the distributions of interest, rather than to start with an
arbitrary multivariate distribution.

The probability of ruin is of particular interest in the actuarial literature. Ruin
occurs when the surplus (defined as starting capital plus policy premiums less the
cost of claims) falls below zero. The accrual of policy premiums are considered to
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be deterministic. The cost of claims will have some distribution function which is
dependent on the distribution of the number of claims and the distribution of the
cost of claims.

Some actuarial papers use stop-loss premium as a measure of risk. A stop-loss
premium is paid by an insurer to a reinsurer to limit or control their total insurance
liability. Higher stop-loss premiums imply greater risk to both firms and lower
premiums imply less risk to both firms.

1.2 Taxonomy

In this overview, the papers have been grouped according to some common model-
ing approaches. Within each grouping the papers have been sorted according to the
year of publication. Where one paper builds or expands on the contents of another
paper placing these papers consecutively for ease of reading has taken priority over
maintaining chronological ordering.

Section 2 is concerned with processes in continuous time. This appears to be
the most common approach in the literature. Papers are grouped according to the
type of dependency between the different processes (correlation, shared processes
or thinning). Processes where the current state of the process is dependent on previ-
ous events are considered in section 3. This includes Markov chains, where only the
most recent event or claim influences the next one, and also self-exciting processes
where all previous events may influence the next claim. Section 4 summarizes ap-
proaches that are not based on processes over time. This includes a collection of
papers with Bernoulli variables that arise from considering life insurance as well as
three articles concerned with claim sizes. Section 5 groups papers that could not be
categorized into any of the first three sections.
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2 Modeling Based on Continuous Time Processes

Given several types of policies, these models impose dependence between the types
of policies by introducing interaction between the number of claims of each type.
The occurrence of claims depends on certain continuous time processes and the
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models seek to determine the total number of claims of each type. In almost all
cases the cost of the corresponding claims are determined independently from the
time of their occurrence (and are assumed to be iid).

These modeling approaches include correlated processes, shared processes and
processes with thinning.

2.1 Correlated Processes

Consider n types of claims, correlated process models assume n claim processes,
one for each type. Dependency between the types of claims is caused by the corre-
lation between the processes. This correlation is determined outside the model.

Ambagaspitiya (1998b) considers the total cost of all types of claims, where the
number of claims of each type are correlated. The costs for an individual claim are
independently and identically distributed with a known distribution depending on
the type of claim. Some results can be derived in the general case. Analytic results
are given for the special case where the number of claims has Poisson distributions
and the cost of claims has gamma distribution.

Ambagaspitiya (1998a) uses the bivariate-Lagrangian Poisson (BLP) distribu-
tion to model the joint distribution of the count of two types of claims. A com-
pound BLP distribution is introduced, this could be used to model the total cost of
two types of claims. A recursive technique to represent the probability mass func-
tion of the BLP distribution, and the compound BLP distribution is given and is
shown to have order O(m3).

Ambagaspitiya (1999) suggests and investigates two models. The first model
has univariate distribution of claim counts and a multivariate distribution of claim
costs. It is intended to represent situations where a single event results in multiple
types of claims. Given a certain recursive property the distribution for total cost of
claims is found. The second model has multivariate claim counts and univariate
claim costs, it is intended to represent situations where different types of claims
occur with some joint distribution and the cost of all types of claims has the same
distribution. In special circumstances the second model is equivalent to a convolu-
tion of the first model. This shifts the emphasis from the number of claims to the
cost of claims.

Vernic (1999) is interested in the distribution of the total number of claims in a
bivariate model. Given that the joint counting distribution for the two claim types
satisfies a particular recursive form, Vernic derives a recursive scheme for the dis-
tribution of the total number of claims (in a similar way to Vernic 1997). The use
of a recursive formula removes the need to consider convolutions. The particular
recursive relationship is satisfied by the binomial, negative binomial and Poisson
bivariate distributions (see also Vernic 2004).
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2.2 Shared Processes

This approach includes the dependency mechanism between processes as part of
the model. We consider n types of claims generated by m processes, m > n. In
general n (of the m) processes are claim process, one for each type of claim. The re-
maining (m−n) processes are occurrence processes and result in claims of multiple
types.

Vernic (1997) analyses the bivariate generalized Poisson distribution. The model
uses two claim processes that generate two types of claims. Dependency is due to
an occurrence process which generates simultaneous claims of both types. The
probability generating function and moment generating function are derived. The
joint probability for the number of claims of each type can be calculated recursively
and formulas for this are given. Vernic uses the method of moments to estimate the
parameters. The paper ends with two numerical examples where the estimation is
fitted to existing data.

Extending the bivariate case, Vernic (2000) considers a multivariate generalized
Poisson distribution. Dependency between n types of claims is due to an occur-
rence process which generates claims of all types. The probability and moment
generating functions are given and a recursive method to calculate the probabili-
ties follows. Two approaches for inference are suggested: the first is by method
of moments, which is straightforward. The second approach uses method of mo-
ments in conjunction with the zero cell frequency method. This is slower but makes
use of all available information.

Cossette & Marceau (2000) use Poisson and negative binomial models to ex-
plain the number of claims for several types of claim. The Poisson model has claim
processes for every type of claim, and occurrence processes which generate simul-
taneous claims of two or more types of claims, for every combination of claims.
As the Poisson model requires identical mean and variance, the negative binomial
model is given as an alternative when the variance exceeds the mean. In the nega-
tive binomial model, the number of claims of each type is the sum of two negative
binomial distributions, one unique to the type of claim and one shared with all
other types of claim. The probability generating function and characteristic func-
tion are given for each model along with numerical examples for the bivariate case.

Gregory (2002) suggests a bivariate model where the shared occurrence process
may be a Poisson or gamma process. The usefulness of discrete models to ap-
proximate continuous ones is emphasized and a transformation from continuous
to discrete processes is given. Suggestions for inference are provided. This paper
is written in the context of damage accumulation where the damage is caused by
shocks. Gregory demonstrates the model using the deterioration of two types of
blood pressure.

Many models incorporate homogeneous Poisson processes. Rodrigues et al.
(2002) consider the union of two dependent non-homogeneous Poisson claim pro-
cesses. Dependency between the two processes is created by a shared occurrence
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process that generates claims of both types. The probability generating function
and PDF for the resulting process is given. A special case is identified when the
intensity matches a Weibull process. Rodrigues et al. estimate the parameters, in
general and for the special case, using Monte Carlo simulation.

Yuen et al. (2002) consider a model where the claim processes have exponential
inter-arrival times and the occurrence processes have Erlang inter-arrival times.
As in Cossette & Marceau (2000) the occurrence processes result in simultaneous
claims of more than one type. Analysis involved manipulating the model to con-
sider the exponential and Erlang inter-arrival times separately. Attention is given
to deriving the ruin probability and when claim sizes have exponential distribution
this can be found explicitly. Asymptotic results are given in the case where the ruin
probability can not be analytically determined.

The same model is further considered in Yan et al. (2006) who are concerned
with the distribution of the surplus immediately before and after ruin. Formula and
asymptotic results for the ruin functions are given first with their proofs following
in a later section.

Ivanova & Khokhlov (2003) consider a model that allows for all possible choices
of occurrence processes to generate all possible combinations of simultaneous claims
(given n types of claims there will be 2n−1 occurrence processes, n of which will be
event processes). This is expressed using a binary multivariate index. Ivanova and
Khokhlov refer to this as intersectional dependence and derive the generating func-
tion. In order to avoid double counting when determining the number of claims
of each type, a transformation is proposed that enables easier summation. Possible
approaches to parameter estimation are given but an explicit methodology is not
provided.

Ivanova (2008) is a presentation that appears to be largely based on Ivanova &
Khokhlov (2003). Ivanova suggests an approach to inference where previous peri-
ods are used to predict future time periods. This approach can be solved iteratively
and a simplified form can be used when certain stationary conditions are satisfied.

2.3 Processes with Thinning

Dependency can be introduced between processes using thinning. An occurrence
process generates events which result in a claim of type i with probability pi and
claims of type j with probability pj . There is no limit on the number of claims that
can result from a single event and all the claims that arise from a single event occur
simultaneously. Some events always result in claims of type i (pi = 1) and result
in sub-claims of type j with probability (pij). Shared processes (as discussed in the
previous section) can be thought of as a special case of thinning where pi ∈ {0, 1}.

Yuen & Wang (2001) introduce the idea of claim thinning and provide a clear ex-
planation of how it works. Analysis focuses on determining the number of claims
of each type. The size of claims is independent of whether multiple claims arise
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from a single event and independent of the occurrence processes that generated
the event. Claim sizes are shown to be straightforward to include in the model
when they have exponential distribution. Yuen and Wang tabulate ruin probabili-
ties incorporating discount rates.

The interaction model proposed by Yuen & Wu (2003) extends the previous
model by imposing a binomial distribution on the number of sub-claims. The ex-
pected number of claims, along with the variance and covariance of the number
of claims, is then given. When the probability function satisfies a certain recursive
relationship these are better behaved. It is noted that only the Poisson, binomial
and negative binomial distributions satisfy the required recursive relationship.

Pfeifer & Neslehova (2004) give an overview of copulas which are then applied
to construct correlated bivariate Poisson distributions. Particular interest is given
to a construction that enables negative correlation between Poisson distributions.
Pfeifer and Neslehova go on to consider Poisson processes. Two models are sug-
gested both of which use copula to thin events into claims. In the first model events
arise according to a single Poisson occurrence processes. In the second model
events arise from multiple Poisson occurrence processes, these are linked via a cop-
ula and are hence dependent.

Wang & Yuen (2005) consider a model where types of claims are assigned to
(potentially overlapping) groups and each group is subjected to events according
to a Poisson occurrence process. Events for a group result in a claim of type j with
probability pj . Wang and Yuen give attention to the effect of incorrectly specifying
the number of groups to include in the model. Riskiness (as measures by the Lund-
berg exponent) can be due to dependence in the model or due to choosing too few
groups for the model.

2.4 Summary

The papers related to correlated processes are Ambagaspitiya (1998b), Ambagaspi-
tiya (1998a), Ambagaspitiya (1999) and Vernic (1999). The papers related to shared
processes are Vernic (1997), Vernic (2000), Cossette & Marceau (2000), Gregory
(2002), Rodrigues et al. (2002), Yuen et al. (2002), Yan et al. (2006), Ivanova &
Khokhlov (2003) and Ivanova (2008). The papers related to processes with thin-
ning are Yuen & Wang (2001), Yuen & Wu (2003), Pfeifer & Neslehova (2004) and
Wang & Yuen (2005).

3 Modeling using State Based Approaches

This section includes modeling approaches where the occurrence of the next event
depends on what has already taken place. The previous section was concerned with
dependency between several processes, this section also considers models where
the current performance of a process depends on the past performance of the same
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process.

3.1 Markov Chain Approaches

Markovian processes are those where only the present state, intensity or most re-
cent event influences the occurrence of the next event. In order to estimate the
future behavior of the process we only need to know its current state.

Oakes (1975) considers a self-exciting process where the process intensity de-
pends on a Markov chain. For example, consider immigrants arriving in a coun-
try according to a Poisson processes. Every immigrant generates descendants ac-
cording to a non-stationary Poisson process. The first generation of descendants
generate a second generation of descendants according to the same non-stationary
process. The instantaneous intensity of the birth process depends on the current
age of all descendants and is hence a continuous Markov chain. Oakes asserts that
a unique equilibrium intensity exists and derives explicit solutions for the distri-
bution of the count of the number of events. Some of the properties for the time
between events are also be derived.

Hsia (1976) is concerned with estimating the proportion of time that a three-
state stochastic process spends in each state. Given the total running time for the
process the proportion of time spend in each state is dependent on the proportion
of time spent in each other state. Hsia constructs the joint PDF for the time spent in
each state by considering the number of times the process enters a particular state
and the number of combinations of the order in which different states could have
been visited.

chain model for rainfall. Atmospheric data is collected by spatially clustered
weather stations and hence there is dependence between the observations. The
data is used to determine the current state of an underlying Markov chain (the hid-
den Markov chain) and the occurrence of rainfall depends solely on the current
state of the Markov chain. The EM-algorithm is recommended for parameter esti-
mation with Monte Carlo maximum likelihood (MCML) to avoid certain unwieldy
functions. Even with MCML, parameter estimation is still computationally lengthy.
Hughes et al. (1999) construct a non-stationary hidden Markov chain model. Obser-
vations of the system are clustered and hence there is dependence between them.
The data is used to determine the current state of an underlying Markov chain
(the hidden Markov chain) and the behavior of the model depends solely on the
current state of the chain. The EM-algorithm is recommended for parameter esti-
mation with Monte Carlo maximum likelihood (MCML) to avoid certain unwieldy
functions. Even with MCML, parameter estimation is still computationally lengthy.

Bauerle & Grubel (2008) suggests a model where the state of a Markov chain,
representing the number of claims for n types of claim, can be expresses as an n-
dimensional vector. Transitions represent a claim occurring. An occurrence process
determines when a transition occurs and transition probabilities are dependent on
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the current state. Two models of transition probability are given for the bivariate
case. The first where one type of claim effects the future transition probabilities
of another type of claim. The second where one type of claim effects the future
transition probabilities of the same type of claim.

3.2 Self-Exciting Processes

Self-exciting processes are those where additional claims change the likelihood of
future claims. While there are similarities between self-exciting and Markovian
approaches, self-exciting processes require more information about previous claims
and hence lack the Markovian property.

Hawkes (1971) constructs a self-exciting point process where the arrival rate of
claims is expressed as a function of the timing of all previous claims. By simple
extension, the arrival rates for two types of claims are expressed as functions of the
timing of all previous claims of both types. Analytic solutions exist where the effect
of previous claims on the arrival rates decays exponentially. Hawkes observes that
certain self-exciting processes can have identical properties to doubly stochastic
processes and hence data analysis of these properties will not be able to distinguish
between the two types of processes.

Inference of the parameters of Hawkes’ self-exciting model are considered by
Ozaki (1979). General results are provided and specific results are given for the
univariate case where the effect of previous events on the arrival rate decays ex-
ponentially (a case given attention by Hawkes). Ozaki demonstrates the inference
procedure on simulated data and also gives the technique for simulation.

Mino (2001) considers parameter estimation of a one-memory process, where
only the most recent claim influences the arrival rate. The EM-algorithm is chosen
to avoid nonlinear optimization problems that arise with maximum likelihood esti-
mation. A continuous time approach is initially chosen and this is then discretized
for ease of computation. The more similar the claim process is to a Poisson process,
the less reliable the estimates are found to be. The results are supported by the use
of Monte Carlo simulations.

Giesecke & Goldberg (2005) are concerned with predicting claims in the context
where an initial claim can trigger additional claims. A self-exciting process with
random thinning is used to model the occurrence of claims. Giesecke and Gold-
berg also consider a doubly stochastic process. Due to complexity, both approaches
are simplified by a ’compensator function’ which has the same intensity as the com-
plete models but which handles the clustering of events in an analytically tractable
way.
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3.3 Summary

The papers related to Markov chain approaches are Oakes (1975), Hsia (1976),
Hughes et al. (1999) and Bauerle & Grubel (2008). The papers related to self-exciting
processes are Hawkes (1971), Ozaki (1979), Mino (2001) and Giesecke & Goldberg
(2005).

4 Non-Process Based Models

This section differs from the previous two sections as it does not focus on estimat-
ing the number of claims that arise from continuous time processes. This section
includes models where claims arise from Bernoulli trials, and models in which the
cost of claims are not assumed to be independent and identically distributed.

4.1 Approaches with Bernoulli Trials

These models introduce dependency between a known number of Bernoulli trials.
This will be discussed in the context of life insurance where, in a given time period,
there will be a single claim against a policy if the policy holder dies. The timing of
claims in a given time period is ignored. These models might be extended by con-
sidering several consecutive time periods and allowing for dependency between
Bernoulli trials across time periods.

Dhaene & Goovaerts (1997) consider dependency between life insurance poli-
cies. The lifetimes of couples are known to be positively correlated. It is show that
assuming independence between policies underestimates the risk to the insurer
(as measured by stop-loss premiums) if the true situation with dependence can be
modeled using a two-point distribution. However this result does not generalize
for three-point (or more) distributions. Dhaene and Goovaerts also consider de-
pendencies between all policies, not just pairs of policies. Dependence where no
claim on a policy implies no claims on all policies with lower risk is shown to give
rise to the greatest risk to the insurer.

Bauerle & Muller (1998) suggest two models for dependency between a collec-
tion of insurance policies. The first model groups policies and determines their risk
based on global factors (those that affect all policies), group factors (those that affect
all policies in a group) and individual factors (those that only affect a single policy).
It can be shown that fewer groups and larger group sizes implies greater risk to the
insurer. The second model constructs a list of external mechanisms and models the
risk of each policy based on the number of mechanisms that may affect it. Four
different types or ordering are described: stochastic, stop-loss, super-modular and
symmetric super-modular orderings. These are used to determine which policies
are riskier than others.
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Cossette et al. (2002) consider a special case of the first model suggested by
Bauerle & Muller (1998) and derive the moment generating function, variance and
covariance for the total cost of claims in this model. This is compared to a second
model that uses copula, with attention given to the Cook-Johnson and Gumbel
copula. Comparison of these models suggests that the use of copula allows the
second model to incorporate greater dependence. Examples of both models are
illustrated with varying parameters.

Genest et al. (2003) are interested in modeling dependence between insurance
policies or groups of insurance policies using copula. The Clayton model, the Gum-
bel family and the Frank family of copula are recognized as popular choices for
actuarial applications. These are all encompassed by a three-parameter family of
Archimedean copula. Genest et al. suggest Poisson approximations for single and
multi-class Archimedean models and show that these approximations are able to
introduce heterogeneity between groups of policies.

Ribas et al. (2003) consider correlated pairs of life insurance policies (for exam-
ple husband and wife). Given the correlation between policies two recursive mod-
els are suggested to calculate the distribution function for the total cost of claims.
The first model is computationally faster but requires all pairs of dependent poli-
cies to have the same correlation. The second model permits any choice of correla-
tion between pairs of dependent policies but is computationally slower. Parameter
estimation is likely to be easier in the first model.

4.2 Models of Claim Sizes

A common assumption in many papers is that claim sizes are independent and
identically distributed, and further more, are independent of the number of claims.
These papers are concerned with dependent claim sizes.

Frees & Valdez (2008) construct a hierarchical model of insurance claims. The
model includes claim frequency, claim type and claim cost. Claim frequency is
determined first and is fitted with Poisson or negative binomial models, with or
without random effects. A single event may result in multiple claim types. Claim
types are modeled using a multinomial logit model. Claim costs are determined
conditional on the claim frequency and claim type(s). Dependency between the
cost of multiple claim types arising from the same event is introduced using cop-
ula. A heavy tailed distribution is preferred for the cost of claims, Frees & Valdez
suggest the generalized beta distribution of the second kind.

Kolev & Paiva (2008) consider two models where the costs of a given number
of claims are correlated. In the first model all pairs of claim costs have the same
correlation and in the second model all pairs of consecutive claim costs have the
same correlation. For simplicity this is reduced to a Bernoulli model where the cost
of each claim is replaced by an indicator for whether the cost of the claim exceeds
a known threshold or not (we could construct a full distribution by considering a
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collection of thresholds). For the second model with adjacent correlation the prob-
ability generating function can be derived by considering transition probabilities
from one claim to another, in a similar way to Markov chains.

Meng et al. (2008) consider a model where the cost of each claim is dependent
on the time since the previous claim. When events occur frequently people adapt
and are prepared for the next event, so the claims from an event are small, but if
events occur infrequently people become complacent and are unprepared for the
next event, so the claims from an event are large (consider that earthquakes occur
frequently in Japan so the population has adjusted and the cost of claims from
earthquakes are small). The model compares the inter-event time to a threshold. If
the time is within the threshold the cost follows a distribution with a small expected
value. If the time is beyond the threshold the cost follows a distribution with a
large expected value. Meng et al. derive analytic results for specific distributions
of inter-event time, threshold and claim costs.

4.3 Summary

The papers related to Bernoulli approaches are Dhaene & Goovaerts (1997), Bauerle
& Muller (1998), Cossette et al. (2002), Genest et al. (2003) and Ribas et al. (2003).
The papers considering models of claim sizes are Frees & Valdez (2008), Kolev &
Paiva (2008) and Meng et al. (2008).

5 Other Approaches

This section summarizes research that contributes to our understanding depen-
dency between random variables and could be useful in modeling insurance claims.

5.1 Classifying Dependency

These papers consider dependent multivariate variables and suggest methods of
classifying or ordering the severity of the dependence.

Denuit et al. (2002) introduce a measure of probabilistic distance. This is a quan-
titative measure for the effect of dependence between two variables and a method
to calculate this distance is presented. The measure is demonstrated across nine
different types of examples of dependence, including: copula, mixtures, shared
Bernoulli processes and epidemic models.

Ostrovska (2006) classifies the relationships between random variables as un-
correlated, convolutionaly independent or independent and suggests a measure
for quantifying these relationships. Using this quantified measure, it is shown that
there exists a threshold that separates uncorrelated and convolutionaly indepen-
dent relationships. Independent relationships occur as the limiting case of convo-
lutionaly independent relationships.
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5.2 Multivariate Distributions

These papers consider multivariate distributions (and in particular multivariate
phase type distributions) and where possible derive their properties. Multivari-
ate distributions are a natural way of incorporating dependence between random
variables. Phase type distributions are used for their ability to represent multivari-
ate distributions. The performance of phase type distributions may be easier to
understand than the multivariate distributions they represent.

Goff (2001) recognizes that many multivariate stochastic models have distribu-
tions that can be modeled by phase-type distributions (for example, the model by
Marshall & Olkin 1979). Goff focuses on multivariate discrete phase-type distribu-
tions and proposes a simulation method to estimate the multivariate distribution.
Two types of dependence in the multivariate distribution are noted: dependence
caused by covariance and dependence caused by one variable bounding another.
Four questions and three applications for further study are proposed.

Ivanova & Khokhlov (2001) wish to reconstruct the joint multivariate distribu-
tion given its marginal distributions. They recognize that, in general, such solutions
are non-unique. Given the natural exponential families are appropriate and the
marginal distributions are Poisson it is possible to construct the unique multivari-
ate distribution. The reconstruction generates additional parameters, the values of
which must be later solved for.

The presentation by Frostig (2005) proposes using a subgroup of phase-type
distributions to model the times between insurance claims. Frostig is interested in
determining the probability of ruin and the expected deficit at ruin. It has been
shown that for exponential inter-arrival times the nth claim has a phase-type distri-
bution. Under specified conditions Frostig derives some analytic results.

Vernic (2005) looks at the skew-normal distribution and proves results for the
multivariate case. The skew-normal distribution can be defined as a normal distri-
bution truncated to be above some lower bound. Vernic defines the scale mixture
of a skew-normal distribution and derives some of its properties. Several special
cases of the scale-mixture are highlighted at the end.

5.3 Approximating Distributions

The relationships between dependent variables are frequently too complex to be re-
solved analytically. These papers consider alternative approaches, including find-
ing alternative tractable functions, discretization and numerical methods.

Campana et al. (2000) wish to obtain a good approximation for a class of re-
newal processes defined by a particular differential equation. Multiple estimation
approaches are considered including: exponential curves, Volterra integral equa-
tions and Laplace transforms, and Neumann’s series. In the limiting case the log-
gamma and Pareto distributions are considered sufficient to approximate certain
heavy tailed distributions.
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Vernic (2002) looks at applications of results from Goovaerts et al. (2004) that
estimate the tail probability of Pareto-like distributions. Of particular interest is the
value of a randomly weighted sum, where the weights are intended to represent
discount factors.

Vernic (2003) deals with the arithmetization of univariate and bivariate contin-
uous distributions. This is a means of making continuous distributions discrete so
they can be more easily manipulated in certain contexts (for example: integrals can
be replaced with summations). After specifying how to arithmetize a distribution,
Vernic defines a measure of distance between the distribution and its arithmetized
form. The distance gives an idea of how well the arithmetized distribution approx-
imates the continuous distribution. Three examples are used to demonstrate this
measure.

Enachescu & Vernic (2005) are interested in approximating the distribution of
a randomly weighted sum. Two approaches are proposed to do this, a multilayer
perceptions model and a kernel model. Of these the multilayer perceptions model
appears to be superior and even behaves well for small sample sizes. While the
results hold in general the intended application is for the weights to be discounting
factors (as in Vernic 2002).

5.4 Summary

The papers related to classifying dependency are Denuit et al. (2002) and Ostrovska
(2006). The papers related to multivariate distributions are Goff (2001), Ivanova &
Khokhlov (2001), Frostig (2005) and Vernic (2005). The papers related to approx-
imating distributions are Campana et al. (2000), Vernic (2002), Vernic (2003) and
Enachescu & Vernic (2005).

6 Discussion

It is common to model the arrival of insurance claims using stochastic processes
over time. This enables the frequency of claims to be considered. Dependency be-
tween different types of claims is frequently imposed by dependency between the
number of claims of each type. The cost of claims is often assumed to be indepen-
dent of their occurrence, and to have independent and identical distributions.

This review includes very little literature regarding the distribution of claim
sizes. Several papers (Ambagaspitiya 1998b, Yuen & Wang 2001, Yuen et al. 2002,
notably )[] have assumed exponential or gamma distributed claim sizes in order to
provide analytic results. As the distribution of claims may depend on the type of
insurance offered (for example: claim sizes for health insurance and fire insurance
may have different distributions) requiring a particular distribution may limit the
applications of a model.

Next we present several possible directions for future research.
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It would be useful to develop a flexible model where the size of claims may
effect the frequency of claims and where the frequency of claims may effect the
size of claims. To make the model analytically tractable it may be desirable for the
model to have a long run equilibrium at which claim frequency and claim costs
are independent, and allow claims to cause short term deviations away from this
equilibrium.

It may be worthwhile investigating models for damage accumulation in relia-
bility analysis. As time passes and a system accumulates damage it will become
more likely to fail. In a similar way, as time passes and as claims are made, future
claims on the same hazard event become less likely. So we equate system failure,
in reliability analysis, with the final claims relating to a particular hazard event, in
insurance modeling.
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