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Abstract

For a two–way contingency table with categorical variables, local odds ratios are
commonly used to describe the relationships between the rowand column vari-
ables. An ordinary case has mutually exclusive cell counts,i.e., each subject must
fit into one and only one cell. However, many surveys have a situation where re-
spondents may select more than one outcome category. We discuss the maximum
likelihood method and suggest the Mantel–Haenszel local odds ratio estimation for
K such2 × c tables, treating the multiple responses as an extension of the multi-
nomial sampling model. We derive new dually consistent (co)variance estimators
and show their performance with a simulation study.

Key words: Consistency, Local odds ratio, Mantel–Haenszel estimator, Odds
ratio, Multiple responses

1. Introduction

Many studies are designed to compare groups on a multi–levelresponse vari-
able. One often uses a two-way contingency table that cross–classifies subjects on
both group and response variables to display relationshipsbetween them. A set
of odds ratios, such aslocal odds ratios [1, p.55] that use four cells in adjacent
rows and columns, can describe the associations. If a study attempts to control for
other factors that might influence the relationships, a three-way contingency table
can show the associations between the group and response variables controlling for
a possibly confounding variable. The three–way contingency table consists ofK
2-way partial tables, whereK is the number of levels for the control variable.

For a simple case ofK 2 × 2 tables, letπj|ik be the probability of selecting
itemj = 1, 2 for a subject in rowi = 1, 2 and stratumk = 1, . . . ,K. Thekth odds
ratio is defined asΨk = (π1|1kπ2|2k)/(π1|2kπ2|1k). The Mantel–Haenszel (MH)
[23] estimator is a popular way of summarizing a common odds ratio when the
conditional association is assumed to remain the same giventhe control variable,
i.e.,Ψ1 = · · · = ΨK . It is used not only when the common odds ratio assumption
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seems plausible, but also as a summary measure when the association varies only
mildly across the tables. Greenland [13] extended the MH method to the common
local odds ratios forK 2 × c tables, where the response variable hasc categories.
The local odds ratios in stratumk have the form

Ψk
j =

πj|1kπ(j+1)|2k

πj|2kπ(j+1)|1k
, j = 1, . . . , c− 1. (1)

The assumption of common local odds ratios statesΨj = Ψ1
j = . . . = ΨK

j (j =
1, . . . , c − 1). The MH estimators are dually consistent, i.e. consistentunder the
large–stratum (K is bounded while the number of subjects per stratum goes to
infinity) and sparse–data (K goes to infinity with sample size, but the number of
subjects per stratum remains fixed) limiting models. It is efficient under the null of
no association.

The cell counts in the contingency table described above aremutually exclu-
sive, i.e., each of the subjects must fit into one and only one cell. Some of the sam-
pling models satisfy this condition. For instance, Greenland [13] assumed for each
stratum the following sampling situations:c independent binomials and two inde-
pendent rows of multinomials withc outcome categories. However, the mutually
exclusive property might not hold in a 3-way table but, the conditional associations
between the group and response variables are still the main interest of the study.
This situation occurs often in a survey when respondents mayselect any number
out of c outcome categories. For instance, the respondents are often told to “mark
all that apply”. Categorical outcome variables for this type of data are calledpick
any/c variables or multiple response variables, wherec is the number of outcome
categories (calleditems) and “/” stands for “out of” [10].

Table 1 shows an example of this type of data, where students of a statistics
course at the Victoria University of Wellington in New Zealand were asked to tick
their favourite bar. The study recorded the features of the bars separately, treating
each feature as an item. Each bar may have more than one feature. Table 1 lists
c = 3 items: “drink deals” (item 1), “pool table” (item 2) and “sports tv” (item
3). We assign a positive response for itemj (e.g. “drink deals”), when the stu-
dent’s favourite bar has that particular feature. Each student also answered some
personal questions (such as major, gender, working status,smoking status, etc.).
For this example, we are interested to find the association between working status
and preferred features of the bars, controlling on students’ majors. LetYj = 1 if
a student’s selected bar has featurej (j = 1, 2, 3) and letYj = 0 otherwise. Let
Y = (Y1, Y2, Y3)

′ denote the response profile on 3 categories with(Y1, Y2, Y3)
corresponding to the (yes, no) outcome of the selected bar features. For example,
if a student’s selected bar has feature “drink deals” only,Y = (1, 0, 0)′. The table
displays both the2 × 3 × 6 “marginal” contingency table (for 6 different majors)
and the2× 23 × 6 “complete” contingency table on the multiple response profile.
The marginal table shows the response counts for the features, by cross–classifying
students according to their working status and major. For instance, within the Ma-
rine Biology major, 4 students who had work selected bars with the “sports tv”
feature. The complete table shows the counts of the possibleprofilesY for each
combination of work levels and majors.

The analysis of this type of data has received much attentionsince Loughin and
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Scherer [22]. They proposed a weighted chi–square test and abootstrap test for the
hypothesis that the probability of selecting any given itemis identical among lev-
els of a predictor variable. A series of work by Decady and Thomas [11], Bilder
et al. [9], and Bilder and Loughin [5, 6] focused on tests of various hypotheses for
a single multiple response variable. Later on, Thomas and Decady [27] and Bilder
and Loughin [7] considered the tests of independence between two multiple re-
sponse variables cases. Besides the tests, Agresti and Liu [3, 2] discussed different
strategies for modeling multiple response data. Bilder andLoughin [8] extended
their earlier work to simultaneously model and estimate theassociation structure
between two multiple response variables in complex survey sampling situations.
In addition to the modeling and testing procedures, Liu and Suesse [21] derived a
closed form of the odds ratio estimation by comparing the odds of each of the items
being selected for different groups. The purpose of this article is to show how one
can use the simple concept of the local odds ratios (1) and extend their inferences
for multiple responses to describe the associations in the marginal2× c×K table.

In the next two sections, we introduce the maximum likelihood (ML) method
and propose the new MH estimation for the multiple response case. In Section 4,
we illustrate methods using two examples. Section 5 shows the performance of
our new estimators in a simulation study. The paper finishes with comments and
discussions.

2. The ML Method

We can express the model which assumes common local odds ratios for all
strata as

log

(
πj|1kπj+1|2k

πj|2kπj+1|1k

)
= βj , for all k = 1, . . . ,K, (2)

whereβj = log Ψj. This model is not a standard logit model.

The ML inference for the model requires that the cell probabilities of the
complete table are estimated under the constraints imposedby the model. As-
sume that cell counts in each row of the complete table followa multinomial
distribution. The likelihood function refers to the multinomial cell probabilities
{pijk, i = 1, 2, j = 1, . . . , 2c, k = 1, . . . ,K}, but the model itself applies to the
marginal probability{πj|ik, i = 1, 2, j = 1, . . . , c−1, k = 1, . . . ,K}. Haber [14]
and Lang and Agresti [18] presented numerical algorithms for maximizing multi-
nomial likelihoods subject to constraints for generalizedloglinear models having
the matrix form

C logAp = Xβ, (3)

wherep refers to the vector of multinomial cell probabilities. Themodel (2) has
the above form, where the matrixA contains0 and1 entries in such a pattern that
when applied top it forms the relevant marginal probabilitiesπj|ik; the matrixC
contains0, 1, and−1 entries in such a pattern that when applied to the log marginal
probabilities, it forms the log local odds ratios for Model (2); β = (β1, . . . , βc−1)

′

andX is simply a row vector with1’s.
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Table 1: Marginal Table and Complete Information for the BarData

Marginal Table Complete Table
Item Y

1 0 0 0 0 1 1 1 1
Item total 2 0 0 1 1 0 0 1 1

major 1 2 3 students 3 0 1 0 1 0 1 0 1

Biology
work
yes 1 0 0 1 0 0 0 0 1 0 0 0
no 1 1 0 1 0 0 0 0 0 0 1 0

Marine Biology
work
yes 11 11 4 13 0 0 2 0 2 0 5 4
no 1 1 1 1 0 0 0 0 0 0 0 1

Ecology & Biodiversity
work
yes 7 8 4 10 1 0 2 0 1 0 2 4
no 3 4 5 6 1 1 0 1 0 0 0 3

Operations Research
work
yes 0 0 1 1 0 1 0 0 0 0 0 0
no 0 0 0 1 1 0 0 0 0 0 0 0

Psychology
work
yes 2 2 2 3 0 1 0 0 0 0 1 1
no 2 2 1 3 0 0 1 0 1 0 0 1

Statistics
work
yes 1 1 1 1 0 0 0 0 0 0 0 1
no 1 1 1 1 0 0 0 0 0 0 0 1
Items 1: drink deals; 2: pool table; and 3: sports tv.
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A disadvantage of the ML approach is that it is only consistent under the large–
stratum limiting model. Under a sparse–data limiting model, a simulation study
given by [20] showed that the ML estimator of a common global odds ratio tends
to over–estimate the true odds ratio. The common global oddsratio refers toK
stratifiedr × c tables with multinomial sampling. Furthermore, for multiple re-
sponses the ML estimator of the common local odds ratio is notconsistent because
the number of parametersK × 2× (2c − 1) that determine the multinomial distri-
butions for all strata goes to infinity asK → ∞.

An R function (mph.Rcode.R) for the algorithm may be obtained from Prof J.
B. Lang of the Statistics Department, University of Iowahttp://www.stat.
uiowa.edu/ ˜ jblang/ . The function is not only suitable for fitting generalized
loglinear models (3), but also provides the algorithm for fitting Multinomial Pois-
son homogeneous (MPH) models [16]. Lang [17] considers homogeneous linear
predictor models, a subclass of MPH models. Such models allow a broader class of
link functions; for details of these models see [16, 17]. Bergsma et al. [4] proposed
another fitting algorithm directly built on the work of [18, 15] and provided an R
package called “cmm” for fitting such models. Their program is a modification of
the Lang–Agresti algorithm.

3. The MH method

Under the common local odds ratio assumption, the MH estimator given by
Greenland [13] is appropriate to summarize the conditionalrelationship. However,
the variance estimator for the MH estimator proposed by Greenland [13] is not
dually consistent anymore, but only consistent under the large-stratum limiting
model. This article will propose new dually consistent variance and covariance
estimators.

To be general, we consider the odds ratios for any two items (say, j andh) as
follows:

Ψk
jh =

πj|1kπh|2k

πj|2kπh|1k
, j < h = 2, . . . , c,

whereΨk
jh = Ψk

j × · · · × Ψk
(h−1) if h > j + 1 andΨk

jh = Ψk
j if h = j + 1.

For a2 × c × K table, letXj|ik denote the number of subjects that choose item
j = 1, . . . , c in row i = 1, 2 and stratumk = 1, . . . ,K. Also, let nik denote
the number of subjects in rowi and stratumk and letNk = n1k + n2k denote
the totals for stratumk. For each stratum, there are two independent rows ofc
multiple response outcome categories. Under the common odds ratio assumption:
Ψjh = Ψ1

jh = · · · = ΨK
jh, the ordinary Mantel-Haenszel estimatorΨ̂jh has the

following form

Ψ̂jh =
Cjh

Chj
,

whereCjh =
∑K

k=1 cjh|k with cjh|k = Xj|1kXh|2k/Nk. The ordinary MH estima-

tor Ψ̂jh is dually consistent, i.e. consistent under the large–sample limiting model
and the sparse–data limiting model, see Appendix A for the proof.
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Let Ljh = log Ψ̂jh. Greenland [13] proposed the following variance estimator
Uold
jhh for Var(Ljh) and the following covariance estimatorUold

jhs for Cov(Ljh, Ljs):

Uold
jhh :=

∑
k cjh|kdjh|k

2C2
jh

+

∑
k chj|kdhj|k

2C2
hj

+

∑
k cjh|kdhj|k + chj|kdjh|k

2CjhChj

Uold
jhs :=

∑
k Xj|1kXh|2kXs|2k/N

2
k

3CjhCjs
+

∑
k Xj|+kXh|2kXs|1k/N

2
k

3CjhCsj

+

∑
k Xj|+kXh|1kXs|2k/N

2
k

3ChjCjs
+

∑
k Xj|2kXh|1kXs|1k/N

2
k

3ChjCsj

with djh|k := (Xj|1k + Xh|2k)/Nk, andXj|+k =
∑

iXj|ik. These estimators
are dually consistent when there are two independent rows ofmultinomials in a
contingency table where only one of thec outcome categories can be selected by
each subject. There is no estimator for Cov(Ljh, Lts) with t 6= j and s 6= h,
because Cov(Ljh, Lts) = 0.

For the multiple response data, we need the complete information of the re-
sponse profile on thec items (e.g. the right side of Table 1) to estimate the vari-
ance and covariance for{Ljh, j < h = 1, . . . c} because the row cell counts in
the marginal contingency table do not follow a multinomial distribution anymore.
However, multiple response data can be considered as an extension of multinomial
data, since choosing exactly one category is obviously a sub–case of choosing any
number of categories.

Let the pairwise probabilities for itemsj andh (j, h ∈ {1, . . . , c}) beπab
jh|ik

with a, b ∈ {0, 1}, where(0, 1) is the (no, yes) outcome for the selection of each
item. Thenπab

jh|ik is the probability of observing the pairwise outcome(a, b) for

items j andh. For instance, the notationπ11
jh|ik represents the probability that a

subject, who is in rowi and stratumk, selects both itemsj andh. Similarly, define
the pairwise observations as{Xab

jh|ik}. The pairwise probabilities can be computed
from the2c joint probabilities referring to2c response profiles. In a similar manner,
the pairwise observations (e.g. Table 2 for the first three majors) can be obtained
from the complete table. For instance, to obtainX11

jh|ik we sum over all those joint
observations for which responses for itemsj andh are both positive.

We assumeXjh|ik = (X00
jh|ik,X

01
jh|ik,X

10
jh|ik,X

11
jh|ik) follows a multinomial

distribution with parametersnik andπjh|ik = (π00
jh|ik, π

01
jh|ik, π

10
jh|ik, π

11
jh|ik) with

π00
jh|ik + π01

jh|ik + π10
jh|ik + π11

jh|ik = 1. The marginal probabilities can be computed

from the pairwise probabilities byπj|ik = π10
jh|ik + π11

jh|ik andπh|ik = π01
jh|ik +

π11
jh|ik. We can now show that

EXj|ikXh|ik = nikn
′
ikπj|ikπh|ik + nikπ

11
jh|ik (4)
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Table 2: The Pairwise Observations for the Bar Data

Pairwise Pair of Items Total
Major Responses 12 13 23 students

Biology

Work
Yes Yes/Yes 0 0 0

Yes/No 1 1 0
No/Yes 0 0 0
No/No 0 0 1 1

No Yes/Yes 1 0 0
Yes/No 0 1 1
No/Yes 0 0 0
No/No 0 0 0 1

Marine Biology

Work
Yes Yes/Yes 9 4 4

Yes/No 2 7 7
No/Yes 2 0 0
No/No 0 2 2 13

No Yes/Yes 1 1 1
Yes/No 0 0 0
No/Yes 0 0 0
No/No 0 0 0 1

Ecology & Biodiversity

Work
Yes Yes/Yes 6 4 4

Yes/No 1 3 4
No/Yes 2 0 0
No/No 1 3 2 10

No Yes/Yes 3 3 4
Yes/No 0 0 0
No/Yes 1 2 1
No/No 2 1 1 6
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with n′
ik = nik−1. If each subject can only choose one outcome category, follow-

ing the multinomial samplings, we have Cov(Xj|ik,Xh|ik) = −n2
ikπj|ikπh|ik and

EXj|ikXh|ik = nikn
′
ikπj|ikπh|ik. So, the multinomial case is a special case of mul-

tiple responses. In Appendix B we use these results to present a sketch of the proof
that the new estimatorsUjhh for Var(Ljh), Ujhs for Cov(Ljh, Ljs) andUjhts for
Cov(Ljh, Lts) are dually consistent for multiple response data. For convenience,
denoteX11

jh|ik byXjh|ik. The estimatorsUjhh, Ujhs are defined as follows:

Ujhh := V̂ar(Ljh) = Uold
jhh + Uadd

jhh

Ujhs := Ĉov(Ljh, Ljs) = Uold
jhs + Uadd

jhs , (5)

where the additional termsUadd are given by

Uadd
jhh =− 4

∑
k Xj|1kXh|1kXjh|2k/N

2
k +

∑
k Xjh|1kXj|2kXh|2k/N

2
k

2CjhChj

−
∑

k{Xjh|1k(Xj|2k +Xh|2k) +Xjh|2k(Xj|1k +Xh|1k)}/N2
k

2CjhChj

+ 4

∑
k Xjh|2kXjh|1k/N

2
k

2CjhChj

and

Uadd
jhs =

V̂ A
jhs|12

CjhCjs
− V̂jh,js

ChjCjs
− V̂js,jh

CjhCsj
+

V̂ A
jhs|21

ChjCsj

+
V̂ B
jhs|12

3CjhCjs
+

V̂ B
hjs|12 + V̂ B

sjh|21

3ChjCjs
+

V̂ B
sjh|12 + V̂ B

hjs|21

3CjhCsj
+

V̂ B
jhs|21

3ChjCsj

with

v̂Ajhs|ijk =
1

N2
k

X2
j|ikXhs|jk, v̂Bjhs|ijk = − 1

N2
k

Xj|ikXhs|jk

v̂jh,ts|k =
1

N2
k

{Xj|1kXh|1kXts|2k +Xjh|1kXt|2kXs|2k −Xjh|1kXts|2k}

andV̂ representing
∑

k v̂k. The estimatorUjhts := Ĉov(Ljh, Lts) is given by

Ujhts :=
V̂jt,hs

CjhCts
− V̂ht,js

ChjCts
− V̂js,ht

CjhCst
+

V̂hs,jt

ChjCst
.

When each subject can only choose one outcome category, the pairwise observa-
tionsXjh|ik are all zero, because it is impossible to have both items chosen. Con-
sequently,Uadd

jhh = Uadd
jhs = Ujhts = 0, such thatUjhh ≡ Uold

jhh andUjhs ≡ Uold
jhs.
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This shows that our estimators are generalizations of Greenland’s estimators and
are also applicable for the multinomial sampling model in anordinary case with
only one response outcome for each subject.

4. Examples

We consider the data in Table 1. The stratification variable is the students’
major and the row variable is the students’ working status. Students are considered
as working, if they either work part–time or full–time. The left side of Table 1
shows the positive responses for each item, and the right side shows the complete
data.

Applying the MH method, we obtain{L12, L13, L23} = {0.14, 0.60, 0.46}
with standard errors{0.24, 0.30, 0.28} using the proposed new estimates (5). The
bootstrap method gives standard errors{0.31, 0.38, 0.35}. The ML method fails
to converge for this example due to the sparseness of the dataunder both Lang’s
algorithm and Bergsma’s modified algorithm. When comparingthe working ef-
fects for “drink deals” and “sports tv”, the odds of choosinga favourite bar offer-
ing “drink deals” rather than “sports tv” for a student with part/full–time jobs are
exp(0.60) = 1.83 times the odds for a student without a job. The feature of “sports
tv” is not as important as “drink deals” for students having work. This effect is sig-
nificant when the new variance estimators are applied, but not detected when the
numerical bootstrap method is used. In the next section, we will show that these
new estimators have a better performance than the old estimators and the bootstrap
variance. Unlike the ML method, our proposed new estimatorshave a closed form
and can be obtained even for a highly sparse dataset.

This article also considers another less sparse dataset to explore the differ-
ence between the ML and MH methods. Table 3 given by Bilder andLoughin [6]
presents data where239 sexually active college women were asked “What type of
contraceptives have you used?”. They could select any answer from the following:
A-oral, B-condom, C-lubricated condom, D-spermicide, andE-diaphragm. The ta-
ble contains information on selected items and whether or not a subject had a prior
history of urinary tract infection (UTI). The stratification variable is age. The com-
plete table is given in the original article [6]. For demonstration, we exclude item
E due to zero cell counts in order to avoid adding a small count to implement both
MH and ML methods. The MH approach gives{LAB , LAC , LAD, LBC , LBD, LCD}={0.28
,−0.43, −0.45,−0.70, −0.73, −0.02} with standard errors{0.21, 0.25, 0.29, 0.13,
0.20, 0.21} by applying formula (5). The bootstrap standard errors are{0.21, 0.25,
0.30, 0.14, 0.21, 0.22}. The ML approach gives estimates{0.28, −0.39, −0.46,
−0.67, −0.73, −0.07} with standard errors{0.26, 0.25, 0.29, 0.13, 0.21, 0.21}.
The results from both MH and ML methods are very similar for the these non–
sparse data.

5. Simulation Study

We conduct a simulation study to investigate the performance of the proposed
estimatorsUjhh andUjhs. For simplicity, we choosec = 3, so that it is possible
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Table 3: The Marginal UTI Data

Contraceptive Total Total
A B C D E responses women

Age≥ 24
UTI
No 18 9 8 7 0 42 24
Yes 8 9 2 3 2 24 14

Age< 24
UTI
No 55 41 37 27 0 160 85
Yes 75 68 33 22 5 203 116

to obtain both estimatorsUjhh andUjhs. For given{Ψ1h, h = 2, . . . , c}, we fix
the marginal probabilities of the first row by settingπj|1k = 0.50 for all j =

1, . . . , c. Then we setπ1|2k = 1/(1 + Ψ1h) andπh|2k = Ψ1h

1+Ψ1h
for h = 2, . . . , c.

This ensures that the probabilities of the second row are balanced around1/2, for
exampleΨ12 = 1 givesπ1|2k = π2|2k = 1/2. We also setΨ = Ψ12 = Ψ13 and
Nk = N1 = · · · = NK to ensure simplicity.

We define the pairwise dependency between itemsj andh in the form of an
odds ratioθjh|ik, following Bilder and Loughin [6]:

θjh|ik =
P (Yj = 1, Yh = 1|ik)P (Yj = 0, Yh = 0|ik)
P (Yj = 0, Yh = 1|ik)P (Yj = 1, Yh = 0|ik) .

From the marginal probabilities{πj|ik, j = 1, . . . , c} and the odds ratios{θjh|ik, j 6=
h = 1, . . . , c}, we can compute the unique set of pairwise probabilities{πjh|ik, j 6=
h = 1, . . . , c}. Then the2c joint probabilities{P (Y1 = a1, . . . , Yc = ac|ik), aj =
0, 1, j = 1, . . . , c} in the complete table (e.g. right side of Table 1) can be com-
puted from the probabilities{πj|ik, j = 1, . . . , c} and{πjh|ik, j 6= h = 1, . . . , c},
if a feasible solution exists [19].

There are several approaches to computing such a solution ofthe joint prob-
abilities for given pairwise and marginal probabilities. One approach is to use
linear programming. Another is applying the iterative proportional fitting (IPF)
algorithm as described by Gange [12]. The generation of the joint probabilities
subject to{πj|ik, j = 1, . . . , c} and{θjh|ik, j 6= h = 1, . . . , c} is analogous to
the one applied in the simulation study by Bilder et al. [9]. We prefer IPF over
linear programming because it generates strictly positive(> 0) joint probabilities
(assuming such a solution exists), in contrast to linear programming, which might
produce zero joint probabilities. Consequently IPF does not exclude any of the
2c outcomes of the joint distribution. For simplicity, we alsoassume a constant
associationθ = θjh|ik for all itemsj 6= h = 1, . . . , c, rows i = 1, 2 and strata
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k = 1, . . . ,K.

For the simulation scheme, we include the sampling model of two independent
rows of multinomials withc outcome categories to create a special case of mul-
tiple response data. Setting the covariance between two items to Cov(Yj, Yh) =
−πj|ikπh|ik yieldsπjh|ik = P (Yj = 1, Yh = 1|ik) = 0 and consequentlyθjh|ik =
0. Therefore, fixing the covariance in such a way for all pairs of items yields
the multinomial distribution. Underθ = θjh|ik = 0, we sample from the multi-
nomial distribution with probabilities{π1|ik, . . . , πc|ik} for row i = 1, . . . , r and
stratumk = 1, . . . ,K, in which the probabilities need to satisfy the condition∑c

j=1 πj|ik = 1. Since the setup ofπj|1k = 0.50 for all j = 1, . . . , c does
not meet this condition, for the multinomial case we setπj|1k = 1/c, π1|2k =
1/[(c − 1)Ψ + 1] and πj|2k = Ψπ1|2k for j ≥ 2. For both rows (i = 1, 2),∑c

j=1 πj|ik = 1 with c = 3.

The number of bootstrap simulations was chosen asB = 400 and the number
of simulated datasets was20, 000. We record the mean and m.s.e. (mean squared
error) of the newly proposed (co)variance estimators (U ), the “old” (co)variance
estimators proposed by Greenland [13] based on multinomialsampling (Uold), and
the bootstrap estimate of (co)variance. The empirical variance and covariance of
theL’s over all simulations are regarded as the “true” (co)variances. The number of
simulations for which the MH estimates are undefined (NA) is also recorded. The
simulation results are based only on those data sets for which the MH estimates are
finite.

Table 4 shows the simulation results of the variance estimators for various sce-
narios. The newly proposed estimators,U122 andU123, perform better than the
bootstrap estimates of (co)variance except forK = 20 andNk = 5. They are also
superior toUold

122 andUold
123 for θ > 0. For θ = 0 (multinomial situations),U and

Uold are identical, becauseUadd = 0 due to the impossible event of observing the
pairwise observation(1, 1). Furthermore, the largerθ is, the larger the difference
betweenUold

jhs andUjhs becomes. Generally,Uold cannot be recommended for

multiple responses (θ > 0), because theUold’s are severely biased. Underθ = 0
for which each respondent can only select one outcome category, the old and new
estimators are identical. Overall the newly proposed (co)variance estimatorsUjhh
andUjhs perform very well for the general case of multiple responsesin various
levels of association between items. We assume thatUjhts behaves similarly to
Ujhs andUjhh, due to the similar construction of the estimator.

6. Discussion

The article proposes an extension of the sampling model of two independent
rows of multinomial responses to that of two independent rows of multiple re-
sponse data per stratum. For surveys, it is very common to tick all that apply and
not only one that applies. The cell counts in a 3-way contingency table are not
necessarily mutually exclusive across response items. Greenland [13] proposed
the MH estimators and their (co)variance estimators to summarize the conditional
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Table 4: Simulation results for the variance and covarianceestimators of the log odds ratio estimators
when the true odds ratioΨ = 4

Var(L12),Cov(L12, L13) Estimates
Empirical New Proposed (U ) Greenland’s (Uold) Bootstrap

K Nk θ NA 100×mean 100×mean 100×mean 100×mean
(10000×m.s.e.) (10000×m.s.e.) (10000×m.s.e.)

1 500 0 0 7.219, 5.062 7.056, 4.936 7.056, 4.936 7.338, 5.189
(0.552, 0.568) (0.552, 0.568) (2.704, 3.616)

1 500 1 0 3.378, 2.474 3.354, 2.440 4.965, 3.251 3.448, 2.521
(0.111, 0.0963) (2.616, 0.690) (0.489, 0.652)

1 500 10 0 2.392, 1.914 2.374, 1.905 4.964, 3.250 2.452, 1.980
(0.0925, 0.0803) (6.726, 1.870) (0.230, 0.219)

5 20 0 103 49.87, 30.14 46.81, 29.26 46.81, 29.26 55.62, 23.21
(532.0, 320.0) (532.0, 320.0) (364.5, 539.5)

5 20 1 1 23.10, 15.81 21.06, 14.05 30.48, 18.55 29.43, 16.48
(75.37, 40.42) (129.4, 45.19) (201.6, 65.97)

5 20 10 2 16.56, 12.70 15.51, 11.79 31.07, 19.60 23.27, 16.22
(54.12, 41.62) (279.3, 86.20) (162.2, 51.67)

20 5 0 2245 59.61, 15.57 71.55, 23.22 71.55, 23.22 53.97, 0.555
(1309., 196.5) (1309., 196.5) (646.7, 2407.)

20 5 1 43 25.63, 15.66 23.73, 14.64 37.61, 20.16 29.61, 12.60
(207.8, 75.65) (419.2, 92.17) (147.4, 151.4)

20 5 10 43 21.20, 16.07 19.48, 14.96 39.63, 23.49 25.52, 16.60
(184.2, 115.3) (635.1, 165.9) (111.8, 52.88)

100 5 0 0 13.23, 4.025 12.69, 3.855 12.69, 3.855 18.95, 0.393
(9.618, 0.734) (9.618, 0.734) (135.1, 114.0)

100 5 1 0 6.205, 3.163 6.015, 3.072 8.871, 4.097 8.247, 2.855
(1.474, 0.518) (8.859, 1.144) (16.54, 8.23)

100 5 10 0 4.781, 3.253 4.722, 3.215 9.654, 5.248 6.972, 4.160
(1.335, 0.767) (25.929, 4.608) (12.44, 2.107)

Note: For multiple responses,θ > 0.
Defineθ = 0 for the cases where each subject can only select one item.
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association between row and columns in such a 3-way table under the multino-
mial sampling case. We discuss both ML and MH methods appliedto multiple
response situations. Although the ML method is superior forthe estimation, when
data are sparse, it is not feasible to obtain the ML estimatesusing the fitting algo-
rithms. On the other hand, the MH method is appropriate underboth sparse–data
and large–stratum cases. This article generalizes the MH (co)variance estimators to
the multiple response situation in such a way, that under themultinomial sampling
case, the Greenland [13] (co)variance estimator is a special case of our newly pro-
posed estimator. Suesse [26] also considered the odds ratioestimation forK 2× c
tables based onc dependent binomials, which is an extension of the independent
binomial sampling model presented by Greenland.

Liu and Suesse [21] presented another MH estimator to analyze stratified mul-
tiple response data forK 2 × c tables considering how each item being selected
depends on the row variable. Compared to their MH estimator,the newly proposed
estimator is more useful for various cases. For instance, when items represent dif-
ferent time points in a longitudinal study, we might be interested in the time effect
as well. The local odds ratios provide a broader view on the association across
different items than the the odds ratios described by Liu andSuesse [21] that con-
sidered each of the items separately.

The odds ratio has the following propertyΨjh = ΨjsΨsh. Thuslog Ψjh cannot
only be estimated byLjs but also byLjs + Lsh. There is no unique estimator.
Greenland [13] proposed the following generalized MH estimator following the
Mickey and Elashoff [24] approach:

̂log Ψjh := L̄jh := (Lj+ − Lh+)/c.

This approach is independent of the applied estimator and generally applicable to
any estimator oflog Ψjh. Then, the generalized MH estimators{L̄jh} have the
propertyL̄jh = L̄js + L̄sh. Yanagawa and Fujii [28] also showed that their pro-
jection method yields the generalized MH estimator when applied to the ordinary
MH estimator. If one chooses to use the generalized estimators, a dually consistent
estimator for the covariance of̄Ljh andL̄ts is given by:

Ūjhts := Ĉov(L̄jh, L̄ts) =
1

c2
{U+

jt − U+
js − U+

ht + U+
hs} (6)

with

U+
jh =

{
U+
jj = Uj++ =

∑
a,b Ujab , j = h

U+
jh = U+jh − Ujh+ − Uhj+ + Ujh + U∗

jh , j 6= h
, (7)

whereU∗
jh =

∑
distinctj,a,h,bUjahb if j 6= h, otherwiseU∗

jh = 0. Greenland [13]

proposed exactly the same formula as (6), but the termU+
jh in equation (7) has, in

contrast to Greenland’s definition, an additional termU∗
jh due to Cov(Ljh, Lts) 6=

0 for multiple response data. Appendix C shows the details. For non-distinct in-
dices, we obtain the following formulae as sub–cases:

Ūjhs := Ĉov(L̄jh, L̄js) =
1

c2
{Uj++ − U+

js − U+
hj + U+

hs}
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and

Ūjhh := V̂ar(L̄jh) =
1

c2
{Uj++ − 2U+

jh + Uh++}.

The results shown for the examples in Section 4 are based on the generalized MH
estimators.

This paper only consideredK 2× c tables and could be further extended toK
r × c (with r > 2) tables. This extension would lead to another generalized MH
estimator and different formulae for the (co)variance estimators of these general-
ized MH estimators. These formulae also require additionalunknown covariance
estimators, which are subject to future research.
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A. Dually Consistency of Ordinary MH Estimator

A.1. Sparse Data Limiting Model

For the sparse data limiting model, the number of observations per stratum is
bounded (O(Nk) = 1) andK approaches infinity.

From πj|1kπh|2k = Ψjhπh|1kπj|2k, which follows from the assumption of a
common odds ratio, and equation (4), we derive

Eωjh|k = E(cjh|k −Ψjhchj|k) =Ecjh|k −ΨjhEchj|k

={EXj|1kEXh|2k −ΨjhEXh|1kEXj|2k}/Nk

={n1kn2kπj|1kπh|2k −Ψjhn1kn2kπh|1kπj|2k}/Nk

={n1kn2k(πj|1kπh|2k − πj|1kπh|2k)}/Nk = 0

We can write

Ψ̂jh −Ψjh =

∑K
k=1 cjh|k −Ψjhchj|k∑K

k=1 chj|k
=

∑K
k=1(cjh|k −Ψjhchj|k)/K∑K

k=1 chj|k/K
(8)

=

∑K
k=1 ωjh|k/K∑K
k=1 chj|k/K

=
Ωjh/K

Chj/K
. (9)

with with ωjh|k := cjh|k −Ψjhchj|k andΩjh :=
∑

k ωjh|k.

The termcjh|k is a bounded random variable under model II, hence, the vari-
ance ofCjh is o(K2) and Chebyshev’s weak law of large numbers states(Ωjh −
EΩjh)/K →p0. SinceEωjh|k = 0, the expression(Ωjh−EΩjh)/K →p0 reduces

toΩjh/K→p0, that is, the numerator of̂Ψjh −Ψjh converges to zero in probabil-
ity. Applying the Chebyshev weak law of large numbers again to the denominator
yields

K∑

k=1

cjh|k/K
K→∞−→ p lim

K→∞

K∑

k=1

E(cjh|k)/K < ∞.

This limit is finite and nonzero. Thus, we concludeΨ̂jh − Ψjh→p0 by Slutsky’s
theorem.
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A.2. Large Stratum Limiting Model

Let us consider the caseN → ∞ with Nαik = nik and0 < αik < 1, that
is, asN approaches infinity the number of subjectsnik, for all rowsi and stratak,
also approaches infinity. NoteNk = n1k + n2k = N

∑
i αik.

We have

Cjh/N =

K∑

k=1

cjh|k/N =

K∑

k=1

Xj|1kXh|2k/(NkN)

=
K∑

k=1

n1kn2k

NkN

Xj|1k

n1k

Xh|2k

n2k
=

K∑

k=1

n1kn2k

NN

N

Nk

Xj|1k

n1k

Xh|2k

n2k

N→∞−→ p

K∑

k=1

α1kα2k(
∑

i

αik)
−1πj|1kπh|2k =

K∑

k=1

(
∑

i

α−1
ik )−1πj|1kπh|2k.

Therefore

Ψ̂jh =
Cjh

Chj
=

Cjh/N

Chj/N

N→∞−→ p

∑K
k=1(

∑
i α

−1
ik )−1πj|1kπh|2k∑K

k=1(
∑

i α
−1
ik )−1πh|1kπj|2k

= Ψjh

∑K
k=1(

∑
i α

−1
ik )−1πh|1kπj|2k∑K

k=1(
∑

i α
−1
ik )−1πh|1kπj|2k

= Ψjh.

B. Asymptotic Covariances

B.1. Sparse-data Limiting Model

Let Vara(·) and Cova(·) refer to the asymptotic variance and covariance. From

aboveΨ̂jh −Ψjh =
Ωjh/K
Chj/K

=
∑

k ωjh|k/K

Chj/K
.

First by independence of rows Cov(Ωjh,Ωts) =
∑K

k=1 Cov(ωjh|k, ωts|k). Note
thatE|ωjh|k − Eωjh|k|3 = E|ωjh|k|3 = O(1) , becausecjh|k is a bounded random
variable under the sparse-data limiting model. By settingδ = 1, we conclude
from the Multivariate Central Limit Theorem [25, p.123] that K−1/2 (Ωjh, Ωts) =√
K(Ωjh/K, Ωts /K) converges to a zero mean multivariate normal distribution

with covariancelimK→∞
1
K

∑K
k=1 Cov(ωjh|k, ωts|k), by noting thatEωjh|k = 0

and Cov(ωjh, ωts) exists. We conclude the asymptotic covariance betweenΩjh

andΩts is limK→∞K · Cova(Ωjh,Ωts) = limK→∞
1
K

∑K
k=1 Cov(ωjh|k, ωts|k).
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Therefore by the delta method, Slutsky’s theorem, equation(8), and using that
the denominator termslimK EChj/K are finite we obtain

lim
K→∞

K · Cova(log Ψ̂jh, log Ψ̂ts)

=1/(ΨjhΨts) lim
K→∞

K · Cova(Ψ̂jh, Ψ̂ts)

=1/(ΨjhΨts)
limK→∞K · Cova(Ωjh,Ωts)

(limK EChj/K)(limK ECst/K)

=1/(ΨjhΨts)
limK→∞ 1/K ·∑k Cov(ωjh|k, ωts|k)

(limK EChj/K)(limK ECst/K)

for arbitrary indicesj, h, s, t ∈ {1, . . . , c} with j 6= h ands 6= t.

Now we obtain the following variance

Var(ωjh|k) = v1jh|k − 2Ψjhv
2
jh|k +Ψ2

jhv
3
jh|k

and covariances

Cov(ωjh|k, ωjs|k) = vjhs|12,k −Ψjhvjh,js|k −Ψjsvjs,jh|k +ΨjhΨjsvjhs|21,k

Cov(ωjh|k, ωts|k) = vjt,hs|k −Ψjhvht,js|k −Ψtsvjs,ht|k +ΨjhΨtsvhs,st|k

with

v1jh|k =
n1n2

N2
(πj|1πh|2 + n′

1π
2
j|1πh|2 + n′

2πj|1π
2
h|2)

v2jh|k =
n1n2

N2
(n′

1πj|1πh|1πjh|2 + n′
2πj|2πh|2πjh|1 + πjh|1πjh|2)

v3jh|k =
n1n2

N2
(πh|1πj|2 + n′

1π
2
h|1πj|2 + n′

2πh|1π
2
j|2)

vjh,ts|k =
n1n2

N2
(πjh|1πts|2 + n′

1πj|1πh|1πts|2 + n′
2πjh|1πt|2πs|2)

vjhs|abk =
n1n2

N2
vAjhs|abk + vBjhs|abk (a 6= b)

vAjhs|abk =
n1n2

N2
πhs|bk(πj|ak + n′

aπ
2
j|ak) (a 6= b)

vBjhs|abk =
n1n2

N2
n′
bπj|akπh|bkπs|bk (a 6= b).

The subscriptk is often suppressed for convenience only.

The (co)variance estimators were constructed in such a way that they converge
exactly to the asymptotic (co)variance(s). We can also expressUjhs asUjhs =

18



Uadd
jhs omittingUold

jhs but only if v̂Bjhs|abk is amended tôvBjhs|abk = 1
N2

k

Xj|ak{Xh|bkXs|bk−

Xhs|bk}. Then for the covariance estimators we have
∑

k v̂k/K
K→∞−→

∑
k Ev̂k/K =

limK
∑

k vk/K and
∑

k cjh|k/K
K→∞−→ ∑

k Ecjh|k/K by Chebyshev’s weak law
of large numbers.

B.2. Large-stratum Limiting Model

By the delta method, the large stratum limiting variance is

lim
N→∞

N · Vara(log Ψ̂jh)

=

∑
k

α2

1
α2

(
∑

i αik)2
{π2

j|1πh|2 +Ψ2
jhπ

2
h|1πj|2 − 2Ψjhπj|1πh|1πjh|2}

(
∑

k(
∑

i α
−1
ik )−1πh|1kπj|2k)2

+

∑
k

α1α2

2

(
∑

i αik)2
{πj|1π2

h|2 +Ψ2
jhπh|1π

2
j|2 − 2Ψjhπjh|1πj|2πh|2}

(
∑

k(
∑

i α
−1
ik )−1πh|1kπj|2k)2

and the limiting covariances are

lim
N→∞

N · Cova(log Ψ̂jh, log Ψ̂js)

=

∑
k

α2

1
α2

(
∑

i αik)2
{π2

j|1πhs|2 −Ψjhπj|1πh|1πjs|2 −Ψjsπj|1πs|1πjh|2 +ΨjhΨjsπh|1πs|1πj|2}
(
∑

k(
∑

i α
−1
ik )−1πh|1kπj|2k)2

+

∑
k

α1α2

2

(
∑

i αik)2
{πj|1πh|2πs|2 −Ψjhπjh|1πj|2πs|2 −Ψjsπjs|1πj|2πh|2 +ΨjhΨjsπhs|1π

2
j|2}

(
∑

k(
∑

i α
−1
ik )−1πh|1kπj|2k)2

lim
N→∞

N · Cova(log Ψ̂jh, log Ψ̂ts)

=

∑
k

α2

1
α2

(
∑

i αik)2
{πj|1πt|1πhs|2 −Ψjhπh|1πt|1πjs|2 −Ψtsπj|1πs|1πht|2 +ΨjhΨtsπh|1πs|1πjt|2}

(
∑

k(
∑

i α
−1
ik )−1πh|1kπj|2k)2

+

∑
k

α1α2

2

(
∑

i αik)2
{πjt|1πh|2πs|2 −Ψjhπht|1πj|2πs|2 −Ψtsπjs|1πh|2πt|2 +ΨjhΨtsπhs|1πj|2πt|2}

(
∑

k(
∑

i α
−1
ik )−1πh|1kπj|2k)2

.

The estimators were constructed such that

lim
N→∞

N · Vara(log Ψ̂jh) = lim
N

N · Ujhh

lim
N→∞

N · Cova(log Ψ̂jh, log Ψ̂js) = lim
N→∞

N · Ujhs

lim
N→∞

N · Cova(log Ψ̂jh, log Ψ̂ts) = lim
N→∞

N · Ujhts.
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C. Generalized Covariance Estimators

We can write

Cov(L̄jh, L̄ts) = Cov

(
1/c

c∑

a=1

(Lja − Lha), 1/c

c∑

a=1

(Lta − Lsa)

)

=
1

c2

∑

a

{Cov(Lja, Lta) + Cov(Lha, Lsa)− Cov(Lja, Lsa)− Cov(Lha, Lta)}

+
1

c2

∑

a6=b

{Cov(Ljb, Lta) + Cov(Lhb, Lsa)− Cov(Ljb, Lsa)− Cov(Lhb, Lta)}

and express
∑

a6=b Cov(Ljb, Lta) as

∑

a6=b

Cov(Ljb, Lta) =
∑

b

(a = j)

Cov(Ljb, Ltj) +
∑

a

(b = t)

Cov(Ljt, Lta)

− Cov(Ljt, Ltj) +
∑

distinctj,b,t,a

Cov(Ljb, Lta)

= −
∑

a

Cov(Ljt, Lja)−
∑

a

Cov(Ltj , Lta)

+ Cov(Ljt, Ljt) +
∑

distinctj,b,t,a

Cov(Ljb, Lta)

Now it is clear how we derived the equations (6) and (7). For a more detailed proof
of the dually consistency of the proposed estimators, we refer to Suesse [26].
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