Local Odds Ratio Estimation for Stratified Contingency
Tables with Multiple Responses

Thomas Sues&glvy Liu®
2chool of Mathematics and Applied Satistics, University of Wollongong, Australia

PSchool of Mathematics, Statistics and Operations Research, Victoria University of Wellington, New
Zealand

Abstract

For a two—way contingency table with categorical variablesal odds ratios are
commonly used to describe the relationships between thearmvcolumn vari-
ables. An ordinary case has mutually exclusive cell courts,each subject must
fit into one and only one cell. However, many surveys haveuatgn where re-
spondents may select more than one outcome category. Wessligte maximum
likelihood method and suggest the Mantel-Haenszel loads oakio estimation for
K such2 x c tables, treating the multiple responses as an extensidmeahtilti-
nomial sampling model. We derive new dually consistenty@aance estimators
and show their performance with a simulation study.

Key words. Consistency, Local odds ratio, Mantel-Haenszel estimatdds
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1. Introduction

Many studies are designed to compare groups on a multiHlespbnse vari-
able. One often uses a two-way contingency table that cctassifies subjects on
both group and response variables to display relationdhdpseen them. A set
of odds ratios, such dscal odds ratios [1, p.55] that use four cells in adjacent
rows and columns, can describe the associations. If a stteipjgts to control for
other factors that might influence the relationships, aetfway contingency table
can show the associations between the group and resporsgaesicontrolling for
a possibly confounding variable. The three—way contingeable consists of{
2-way patrtial tables, wherE is the number of levels for the control variable.

For a simple case ok 2 x 2 tables, letr;;, be the probability of selecting
itemj = 1,2 for a subjectinrow = 1,2 and stratunk = 1,..., K. Thekth odds
ratio is defined a@* = (m11672)26)/ (T1)2k721k)- The Mantel-Haenszel (MH)

[23] estimator is a popular way of summarizing a common oddi® when the
conditional association is assumed to remain the same gfieoontrol variable,

i.e., ¥l = ... = UK |tis used not only when the common odds ratio assumption
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seems plausible, but also as a summary measure when théatesocaries only
mildly across the tables. Greenland [13] extended the MHhotketo the common
local odds ratios forX 2 x c¢ tables, where the response variable haategories.
The local odds ratios in stratuinhave the form

k_ TRETGHD2E
Uj=——""—"— j=1..,¢c-1L Q)
Tj12kT(j+1)[1k
The assumption of common local odds ratios states= \I/j1 =...= \I/f (G =
1,...,¢c —1). The MH estimators are dually consistent, i.e. consistewter the

large—stratum K is bounded while the number of subjects per stratum goes to
infinity) and sparse—datds( goes to infinity with sample size, but the nhumber of
subjects per stratum remains fixed) limiting models. It fcigt under the null of

no association.

The cell counts in the contingency table described abovenateally exclu-
sive, i.e., each of the subjects must fit into one and only efie Some of the sam-
pling models satisfy this condition. For instance, GreedIf 3] assumed for each
stratum the following sampling situationsindependent binomials and two inde-
pendent rows of multinomials with outcome categories. However, the mutually
exclusive property might not hold in a 3-way table but, theditional associations
between the group and response variables are still the mt&irest of the study.
This situation occurs often in a survey when respondents saebct any number
out of c outcome categories. For instance, the respondents aretofteto “mark
all that apply”. Categorical outcome variables for thiseygf data are calledick
any/c variables or multiple response variables, wherec is the number of outcome
categories (calledems) and “/” stands for “out of” [10].

Table 1 shows an example of this type of data, where studdrasstatistics
course at the Victoria University of Wellington in New Zeathwere asked to tick
their favourite bar. The study recorded the features of #re beparately, treating
each feature as an item. Each bar may have more than onecfedable 1 lists
¢ = 3 items: “drink deals” (item 1), “pool table” (item 2) and “sgi® tv” (item
3). We assign a positive response for itgre.g. “drink deals”), when the stu-
dent’s favourite bar has that particular feature. Eachestudlso answered some
personal questions (such as major, gender, working stsusking status, etc.).
For this example, we are interested to find the associatiomesm working status
and preferred features of the bars, controlling on studemdgors. LetY; = 1 if
a student’s selected bar has featyrg = 1,2, 3) and letY; = 0 otherwise. Let
Y = (Y1,Y>,Y3) denote the response profile on 3 categories \With Y5, Y3)
corresponding to the (yes, no) outcome of the selected baurks. For example,
if a student’s selected bar has feature “drink deals” o¥ly= (1,0,0)’. The table
displays both th@ x 3 x 6 “marginal” contingency table (for 6 different majors)
and the2 x 23 x 6 “complete” contingency table on the multiple response feofi
The marginal table shows the response counts for the featoyeross—classifying
students according to their working status and major. Fsiairce, within the Ma-
rine Biology major, 4 students who had work selected bark wie “sports tv”
feature. The complete table shows the counts of the pogsibfdes’Y for each
combination of work levels and majors.

The analysis of this type of data has received much attestime Loughin and
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Scherer [22]. They proposed a weighted chi—square test badtstrap test for the
hypothesis that the probability of selecting any given iisridentical among lev-
els of a predictor variable. A series of work by Decady andrias [11], Bilder

et al. [9], and Bilder and Loughin [5, 6] focused on tests afaas hypotheses for
a single multiple response variable. Later on, Thomas arwde[27] and Bilder

and Loughin [7] considered the tests of independence betwee multiple re-

sponse variables cases. Besides the tests, Agresti and,dudiscussed different
strategies for modeling multiple response data. Bilder lamaghin [8] extended
their earlier work to simultaneously model and estimateassociation structure
between two multiple response variables in complex sureeypding situations.
In addition to the modeling and testing procedures, Liu anesSe [21] derived a
closed form of the odds ratio estimation by comparing thesafeéach of the items
being selected for different groups. The purpose of thislaris to show how one
can use the simple concept of the local odds ratios (1) arhexheir inferences
for multiple responses to describe the associations in tirgimal2 x ¢ x K table.

In the next two sections, we introduce the maximum likelih@®L) method
and propose the new MH estimation for the multiple respomse.cln Section 4,
we illustrate methods using two examples. Section 5 showpdénrformance of
our new estimators in a simulation study. The paper finish#s @amments and
discussions.

2. TheML Method

We can express the model which assumes common local odds fati all
strata as

T 1T 5
log (M) — g, forallk=1,...,K, @
51265 +1|1k

whereg; = log ¥;. This model is not a standard logit model.

The ML inference for the model requires that the cell proli@s of the
complete table are estimated under the constraints implogede model. As-
sume that cell counts in each row of the complete table followultinomial
distribution. The likelihood function refers to the muttimial cell probabilities
{pije. 1 =1,2,5=1,...,2° k= 1,..., K}, but the model itself applies to the
marginal probability{ 7., i = 1,2, j =1,...,c—1, k=1,..., K}. Haber [14]
and Lang and Agresti [18] presented numerical algorithmsrfaximizing multi-
nomial likelihoods subject to constraints for generaliraglinear models having

the matrix form
Clog Ap = X33, )

wherep refers to the vector of multinomial cell probabilities. Thmdel (2) has
the above form, where the matrix contains0 and1 entries in such a pattern that
when applied tg it forms the relevant marginal probabilitieg;,; the matrixC
containd), 1, and—1 entries in such a pattern that when applied to the log mdrgina
probabilities, it forms the log local odds ratios for Modg});(3 = (81, .. ., Be—1)’
andX is simply a row vector with'’s.



Table 1: Marginal Table and Complete Information for the Bata

Marginal Table Complete Table
Item Y
1 00001111
Item total 2 00110011
major 1 2 3 students3 01010101
Biology
work
yes 1 0 O 1 00001000
no 1 1 O 1 0000O0OO01O
Marine Biology
work
yes 11 11 4 13 002020514
no 1 1 1 1 00000O0O01
Ecology & Biodiversity
work
yes 7 8 4 10 10201024
no 3 4 5 6 11010003
Operations Research
work
yes 0 0 1 1 01000000
no 0 0 O 1 10000000
Psychology
work
yes 2 2 2 3 01000011
no 2 2 1 3 00101001
Statistics
work
yes 1 1 1 1 00000O0O01
no 1 1 1 1 00000O0O01
ltems 1: drink deals; 2: pool table; and 3: sports tv.



A disadvantage of the ML approach is that it is only consistemler the large—
stratum limiting model. Under a sparse—data limiting mopdesimulation study
given by [20] showed that the ML estimator of a common glotsd<ratio tends
to over—estimate the true odds ratio. The common global oatifs refers tok
stratifiedr x ¢ tables with multinomial sampling. Furthermore, for mukipe-
sponses the ML estimator of the common local odds ratio isoisistent because
the number of parametefs x 2 x (2¢ — 1) that determine the multinomial distri-
butions for all strata goes to infinity & — co.

An R function (mph.Rcode.R) for the algorithm may be obtdifrem Prof J.
B. Lang of the Statistics Department, University of lot@p://www.stat.
uiowa.edu/ ~jblang/ . The function is not only suitable for fitting generalized
loglinear models (3), but also provides the algorithm fdirfig Multinomial Pois-
son homogeneous (MPH) models [16]. Lang [17] considers lyemeous linear
predictor models, a subclass of MPH models. Such models alloroader class of
link functions; for details of these models see [16, 17].¢3ama et al. [4] proposed
another fitting algorithm directly built on the work of [185]land provided an R
package called “cmm” for fitting such models. Their prograna imodification of
the Lang—Agresti algorithm.

3. TheMH method

Under the common local odds ratio assumption, the MH estimgitten by
Greenland [13] is appropriate to summarize the conditioslationship. However,
the variance estimator for the MH estimator proposed by @Bapel [13] is not
dually consistent anymore, but only consistent under thgelatratum limiting
model. This article will propose new dually consistent aade and covariance
estimators.

To be general, we consider the odds ratios for any two itemg {sandh) as

follows:
ok — T51kTh|2k

jh 5 j<h:2,...,C,

T512kTh|1k
where W%, = UF x . x U if h > j+1and W% = UFif h = j+ 1.
For a2 x ¢ x K table, letX;;, denote the number of subjects that choose item
j=1,...,cinrowi = 1,2 and stratumkt = 1,..., K. Also, letn;, denote
the number of subjects in rowand stratumk and let N, = nq, + ng, denote
the totals for stratunk. For each stratum, there are two independent rows of
multiple response outcome categories. Under the commaos radiid assumption:
Uy, = ¥, = --- = ¥, the ordinary Mantel-Haenszel estimatby), has the
following form

1\

jh — K
Chj

whereC;, = Zszl Cinlk With cjp, = X111 Xp 20/ Ni- The ordinary MH estima-

tor \i/jh is dually consistent, i.e. consistent under the large—taiimpiting model
and the sparse—data limiting model, see Appendix A for thefpr
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Let L;j, = log \ifjh. Greenland [13] proposed the following variance estimator
U for Var(L;y,) and the following covariance estimattf;? for Cov(L;, Ljs):

2k Cnkdine | Dok Chilkdhglk | Dok Cinlkngik T Chjikdinlk

Uj(?flzcllz : 2 2
Qth 2Chj 2C;1,Chj
Uold — >k X Xnj2u X )20/ N N >k X1k Xnjoe X 16 /N7
3CnCye 3C;nCy;
>k Xk Xn 16 X g6/ N7 N >k X2k Xn 1k X1/ N2
3Ch;Cis 3ChiC

with djp, ; := (Xjj + Xpjor)/Nk, and X1, = >, X These estimators
are dually consistent when there are two independent rowsuttinomials in a
contingency table where only one of th@utcome categories can be selected by
each subject. There is no estimator for Cby,, Lss) with ¢t # j ands # h,
because Ca\L,, Lis) = 0.

For the multiple response data, we need the complete infammaf the re-
sponse profile on the items (e.g. the right side of Table 1) to estimate the vari-
ance and covariance fdil;,,j < h = 1,...c} because the row cell counts in
the marginal contingency table do not follow a multinomietdbution anymore.
However, multiple response data can be considered as ams@deof multinomial

data, since choosing exactly one category is obviously acage of choosing any
number of categories.

Let the pairwise probabilities for itemsandh (j,h € {1,...,c}) be 77?2|z'k
with a,b € {0, 1}, where(0, 1) is the (no, yes) outcome for the selection of each
item. Themr;bgmC is the probability of observing the pairwise outcoifagb) for
itemsj and h. For instance, the notatiomjl.,ll‘ik represents the probability that a
subject, who is in row and stratunk, selects both itemgandh. Similarly, define
the pairwise observations f/liuk}- The pairwise probabilities can be computed

from the2¢ joint probabilities referring t@° response profiles. In a similar manner,
the pairwise observations (e.g. Table 2 for the first threrajpcan be obtained

from the complete table. For instance, to Obtx'ﬁuk we sum over all those joint
observations for which responses for itejrendh are both positive.

_ (x00 01 10 11 : :
We assumeX . = (X |Z.k,th‘ik,th”k,th‘ik) follows a multinomial

J

istributi i : (00 01 10 11 ;
distribution with parameters;;, and jj;;, = (ﬂjh‘ik,ﬂ'jh'ik, 7Tjh|l-k,7'('jh‘ik) with

00 01 10 mn _ : it
Tointik + Tinjie T Tjnjie + Tinje = 1- The marginal probabilities can be computed

TN liti _ 10 11 _ 01

from the pairwise probabilities by;;, = Tintik T Tjnlik and mp, ;, = Ttk T
W]lflm'k- We can now show that

/ 11
EX )ik Xnjik = MikMaTjikTnik + ik jp)ik (4)



Table 2: The Pairwise Observations for the Bar Data

Pairwise Pair of ltems Total
Major Responses 1213 23 students
Biology
Work
Yes Yes/Yes 00 O

Yes/No 11 O

No/Yes 00 O

No/No 00 1 1
No Yes/Yes 10 O

Yes/No 01 1

No/Yes 00 O

No/No 00 O 1
Marine Biology
Work
Yes Yes/Yes 9 4 4

Yes/No 27 7

No/Yes 20 O

No/No 02 2 13
No Yes/Yes 11 1

Yes/No 00 O

No/Yes 00 O

No/No 00 O 1
Ecology & Biodiversity
Work
Yes Yes/Yes 6 4 4

Yes/No 13 4

No/Yes 20 O

No/No 13 2 10
No VYes/Yes 33 4

Yes/No 00 O

No/Yes 12 1

No/No 21 1 6




with n!, = n;;, — 1. If each subject can only choose one outcome categorywfollo
ing the multinomial samplings, we have GO ;;., X)) = —n?kﬂ'ﬂikwh”k and
EX i Xnjik = Mik1,T ik Thjik- SO, the multinomial case is a special case of mul-
tiple responses. In Appendix B we use these results to maﬂetch of the proof

that the new estimators,,, for Var(L;,), U;;,, for Cov(L;y, L;s) and U]hts for
CoVv(L;p, L) are dually consistent for multiple response data. For auevee,

denoter%lik by Xu)ir- The estimators/; innr Ujps @re defined as follows:

ld dd
Ujpp = Var( in) = Uiy + Ui

Ujps = CoV(Ljp, Ljs) = UGS + UG, (5)

where the additional terni®@ are given by

pradd _ 4Zk XX e X jnioe/NE + 2k XjnunX 126 Xnjon/ N

ghh = 201,Chj
X (Xak + Xnpor) + Xnpon (X + Xnjue) }/NE
5C;nCh,;
Zk 2k Xjn1k/ NP
2CnChy
and
> A N N > A
rradd _ th8|12 _ Vin,js _ Vijs.jh th8|21
M T CnChs  ChiCis  CinCyy  ChiCy
B B B B
Vinsna Vh]s\lQ + V]hm Vennze T Vigszr  Vinsor
3CnCe 3Ch;Cje 3C;nCs; 3Ch;Cs;
with
1
54 B
ihslijk = kX hs|jks hs|ijk ik X hs|jk
Yjhslij N2 IZ sl Jjhslij N,f Jle sl

. 1
Vjhtslk = W{Xj\lth\lkth\% + Xin 1 X2k Xsjok — Xjnj1eXes|2k }
k

andV representing_, 0. The estimatol/, ihts = Cov(L ihs Lts) is given by

U‘h — ‘7jt,hs . Vht,js . ‘/}s,ht + Vhs,jt )
Ihts thcts Chjcts thCst Chjcst
When each subject can only choose one outcome categoryaitvége observa-
tions X, ;. are all zero, because it is impossible to have both itemsechdSon-
sequentlyU4hl = US4 = U, - = 0, such that,, = U andU,, . = UL,
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This shows that our estimators are generalizations of Gardis estimators and
are also applicable for the multinomial sampling model inocaginary case with
only one response outcome for each subject.

4. Examples

We consider the data in Table 1. The stratification variabléhé students’
major and the row variable is the students’ working statigsdénts are considered

as working, if they either work part—time or full-time. Theftl side of Table 1
shows the positive responses for each item, and the rigatséidws the complete
data.

Applying the MH method, we obtaifiL2, L13, Lo} = {0.14, 0.60, 0.46}
with standard error$0.24, 0.30, 0.28} using the proposed new estimates (5). The
bootstrap method gives standard errds31, 0.38, 0.35}. The ML method fails
to converge for this example due to the sparseness of thauddex both Lang’s
algorithm and Bergsma’s modified algorithm. When compatheyworking ef-
fects for “drink deals” and “sports tv”, the odds of choosedavourite bar offer-
ing “drink deals” rather than “sports tv” for a student witarpfull-time jobs are
exp(0.60) = 1.83 times the odds for a student without a job. The feature offtspo
tv” is not as important as “drink deals” for students havingrikv This effect is sig-
nificant when the new variance estimators are applied, butlei@cted when the
numerical bootstrap method is used. In the next section, iVeshow that these
new estimators have a better performance than the old detisrend the bootstrap
variance. Unlike the ML method, our proposed new estimdtar® a closed form
and can be obtained even for a highly sparse dataset.

This article also considers another less sparse datasefptore the differ-
ence between the ML and MH methods. Table 3 given by Bilderlamdyhin [6]
presents data wheg39 sexually active college women were asked “What type of
contraceptives have you used?”. They could select any arfsye the following:
A-oral, B-condom, C-lubricated condom, D-spermicide, Badiaphragm. The ta-
ble contains information on selected items and whether ba sabject had a prior
history of urinary tract infection (UTI). The stratificativariable is age. The com-
plete table is given in the original article [6]. For demaatbn, we exclude item
E due to zero cell counts in order to avoid adding a small cauithplement both
MH and ML methods. The MH approach gives g, Lac, Lap, Lec, Lep, Lop }={0.28
, —0.43, —0.45,—0.70, —0.73, —0.02} with standard error§0.21, 0.25, 0.29, 0.13,
0.20, 0.21} by applying formula (5). The bootstrap standard errors &r2l, 0.25,
0.30, 0.14, 0.21, 0.22}. The ML approach gives estimatég8.28, —0.39, —0.46,
—0.67, —0.73, —0.07} with standard error$0.26, 0.25, 0.29, 0.13, 0.21, 0.21}.
The results from both MH and ML methods are very similar fag these non—
sparse data.

5. Simulation Study

We conduct a simulation study to investigate the perforraafdhe proposed
estimatorsU;;;, andUj;,. For simplicity, we choose = 3, so that it is possible

9



Table 3: The Marginal UTI Data

Contraceptive Total Total
A B C D E responses women

Age > 24
UTI
No 18
Yes 8
Age< 24
UTI
No 55 41 37 27 0 160 85
Yes 75 68 33 22 5 203 116

9 8 0 42 24
9 2 2

7
3 24 14

to obtain both estimator§;;,;, andUj,. For given{W,, h = 2,...,c}, we fix
the marginal probabilities of the first row by setting|;;, = 0.50 for all j =
1,...,c. Then we setryjp, = 1/(1 4 Wy,) andmyp, = - forh = 2,... . c.

This ensures that the probabilities of the second row anbeatl around /2, for
example¥s = 1 givesm g, = mojg, = 1/2. We also set? = V15 = W3 and
N, = N1 = --- = Nk to ensure simplicity.

We define the pairwise dependency between itg¢raad i in the form of an
odds ratiod;, ;,, following Bilder and Loughin [6]:

P(Y; = 1Y}, = 1|ik)P(Y; = 0,Y}, = 0|ik)
P(Y; =0,Y), = 1ik)P(Y; = 1,Y, = 0[ik)’

Ojnjir =

From the marginal probabilitiegr; ;z, j = 1,. .., c} and the odds ratio);;1, j #

h =1,...,c}, we can compute the unique set of pairwise probabilitieg, 1, j #

h =1,...,c}. Then the2¢ joint probabilities{ P(Y1 = a1, ...,Y, = aclik),a; =
0,1,7 = 1,...,c} in the complete table (e.g. right side of Table 1) can be com-
puted from the probabilitie$n;;x, i = 1,...,c} and{m p,j # h =1,...,c},

if a feasible solution exists [19].

There are several approaches to computing such a solutithre gbint prob-
abilities for given pairwise and marginal probabilities.né®approach is to use
linear programming. Another is applying the iterative pdnal fitting (IPF)
algorithm as described by Gange [12]. The generation ofdhe probabilities
subject to{7jx,j = 1,...,c} and{0;ur,J # h = 1,...,c} is analogous to
the one applied in the simulation study by Bilder et al. [9]e Wrefer IPF over
linear programming because it generates strictly pos{tivéd) joint probabilities
(assuming such a solution exists), in contrast to lineaggamming, which might
produce zero joint probabilities. Consequently IPF dodsemxclude any of the
2¢ outcomes of the joint distribution. For simplicity, we alaesume a constant
associatiort) = ¢;5,;;, for all items;j # h = 1,...,¢, rowsi = 1,2 and strata
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k=1,....K.

For the simulation scheme, we include the sampling modelofhdependent
rows of multinomials withc outcome categories to create a special case of mul-
tiple response data. Setting the covariance between twesite Co\Y;,Y}) =
—TjikThjik YieldS T, = P(Y; = 1,Y), = 1]ik) = 0 and consequentlg;;;, =
0. Therefore, fixing the covariance in such a way for all pairstems yields
the multinomial distribution. Undefl = 60;;,;, = 0, we sample from the multi-
nomial distribution with probabilitie ;. .., 7} forrowi = 1,...,r and
stratumk = 1,..., K, in which the probabilities need to satisfy the condition
25:1 mie = 1. Since the setup ofj, = 0.50 for all j = 1,...,c does
not meet this condition, for the multinomial case we sg{;, = 1/c, mjg, =
/[(c = D)¥ + 1] and ;o = Wmypy, for j > 2. For both rows { = 1,2),
> =1 ik = Lwith ¢ = 3.

The number of bootstrap simulations was choseB as 400 and the number
of simulated datasets was, 000. We record the mean and m.s.e. (mean squared
error) of the newly proposed (co)variance estimatéry, the “old” (co)variance
estimators proposed by Greenland [13] based on multinsarabling {/°/¢), and
the bootstrap estimate of (co)variance. The empiricalavené and covariance of
the L's over all simulations are regarded as the “true” (co)vasés. The number of
simulations for which the MH estimates are undefindd4() is also recorded. The
simulation results are based only on those data sets fohwicMH estimates are
finite.

Table 4 shows the simulation results of the variance estiradibr various sce-
narios. The newly proposed estimatot§,, and U;s23, perform better than the
bootstrap estimates of (co)variance exceptior= 20 and N, = 5. They are also

superior toU{%4 andU¢kd for > 0. Ford = 0 (multinomial situations)[/ and
U° are identical, becaudé®® = 0 due to the impossible event of observing the
pairwise observatioifl, 1). Furthermore, the larger is, the larger the difference
betweenU ¢ and Uj,; becomes. Generally/* cannot be recommended for

multiple responsed)(> 0), because th&°“’s are severely biased. Undér= 0
for which each respondent can only select one outcome agtefe old and new
estimators are identical. Overall the newly proposed @agwce estimator§’;,
andUj;,, perform very well for the general case of multiple resporisesrious
levels of association between items. We assumelhgt behaves similarly to
Ujns andUjyy,, due to the similar construction of the estimator.

6. Discussion

The article proposes an extension of the sampling model ofitndependent
rows of multinomial responses to that of two independentsraivmultiple re-
sponse data per stratum. For surveys, it is very commonkati¢hat apply and
not only one that applies. The cell counts in a 3-way conticgetable are not
necessarily mutually exclusive across response itemser&ned [13] proposed
the MH estimators and their (co)variance estimators to saria® the conditional
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Table 4: Simulation results for the variance and covariastinators of the log odds ratio estimators
when the true odds ratis = 4

Var(Lq2),CoVv(L12, L13) Estimates

Empirical New Proposedf) Greenland's{’°¥)  Bootstrap
K N, 6 NA|100xmean  100xmean 100xmean 100xmean
(10000xm.s.e.)  (0000xm.s.e.) (0000xm.s.e.)
1 500 0 0 |7.219,5.062 7.056,4.936 7.056,4.936 7.338,5.189
(0.552, 0.568) (0.552,0.568)  (2.704,3.616)
1 500 1 0 |3.378,2.474 3.354,2.440 4.965, 3.251 3.448,2.521
(0.111,0.0963) (2.616, 0.690) (0.489, 0.652)
1 500 10 0 |2.392,1.914 2.374,1.905 4.964, 3.250 2.452,1.980
(0.0925,0.0803) (6.726, 1.870) (0.230,0.219)
5 20 0 103 |49.87,30.14 46.81,29.26 46.81,29.26 55.62,23.21
(532.0, 320.0) (532.0,320.0)  (364.5,539.5)
5 20 1 1 (23.10,15.81 21.06, 14.05 30.48,18.55 29.43,16.48
(75.37,40.42) (129.4,45.19)  (201.6,65.97)
5 20 10 2 |16.56,12.70 15.51,11.79 31.07,19.60 23.27,16.22
(54.12,41.62) (279.3,86.20)  (162.2,51.67)
20 5 0 2245|59.61,15.57 71.55,23.22 71.55,23.22 53.97,0.555
(1309.,196.5) (1309.,196.5)  (646.7,2407.)
20 5 1 43 |25.63,15.66 23.73,14.64 37.61,20.16 29.61,12.60
(207.8, 75.65) (419.2,92.17)  (147.4,151.4)
20 5 10 43 |21.20,16.07 19.48,14.96 39.63,23.49 25.52,16.60
(184.2,115.3) (635.1,165.9)  (111.8,52.88)
100 5 0 0 |13.23,4.025 12.69, 3.855 12.69, 3.855 18.95,0.393
(9.618,0.734)  (9.618,0.734)  (135.1,114.0)
100 5 1 0 |6.205,3.163 6.015,3.072 8.871,4.097 8.247,2.855
(1.474,0.518) (8.859,1.144)  (16.54,8.23)
100 5 10 0O |4.781,3.253 4.722,3.215 9.654, 5.248 6.972,4.160

(1.335,0.767)

(25.929, 4.608)

(12.44,2.107)

Note: For multiple responseg,> 0.
Defined = 0 for the cases where each subject can only select one item.
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association between row and columns in such a 3-way tableruheé multino-
mial sampling case. We discuss both ML and MH methods apptiedultiple
response situations. Although the ML method is superiotierestimation, when
data are sparse, it is not feasible to obtain the ML estimadewy the fitting algo-
rithms. On the other hand, the MH method is appropriate uhd#ér sparse—data
and large—stratum cases. This article generalizes the Middance estimators to
the multiple response situation in such a way, that undemitiéinomial sampling
case, the Greenland [13] (co)variance estimator is a dpexga of our newly pro-
posed estimator. Suesse [26] also considered the oddesditization fork 2 x ¢
tables based on dependent binomials, which is an extension of the indepgnde
binomial sampling model presented by Greenland.

Liu and Suesse [21] presented another MH estimator to amalyatified mul-
tiple response data fdk 2 x c tables considering how each item being selected
depends on the row variable. Compared to their MH estimtitemewly proposed
estimator is more useful for various cases. For instanceniitems represent dif-
ferent time points in a longitudinal study, we might be ietded in the time effect
as well. The local odds ratios provide a broader view on tls®@ation across
different items than the the odds ratios described by LiuSmnesse [21] that con-
sidered each of the items separately.

The odds ratio has the following propemyy;, = ¥,V ;. Thuslog V¥ ;, cannot
only be estimated by ;, but also byL;, + Lg,. There is no unique estimator.
Greenland [13] proposed the following generalized MH eaton following the
Mickey and Elashoff [24] approach:

log \I[jh = Ejh = (Lj+ — Lth)/C.
This approach is independent of the applied estimator andrghly applicable to
any estimator ofog ¥;,. Then, the generalized MH estimatof$,;,} have the
property L, = Ljs + Lg,. Yanagawa and Fujii [28] also showed that their pro-

jection method yields the generalized MH estimator wheriegto the ordinary
MH estimator. If one chooses to use the generalized estimaaually consistent

estimator for the covariance éf;;, and Ly, is given by:

_ — = - 1
Uints := COMLjp, Lis) = C—z{U;; —-UL -Uh+ U} (6)
with
U+ — { U]'J; =Uit+ = Za,b Ujab J=h (7)
Jh UJ-J;L:UJrjh_Uthr_Uthr—’_Ujh—i_U;h 7j7éh7

whereUs, = 3 gistinct j,a,n,b Ujahs it j # h, otherwiseUZ, = 0. Greenland [13]
proposed exactly the same formula as (6), but the [éﬁgin equation (7) has, in

contrast to Greenland's definition, an additional teriy) due to CoVL;p, Lis) #

0 for multiple response data. Appendix C shows the details. nBa-distinct in-
dices, we obtain the following formulae as sub—cases:

_ — - 1
Ujns :== CoV(Ljp, Ljs) = C—Q{Uj++ U, = U5+ U}
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and .
Ujnh = Var(Ljp) = S 1Uj++ = 2U + Uy}

The results shown for the examples in Section 4 are basedeqyetieralized MH
estimators.

This paper only considerell 2 x ¢ tables and could be further extendedifo
r x ¢ (with » > 2) tables. This extension would lead to another generalizétl M
estimator and different formulae for the (co)varianceneators of these general-
ized MH estimators. These formulae also require addition&hown covariance
estimators, which are subject to future research.
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A. Dually Consistency of Ordinary MH Estimator

A.l. Sparse Data Limiting Model

For the sparse data limiting model, the number of obsemataer stratum is
bounded Q(Ny) = 1) and K approaches infinity.

From 71 xmhi2k = YinTh 1672k, Which follows from the assumption of a
common odds ratio, and equation (4), we derive
Ewjnie = E(cjne — Yincnjk) =Ecjne — VinEcy;k
={EX;1kEXp o — VinEXp 1. EX ok } /N
={n1knokTj 12k — YinnknokTh16T 2k } / Nk

={n1kn2k (7|16 Thi2k — Tj16Th2k) }/NE =0

We can write
K K
G g, — 2ok=1 Gnlk — Yanthie _ Dk (Cnik — Wincnp) /K g
jh — ¥jh — K - K K ( )
> k1 Chjlk > k1 Chijlk/
K
_ Zkzlehlk/K /K ©)

e /K Cni/K

with with Win|k = Cjhlk — \I’jhchﬂk andeh = Zk Wih|k-

The terme;y;. is @ bounded random variable under model Il, hence, the vari-
ance ofC;y, is o(K?) and Chebyshev's weak law of large numbers stéfes —
EQjp)/ K —0. SinceEw;y ), = 0, the expressio(2;, — EQ;p,)/ K — 0 reduces

to Q;5/K —,0, that is, the numerator of ;, — ¥ ;;, converges to zero in probabil-
ity. Applying the Chebyshev weak law of large numbers agaithe denominator
yields
K . K
— 00 .
> i/ K =55 I(lganE(th|k)/K < 00.
k=1 k=1

This limit is finite and nonzero. Thus, we concludig, — ¥ ;;,—,0 by Slutsky’s
theorem.
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A.2. Large Sratum Limiting Model

Let us consider the cas¥€ — oo with Nay;, = n;, and0 < oy, < 1, that
is, aslN approaches infinity the number of subjeatg, for all rows: and strata,

also approaches infinity. Nof&), = ny, + nop = N >, ap,.
We have

Cjn/N = chmk/N ZX 116X hjok/(NeN)
k=1 k=1

=

K
Z nenok Xjik Xnjok Z nignor N Xjjik Xnjok

— NeNony mogk NN N ni nog

K

K
N —00 -1 _ —1\—1
—p « kOé2k azk TikTh|2k = ( Ok ) Ti11kTh|2k:
k=1 i

k=1
Therefore
K —1y—1
I 5= th _ th/N Niio Zk:1(zz‘ Q. ) Ti11ETh|2k
Jh = o T . P K 1
Chj ChJ/N D ke (22 O%kl) 17Th\1k77j\2k
K —1N—
Zk=1(zz‘%kl) 17Th|1k7rj|2k
= \Iljh K 1 1 — \I]]h
Dokt (20 g )T TR 2k

B. Asymptotic Covariances

B.1. Sparse-data Limiting Model

Let Var*(-) and CoV(-) refer to the asymptotic variance and covariance. From

\ _ _ ]h/K ka]h\k/K
abovev j;, \I]Jh_ChJ/K C K

First by independence of rows C@Y;,, Q) = Zszl Cov(wjn |k, Wes|k)- NOtE
that E|w;p x — Ewjpil® = Elw;pel® = O(1) , because;,;, is a bounded random
variable under the sparse-data limiting model. By setting: 1, we conclude
from the Multivariate Central Limit Theorem [25, p.123] tHd /2 (Q,,, Qus) =
VK (n/K, Qs /K) converges to a zero mean multivariate normal distribution
with covariancdimg o + Zszl CoV(wjp|ks Wes|k ) DY Noting thatEw ), = 0
and Co\w;, w,) exists. We conclude the asymptotic covariance betviegn
andQy, is im0 K - COV* (U, Qs) = limp o0 1 S hq COMWjp ks Wes|i)-
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Therefore by the delta method, Slutsky’s theorem, equd8prand using that
the denominator termiém  EC,;/ K are finite we obtain

lim K - Cov*(log ¥, log Wys)

K—oo
=1/(Wjn V) lim K - Cov(¥n, Wys)
—00
lmpg oo K - CO\F(th, Q)
(th ECh]/K)(th Ecst/K)

:1/(\Djh\pt8)

limg oo 1/K : Zk Cov(wjh\ka wts\k)
(limK Echj/K)(th Ecst/K)

:1/(\Djh\pt8)

for arbitrary indicesj, h, s, t € {1,...,c} with j # h ands # t.
Now we obtain the following variance

_ 1 2 2 .3
Var(wink) = Vipe = 29 p V5516 + YiaVink
and covariances

CoMwWjn|ks Wislk) = Vinsiizk — YinVin sk — YisVjsjnlk + YinVisVjns|21k

COV(Wiin e Ws|k) = Vjthsle — YinUht jslk — PtsVjs ntle + VinPisUhs stk

with
1 mne2 ) / 2
Ujh|k = —N2 (7Tj|17Th|2 + 7117TJ-|17Th|2 + 7127Tj|171'h‘2)
2 _ in2, /
Uinlk = N2 (“17Tj|17Th|17Tjh|2 T NoT 5122 jp(1 + th\lﬂjhp)

3 _ ning ) / 2
Ujh|k = —N2 (7Th|17Tj|2 + 7’L17Th|17'('j|2 + n27rh|17rj|2)
_ ning / ’
Ujhytslk = 73 (TjR1Ts|2 + PUT 1R 1 Tes|2 + NOTjR(1 T 2T s)2)
. ning A B
Ujhslabk = 7z Ujhslabk T Vjhs|abk (a#b)
A _ ning ’_2
Vihs|abk = N2 7Ths|bk(7Tj|ak + naﬂj\ak) (CL # b)

B _ mana
Ujhslabl = 2 " lakTh|bk T s[bk (a#0).

The subscripk is often suppressed for convenience only.

The (co)variance estimators were constructed in such aheyhey converge
exactly to the asymptotic (co)variance(s). We can alsoesglV;;, asUj,s =
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U omitting U¢; but only if@ﬁw‘abk is amended t@ﬁw‘abk = NLEXj\ak{Xh\kaﬂbk_
Xhsjpi}- Then for the covariance estimators we have oy, / K Koge Y Evp /K =
limg 3 on/K and Y, cjpn/K =5 3, Eejni/K by Chebyshev's weak law
of large numbers.
B.2. Large-stratum Limiting Model

By the delta method, the large stratum limiting variance is

lim N - Var’(log \i’jh)

N—oo
ojor 2 2 2 oy o .
_ >k =, an)? {”j|1”hl2 + VT2 2 i1 TR 1 T jnj2 }
—1\—
(k2 Oéik) 17Th|1k77j|2k)2
2
Q105 2 2 2 - ]
>k >, )2 {Wj\lﬂhp + \Ijjhﬂ'h\lﬂ'jp — 2U 1T )17 2T hj2 }
—1\—
(k2 %k) 17Th\1k77j\2k)2
and the limiting covariances are

lim N - Cov'(log ¥, log ¥j)

N—oo

2
e .2 T R\ (P . g .
Zk ; ain)? {ﬂ'j‘lﬂ'hsp - \Il]hﬂ'ﬂlwh\lﬂ-]s@ \II]ST(]\IT"S\ITFJMQ + \Ijjh\pjswh\lﬂ'sﬂﬂjp}
—1y-1 2
(k2 Q;p ) 7Th\1k77j\2k)
Zalia%{ww To2 — UinTin1TilaTsl2 — VisTisiTil2Thi2 + Vin W sThsi 1T 20 }
k (S, aur)? 117N h|27 5|2 Jhjh|17 5127 s|2 jsjs|17 5127 h|2 Jh*jsThs|17 |2

ey o) Y 1 jon )2

lim N - Cov'(log ¥ jp,log Uy,)

N—o0
a?as
>k o) {minmenThsi2 — CinThiTe1Tjs2 — YesTjniTs1Thej2 + ViV esTh|1Ts[1Tjej2}
—1y-1 2
(Zk(zi Q. ) 7Th|1lc7Tj|2k)
alag

. 2ok T an)? VRt Thi2Tsl2 = VinThe1Tj27s2 = YisTjs|17hjamej2 + WinWesThs| 171272}

(k2 O‘ﬁgl)*lﬂhukﬂj\zk)z
The estimators were constructed such that
]\}gnooN . Vara(log \I’jh) = 11]{[11]\[ . Ujhh

lim N - Cov*(log ¥, log W ) = lim N Ujps
—00

N—oo

]\}EnooN . CO\F(log \Ifjh, log \Ifts) = ]\}EHOON : Ujhts-
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C. Generalized Covariance Estimators

We can write

COV(I_/jh, I_/ts) = Cov (1/0 i(Lja — Lha)7 I/C i(Lm — Lsa))

a=1 a=1

1
=3 > {CoU(Lja, Lta) + COM(Lig, Lesa) — COV(Lja, Lsa) — COV(Lng, Lia)}

1
+3 > {CoW(Ljs, Lta) + COV(Lpy, Lsq) — COV(Ljy, Lsa) — COV(Lipy, Lta) }
a#b

and expres$ _, ,, Cov(Ljp, Lyq) as

> CoMLjp, Lia) = Y, CoM(Ljn, Lij) + >, CoM(Lji, Lia)
a#b b a

(a=j)
— COV(th7 Ltj) + Z COV(ij7 Lta)

distinct j,b,t,a
== CoV(Lj, Lja) — > CoM(Lyj, Lia)
a a

+ Cov(Ljt, Ljt) + Z Cov(L;y, Lia)
distinct j,b,t,a

Now it is clear how we derived the equations (6) and (7). Fooaendetailed proof
of the dually consistency of the proposed estimators, wer tefSuesse [26].
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