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Abstract

We study the maximization problem for a generalized log-likelihood
functional defined on a space of probability measures, issued from a
model where a random variable is observed both directly and indirectly
through auxiliary variables with know conditional densities. We show ex-
istence of the maximum, give a condition for its uniqueness and absolute
continuity with respect to the direct observation, and derive its Fréchet
(or Hadamard) differential with respect to other parameters of the model
and with respect to the observation itself.

1 Introduction

1.1 Nonparametric likelihood

Our framework in this paper is the following. Let S be an integer ≥ 1 and
let X ,Ys (1 ≤ s ≤ S) be Polish (i.e. metrisable, complete, separable) spaces.
Let MX ,MYs

denote the sets of all Borel completed probability measures on
X ,Ys respectively. An X -valued random variable X has (i.i.d.) realisations
observed n0 times; on the other hand, each Ys has conditional density fs(y|x)
with respect to a reference probability measure ζs and is observed ns times.
The measure ζs does not play a particular role here, except for the fact that for
all x ∈ X ,

∫

Ys
fs(y|x)dζs(y) = 1. Let n :=

∑S
s=0 ns denote the total number of

observations and let ws := ns/n be their relative frequencies; the primary goal
is to estimate the law of X .

As was pointed out by Gill [3], in a nonparametric setting there is typically
no dominating measure, so one cannot simply “maximize a density”. This dif-
ficulty can be avoided by looking for the maximizer directly in the larger space
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of probability measures. More specifically, we are interested in estimating the
true law ν0 ∈MX of X by maximising the likelihood of ν ∈MX , defined as

L(ν) :=
n0
∏

i=1

ν({X i})
S
∏

s=1

ns
∏

i=1

fYs
(Ys,i;ν) (1)

where

fYs
(y;ν) :=

∫

X
fs(y|x)dν(x) (2)

is a probability density with respect to ζs. Note that for (1) to make sense, the
density fYs

should a priori be a function defined pointwise and not just ζs-almost
everywhere.

Taking the logarithm of (1) and rescaling, we obtain the log-likelihood

L(ν) := w0

∫

X
log
�

dν̃

dµX
(x)
�

dµX (x) +
S
∑

s=1

ws

∫

Ys

log( fYs
(y;ν))dµYs

(y) (3)

where the following notation has been used: ws := ns

n
,

µX :=
1

n0

n0
∑

i=1

δX i
and µYs

:=
1

ns

ns
∑

i=1

δYs,i
(4)

are the empirical measures observed from X and Ys (respectively called di-
rect and indirect observation measures). In (3) we wrote ν =: ν̃ + ν̂ for the
Lebesgue decomposition of ν in its absolutely continuous and orthogonal parts
with respect to µX and dν̃

dµX
denotes the Radon-Nicodym derivative.

1.2 Semiparametric setting

Log-likelihoods of type (3) are common in the litterature, notably in a semi-
parametric setting for case-control or outcome-dependent sampling (Prencice
and Pyke [7], Breslow and Holubkov [1], Scott and Wild [8, 9], Lawless et
al. [5], Zhou et al. [14], Weaver and Zhou [12] to name a few). In these sit-
uation, the densities fs also depend on a parameter of interest θ ∈ Θ (thus, so
does fYs

). The full likelihood can then be written in the form

L(ν ,θ) :=
n0
∏

i=1

ν({X i}) fs(Yi|X i;θ)
S
∏

s=1

ns
∏

i=1

fYs
(Ys,i;ν ,θ)

In the so-called profile likelihood method, one fixes first θ to find ν (depending
on θ) maximizing L(ν ,θ); then L(νθ ,θ) is maximized in θ . Since the terms
fs(Yi|X i;θ) do not depend on ν , the first step in this method amounts to maxi-
mizing (1) or, equivalently, (3).
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The crucial point we would like to make is that maximising (1) or (3) over
ν ∈MX is in general not the same as maximising

L (ν1, . . . ,νn0
) :=

w0

n0

n0
∑

i=1

log(νi) +
S
∑

s=1

ws

ns

ns
∑

i=1

log







1

n0

n0
∑

j=1

ν j f (Ys,i|X j)






(5)

over the set
¦

(ν1, . . . ,νn0
) ∈ (R+)n0 :

∑n0
i=0 νi = 1

©

. In fact, maximising (5)
amounts to maximising (3) over the subset of measures ν that are absolutely
continuous with respect to µX (notation ν � µX ). But consider the following
very simple example: X = Y = {0,1}, f (y|x) = 1x=y , µX = δ0, µY = δ1

and n0

n
= n1

n
= 1

2
: it is not difficult to see that here L(ν) is maximised for

ν = 1
2
(δ0+δ1) 6� µX .

Nevertheless, (5) seems to be universally accepted in the literature as the
quantity to maximise. To quote Lawless et al. [5]: “As is standard with nonpara-
metric maximum likelihood, we maximise [L(ν)] over all discrete distributions
whose support contains the X -values observed in the data”. It is certainly a
much easier problem to solve than having to find a maximum over a whole set
of measures; but (3) makes more sense from a mathematical point of view, and
with less constraint it uses the available data more efficiently.

1.3 Outline of the results

Our first result in this paper is to give a sufficient and (almost) necessary con-
dition guaranteeing that, for any µX ,µYs

, the maximum of (3) exists, is unique,
and is reached for ν � µX which therefore has a density g := dν

dµX
. Note that

in this paper we study only the maximization problem; the random generation
of µX and µYs

(including the selection of the realizations of X that are directly
observed), thus the estimating properties of ν , are not considered.

In fact, in § 2 we shall prove this result in a slightly more general framework
for (3). First, the numbers w0, ws can be any positive real numbers summing
to 1 and second, the measures µX ,µYs

can be any Borel completed probabil-
ity measures on X and Ys respectively. Besides the technical necessity (to
define differentiability, see below), this extension has intrinsic interest: gen-
eral µX ,µYs

can be interpreted as “information measures” containing all that
is known about the random variables X and Ys, with respective weights w0
and ws. Empirical measures (4) are the basic example; to model noisy mea-
surements µX and µYs

could be empirical measures convolved with Gaussian
distributions; more generally, any prior information about X or Ys can be cast
in this form.

This extension of the range of µX ,µYs
is costless and allows us to study in

§ 3 the regularity of the optimal density g as a function of these measures.
We will show that g must satisfy a fixed-point equation that may be used for
numerical computations, and that it depends smoothly (C1) on µX ,µYs

. If, as in
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a semiparametric setting, the functions fs also depend on a parameter θ ∈ Θ,
then the optimal g also depends smoothly on θ .

2 Absolute continuity of the likelihood maximiser

We now consider L(ν) defined by (3) with
∑S

s=0 ws = 1 and µX ,µYs
arbitrary

probability measures on X ,Ys (1≤ s ≤ S).

2.1 Existence of the maximiser

We first show that the problem

max
ν∈MX

L(ν) (P )

always has a solution if fs satisfies basic measurability and continuity hypothe-
ses. Remark that the first term of (3) is the same as −w0D(µX‖ν), where

D(µ‖ν) :=







∫

X log
�

dµ
dν
(x)
�

dµ(x) if µ� ν

+∞ else

is the Kullback-Leibler relative entropy (or information divergence). If CB(X )
denotes the space of continuous bounded functions on X , with uniform con-
vergence topology, then MX is naturally a convex subset of the dual CB(X )′

endowed with the weak* topology (a.k.a. convergence in law). By a theorem
of Posner [6], the map (µ,ν) 7→ D(µ‖ν) is jointly lower-semicontinuous in µ
and ν onM 2

X for this topology, so the first term of (3) is upper-semicontinuous.
For the subsequent terms of (3) we will need the following result. Let

µY be a Borel completed probability measure on a Polish space Y and for
f ∈ L1(µY ), let f �µY denote the measure having density f with respect to µY
(i.e. d( f �µY )(y) := f (y)dµY (y)).

Proposition 2.1. Suppose that there exists C <∞ such that for every x0 ∈ X ,

(i). the function y 7→ f (y|x0) is µY -measurable.

(ii). for µY -a.e. y, the function: x 7→ f (y|x) is continuous at x0;

(iii). there exists a neighbourhood N(x0) and h ∈ L1(µY ), ‖h‖L1 ≤ C, such that
for every x ∈ N(x0), for µY -a.e. y,

�

� f (y|x)
�

�≤ h(y).

Then the linear operator: ν 7→ fY (·,ν)�µY is weak* continuous: MX → CB(Y )′.
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Proof. Fix a ψ ∈ CB(Y ). Thanks to Lebesgue’s dominated convergence the-
orem, the map x 7→

∫

Y f (y|x)ψ(y)dµY (y) is continuous and bounded (by
C


ψ




L∞) on X , thus integrable against any ν ∈MX . Using Fubini’s theorem,
we obtain that the function y 7→

∫

X f (y|x)ψ(y)dν(x) is µY -integrable; in par-
ticular, taking ψ = 1, fY (·;ν) ∈ L1(µY ) and fY (·;ν) � µY ∈ CB(Y )′. Suppose
now that νn

∗
* ν inMX . Using Fubini’s theorem again,

∫

Y
fY (y;νn)ψ(y)dµY (y) =

∫

Y

∫

X
f (y|x)dνn(x)ψ(y)dµY (y)

=

∫

X

∫

Y
f (y|x)ψ(y)dµY (y)dνn(x)

→
∫

X

∫

Y
f (y|x)ψ(y)dµY (y)dν(x)

→
∫

Y
fY (y;ν)ψ(y)dµY (y)

As X is separable, the weak* topology on MX is metrisable (for example by
the Lévy-Prohorov metric) and sequential continuity implies continuity.

However, we may want (3) to be defined for any probability measures
µX ,µYs

. To guarantee this, we need y 7→ fYs
(y,ν) to be universally measur-

able, that is, measurable for any Borel completed measure µY ; the following
proposition is a straightforward consequence of Fubini’s theorem.

Proposition 2.2. Suppose that (x , y) 7→ f (y|x) is universally measurable and
bounded. Then for any ν ∈ MX , the function fY (·,ν) is universally measurable
and bounded.

Putting it all together, we obtain:

Theorem 1. Suppose that for every 1≤ s ≤ S,

(x , y) 7→ fs(y|x) is universally measurable, continuous in x and bounded. (6)

Then for any probability measures µX ,µYs
, the map ν 7→ L(ν) is well defined,

(weak*)-upper-semicontinuous and reaches its maximum onMX .

Proof. By Proposition 2.2, L(ν) is well defined for any ν ∈ MX and we can
apply Proposition 2.1 to any probability measure µYs

on Ys. Since
∫

Ys

log( fYs
(y;ν))dµYs

(y) =−D(µYs
‖ fYs
(·;ν) �µYs

)

by Posner’s theorem each map: ν 7→
∫

Ys
log( fYs

(y;ν))dµYs
(y) is weak* upper-

semicontinuous. It follows that L is also upper-semicontinuous and reaches its
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maximum on
⋃

0≤λ≤1λMX , because this set is weak*-closed in the unit ball
of CB(X )′ which is, by the Banach-Alaoglu theorem, compact in the weak*
topology. Obviously L(λν) ≤ L(ν) so the maximum is in fact reached onMX .

Naturally, the universal measurability condition may be replaced by conti-
nuity, stronger but easier to verify.

At “true value” It is interesting to check what happens when the information
measures µX and µYs

are the true probability distributions from the model. In
that case µX = ν0 and µYs

has marginal density fYs
(·;ν0) with respect to ζs.

Then the log-likelihood

L(ν) = w0

∫

X
log
�

dν̃

dν0
(x)
�

dν0(x) +
S
∑

s=1

ws

∫

Ys

log( fYs
(y;ν)) fYs

(y;ν0)dζs(y)

is indeed, by Gibbs’ inequality, uniquely maximized for ν = ν0.

From now on we assume that (6) is satisfied.

2.2 Condition for absolute continuity

As we noticed before, the solution to (P ) in the case of missing data is not nec-
essarily absolutely continuous with respect to µX . However, in nonparametric
or semiparametric statistics it is often assumed that the log-likelihood is max-
imised for a density: we now give a condition for this to hold for any µX and
µYs

, 1 ≤ s ≤ S. As before, we are given conditional densities (x , y) 7→ fs(y|x)
and define fYs

(y;ν) :=
∫

X fs(y|x)dν(x).

Theorem 2. For each s ∈ {1, . . . , S} and y ∈ Ys let

αs(y) := inf
x∈X

fs(y|x), βs(y) := sup
x∈X

fs(y|x) and γs := sup
y∈Ys

βs(y)
αs(y)

(7)

Under the hypothesis
S
∑

s=1

wsγs < 1 (8)

then for any probability measures µX ,µYs
, the log-likelihood L(ν) reaches its max-

imum at ν � µX . Conversely, if
∑S

s=1 wsγs > 1, there exist measures µX ,µYs
such

that L(ν) reaches its maximum at ν 6� µX .

Proof. Suppose that ν realises the maximum of L(ν) and that ν̂(X )> 0. For a
(small) h> 0 consider the probability measure

νh :=
�

1+ h
ν̂(X )
ν̃(X )

�

ν̃ + (1− h)ν̂
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We have

fYs
(y;νh) =

∫

X
fs(y|x)dνh(x)

=
�

1+ h
ν̂(X )
ν̃(X )

�
∫

X
fs(y|x)dν̃(x) + (1− h)

∫

X
fs(y|x)dν̂(x)

=

∫

X
fs(y|x)dν(x)

+ h

�

ν̂(X )
ν̃(X )

∫

X
fs(y|x)dν̃(x)−

∫

X
fs(y|x)dν̂(x)

�

≥ fYs
(y;ν) + h

�

αs(y)− βs(y)
�

ν̂(X )

and since fYs
(y;ν)≥ αs(y),

fYs
(y;νh)≥ fYs

(y;ν)
�

1+ h
�

1−
βs(y)
αs(y)

�

ν̂(X )
�

so that

L(νh)≥ L(ν) +w0 log
�

1+ h
ν̂(X )
ν̃(X )

�

+
S
∑

s=1

ws log
�

1+ h
�

1− γs
�

ν̂(X )
�

If (8) is satisfied, then for h small enough we get L(νh)> L(ν), a contradiction
with the hypothesis that ν is the maximum of L.

For the proof of optimality let us assume, without loss of generality, that
S = 1. We will show that there exists measures µX and µY such that L(ν)
reaches its maximum for ν 6� µX . The inequality in the hypothesis being strict,
there exist y+ ∈ Y , x−, x+ ∈ X and α < β such that α = f (x−, y+), β =
f (x+, y+) and w1

β

α
> 1. Let µX := δx− and µY := δy+ . The only probability

measure that is absolutely continuous with respect to µX is µX = δx− itself and
fY (y;µX ) = f (y|x−), so we have

L(µX ) = w1 log(α)

Compare this with the log-likelihood obtained for νh := hδx+ + (1 − h)δx− ,
0< h< 1: then fY (y;νh) = hf (y|x+) + (1− h) f (y|x−) and

L(νh) = w0 log(1− h) +w1 log
�

hβ + (1− h)α
�

=−hw0+ hw1

�

β

α
− 1
�

+w1 log(α) + o(h)

> w1 log(α) = L(µX )

if h is small enough. But νh 6� µX if h> 0.
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An interpretation of Hypothesis (8) may be easier in the equivalent form
w0 >

∑S
s=1 ws(γs − 1): the weight assigned to the direct observations must

be large enough to ensure that the optimal ν stays absolutely continuous with
respect to the direct observation measure.

From now on we suppose that (8) is satisfied.

2.3 Uniqueness and fixed point equation

Corollary 2.3. The maximum of L(ν) is unique.

Proof. The functional g 7→
∫

X log(g(x))dµX (x) is strictly concave and proper
on the set of µX -probability densities and the other terms are concave > −∞,
so the maximum of

L (g) := w0

∫

X
log
�

g(x)
�

dµX (x) +
S
∑

s=1

ws

∫

Ys

log( fYs
(y; g �µX ))dµYs

(y) (9)

(if it exists) is unique. So is the maximum of L(ν), for we know that it is
reached at ν =: g1 � µX . Moreover, this g1 realises the maximum of (9) on
L1(µX ).

Corollary 2.4. The fixed point equation

g =
w0

1−
∑S

s=1 ws

∫

Ys

fs(y|·)
fYs (y;g�µX )

dµYs
(y)

(10)

has a solution g0 ∈ CB(X ), which coincides on the support of µX with the density
maximising (9).

Proof. By Corollary 2.3, the maximum of L is reached for a density g1 ∈
L1(µX ) and since L is differentiable at that point (obviously at the maximum,
g1(x)> 0 on the support of µX ), the Lagrange multipliers theorem asserts that
there exists λ ∈ R such that, for µX -almost all x ,

∇gL (g1)(x) =
w0

g1(x)
+

S
∑

s=1

ws

∫

Ys

fs(y|x)
fYs
(y; g1 �µX )

dµYs
(y) = λ

and the fact that λ= 1 follows from the constraint
∫

X g1(x)dµX (x) = 1.
So far g1(x) is defined only µX -almost everywhere: for any x ∈ X let

g0(x) :=
w0

1−
∑S

s=1 ws

∫

Ys

fs(y|x)
fYs (y;g1�µX )

dµYs
(y)

With Hypotheses (6) and (8), this function is continuous in x and bounded by
w0

1−
∑S

s=1 wsγs
<∞. Clearly g0 and g1 coincide µX -almost everywhere so g0 also

satisfies (10).

Assuming the fixed point is attractive (see Lemmata 3.2 and 3.3 for suffi-
cient conditions), (10) can be used iteratively to compute g0 numerically.
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3 Implicit equation for the density

To lighten the notation we assume (without loss of generality) that S = 1, drop
the subscript s in (2) and (7) and, as long as µX is fixed, write fY (y; g) instead
of fY (y; g �µX ). By Corollary 2.4, the optimal density extended to a continuous
function g0 satisfies A(g0) = 0, where

A(g) := g −
w0

1−w1

∫

Y
f (y|·)

fY (y;g)dµY (y)
(11)

In this way g0 is implicitly defined as a function of µX ,µY and optionally a
parameter θ if f (y|x) = f (y|x;θ). We now prove C1 regularity of this implicit
function and compute its differential with respect to these variables (unless
otherwise specified, differentiability will always be in the sense of Fréchet).

3.1 Invertibility of ∇g A

Initially the map A is defined on the set of continuous bounded functions that
are also µX -probability densities

Π(µX ) :=

¨

g ∈ CB(X ) : g ≥ 0

∫

X
g(x)dµX (x) = 1

«

However, this set is not open (for the topology of uniform convergence) in
CB(X ) so it is convenient, for the purpose of differentiability, to enlarge it a
little.

Lemma 3.1. There exists a CB(X )-open set Ω(µX ) ⊃ Π(µX ), such that A is dif-
ferentiable on Ω(µX ) and its differential is the operator ∇g A(g) defined by

∇g A(g)h := h+

∫

X
κ(g)(·, z)h(z)dµX (z) (12)

where

κ(g)(x , z) :=
w0w1

∫

Y
f (y|x) f (y|z)

fY (y;g)2 dµY (y)
�

1−w1

∫

Y
f (y|x)
fY (y;g)dµY (y)

�2

Proof. When S = 1, (8) reduces to w1γ < 1 and there exists ε > 0 small enough
so that γ

1−2γε
≤ γ+1/w1

2
. Let

Ω(µX ) := Π(µX ) +
�

h ∈ CB(X ) : ‖h‖L∞ < ε
	

Consider the map φ : CB(X )→ CB(X ) defined by

φ(g)(x) :=

∫

Y

f (y|x)
fY (y; g)

dµY (y)

9



If g ∈ Π(µX ), then for all y ∈ Y ,

α(y)≤ fY (y; g)≤ β(y)

whereas for a general h ∈ CB(X ) only
�

� fY (y; h)
�

�≤ β(y)‖h‖L∞ holds. Thus

α(y)− β(y)‖h‖L∞ ≤ fY (y; g + h)≤ β(y) + β(y)‖h‖L∞ (13)

and if furthermore ‖h‖L∞ < ε,

α(y)
β(y)(1+ ε)

≤
f (y|x)

fY (y; g + h)
≤

β(y)
α(y)− β(y)ε

So finally if g ∈ Ω(µX )

1

γ(1+ ε)
≤ φ(g)≤

γ

1− γε
(14)

This map is actually differentiable at any g ∈ Ω(µX ) because as soon as
‖h‖L∞ < ε,

0≤ φ(g + h)(x)−φ(g)(x) +
∫

Y

f (y|x) fY (y; h)
fY (y; g)2

dµY (y)

=

∫

Y

f (y|x) fY (y; h)2

fY (y; g)2 fY (y; g + h)
dµY (y)≤

�

γ

1− 2γε

�3

‖h‖2L∞

and the continuous linear map ∇gφ(g) : h 7→ −
∫

Y
f (y|·) fY (y;h)

fY (y;g)2 dµY (y) is its

differential. If g ∈ Ω(µX ) then


φ(g)




L∞ ≤
γ+1/w1

2
< 1

w1
, so the map ψ : β 7→

w0

1−w1β
is defined and differentiable at β = φ(g); its differential is ∇βψ(β) :

h 7→ w0w1h
(1−w1β)2

. The announced result follows by applying the chain rule to
ψ ◦φ.

Lemma 3.2. Suppose that X is compact or that w0w1γ
2

(1−w1γ)2
< 1. Then for all

g ∈ Π(µX ), the operator ∇g A(g) is an isomorphism: CB(X )→ CB(X ).

Proof. First assume that X is compact. Hypothesis (6) and the bound on
fY (y; g) imply that κ(g) is uniformly continuous on the compact set X 2. Then
by the Arzelà-Ascoli theorem the integral operator

T (g) : h 7→
∫

X
h(z)κ(g)(x , z)dµX (z)

is compact: CB(X )→ CB(X ). Thus ∇g A(g) = Id+T (g) is Fredholm of index
zero [13, 5.C].

On the other hand T (g) is composed of a positive multiplier and the inte-
gral operator S(g) with kernel λg(x , z) :=

∫

Y
f (y|x) f (y|z)

fY (y;g)2 dµY (y). In fact S(g)
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is the second derivative of the convex map g 7→ −
∫

Y log( fY (y; g))dµY (y) so
by Kachurovskii’s theorem S(g) is positive (on the Banach algebra CB(X )) and
so is T (g). Therefore ∇g A(g) = Id+T (g) is injective and by Fredholm’s alter-
native it is also surjective; in addition (Id+T (g))−1 is continuous by the closed
graph theorem.

If X fails to be compact, then even though κ(g) may be uniformly con-
tinuous on X 2, the Arzelà-Ascoli theorem asserts only the compactness of
T (g) : CB(X ) → fCB(X ), where fCB(X ) is the space of bounded continuous
functions on X endowed with the weaker topology of uniform convergence on
compact subsets of X ; this space is no longer a Banach space and Fredholm’s

alternative doesn’t apply anymore. The second hypothesis, w0w1γ
2

(1−w1γ)2
< 1, can be

used as a backup in that case: it implies that


κ(g)




L∞ < 1 so T (g) has norm
< 1 and Id+T (g) is invertible.

Remark: the same proofs shows that A is also differentiable on a L1(µX )-
open enlargement of Π(µX ) and, when X is compact, that its differential
∇g A(g) is a bijection: L1(µX )→ L1(µX ).

At “true value” If, as it is often the case in statistics, we are specifically inter-
ested in differentiability when µX and µY are the true probability distributions
for the model, then invertibility of ∇g A is easier (this aspect is studied in more
detail, with applications, in our other article [4]). We already saw that g = 1
is the maximizing density in that case.

Lemma 3.3. Suppose that µX , µY are such that µY has density fY (·; 1) with
respect to ζ and that w1 < w0. Then ∇g A(1) is an isomorphism: CB(X ) →
CB(X ).

Proof. At true value and g = 1 we have for any h ∈ CB(X )

|T (1)h(x)|=

�

�

�

�

�

�

�

w0w1

∫

X

∫

Y
f (y|x) f (y|z)

fY (y;1)2 fY (y; 1)dζ(y)h(z)dµX (z)
�

1−w1

∫

Y
f (y|x)
fY (y;1) fY (y; 1)dζ(y)

�2

�

�

�

�

�

�

�

≤
w0w1

∫

Y f (y|x)
∫

X f (y|z)|h(z)|dµX (z)

fY (y;1) dζ(y)
�

1−w1

∫

Y f (y|x)dζ(y)
�2

≤
w1

w0
‖h‖L∞

so T (1) has norm ≤ w1

w0
< 1 and Id+T (1) is invertible.
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3.2 Differentiability with respect to θ

We now suppose that the conditional density f also depends on some parame-
ter θ in an open subset Θ of Rd . At this point we should recall the dependency
on θ that was hidden in (11), namely

A(g;θ) := g −
w0

1−w1

∫

Y
f (y|·;θ)

fY (y;g,θ)dµY (y)

with fY (y; g,θ) :=
∫

X f (y|x;θ)g(x)dµX (x).

Lemma 3.4. Suppose that the map f :Θ→ L∞(X ×Y ) defined by

f(θ) : (x , y) 7→
f (y|x;θ)
β(y)

is C1 in θ . Then fY is differentiable in θ and

∇θ fY (y; g,θ) =

∫

X
∇θ f (y|x;θ)g(x)dµX (x) (15)

Moreover, A is also differentiable in θ and its differential ∇θ A : Ω(µX ) × Θ →
L (Rd , CB(X )) is given by

∇θ A(g,θ) := w0w1

∫

Y
f (y|·;θ)∇θ fY (y;g,θ)

( fY (y;g,θ))2
− ∇θ f (y|·;θ)

fY (y;g,θ) dµY (y)
�

1−w1

∫

Y
f (y|·;θ)

fY (y;g,θ)dµY (y)
�2 (16)

Proof. Since ∇θ f is continuous it is locally bounded, more precisely for each
θ̄ ∈ Θ there exists U ⊃ θ̄ and a constant C such that for all θ ∈ U and (x , y) ∈
X ×Y ,



∇θ f (y|x;θ)


 ≤ Cβ(y). By differentiating (cf. Lemma A.1) under
the integral defining fY we obtain (15) and



∇θ fY (y; g,θ)


 ≤ Cβ(y).

Let Q : Ω(µX )×Θ→ L∞(X ×Y ) be defined by Q(g,θ) : (x , y) 7→ f (y|x;θ)
fY (y;g,θ) .

Clearly Q is C1 in θ and thanks to (7)

∇θQ(g,θ)(x , y) =
∇θ f (y|x;θ)

fY (y; g,θ)
−

f (y|x;θ)∇θ fY (y; g,θ)
�

fY (y; g,θ)
�2

is bounded (for θ ∈ U and for all x , y, g) by C(γ + γ2). Thus φ : (g,θ) 7→
∫

Y Q(g,θ)(·, y)dµY (y) can also be differentiated under the integral and

∇θ φ(g,θ) :=

∫

Y

∇θ f (y|·;θ)
fY (y; g,θ)

−
f (y|·;θ)∇θ fY (y; g,θ)

�

fY (y; g,θ)
�2 dµY (y)

Finally (16) is obtained by chain rule onψ◦φ, as in the proof of Lemma 3.1.
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Lemma 3.5. Suppose as in Lemma 3.4 that f is C1 in θ . Then the map: (g,θ) 7→
∇θ A(g,θ) is continuous on Ω(µX )×Θ.

Proof. For ∇θ A: first notice that

sup
y∈Y

�

� fY (y; g1,θ1)− fY (y; g2,θ2)
�

�

β(y)
≤


g1





L∞


f(θ1)− f(θ2)




L∞

+


f(θ2)




L∞


g1− g2





L∞

so the map: (g,θ) 7→ fY (·;g,θ)
β(·) is continuous (and bounded from below by the

function α−εβ , cf. (13)). It follows that Q (from the previous proof) is also con-
tinuous and so is φ, which we recall is bounded from below by 1

γ(1+ε) (cf. (14)).
By a similar reasoning one proves continuity in (g,θ) for the numerator of (16),
hence the announced result.

Lemma 3.6. The map (g,θ) 7→ ∇g A(g,θ) is continuous on Ω(µX )×Θ.

Proof. We focus on the operator-valued map T defined by

T (g,θ)h :=

∫

X
h(z)κ(g,θ)(·, z)dµX (z)

where κ is the CB(X 2)-valued function given by

κ(g,θ) : (x , z) 7→
w0w1

∫

Y
f (y|x;θ) f (y|z;θ)

fY (y;g,θ)2 dµY (y)
�

1−w1

∫

Y
f (y|x;θ)
fY (y;g,θ)dµY (y)

�2

The numerator of κ is continuous by a similar reasoning as above and its de-
nominator is exactly the same as that of (16), continuous and bounded from
below, so κ itself is continuous. Hence the result for T and ∇g A.

Theorem 3. Suppose that the hypotheses of Lemmata 3.4 and (3.2 or 3.3) hold.
Then the optimal density g0 ∈ CB(X ) solution of (10) is C1 as a function of θ .
Moreover,

∇θ g0(θ) =−
�

∇g A(g0(θ),θ)
�−1
∇θ A(g0(θ),θ) (17)

where ∇g A and ∇θ A are given by (12) and (16).

Proof. Let θ̄ be fixed and let ḡ0 be the (unique) corresponding solution to (10).
Combining Lemmata 3.1, 3.4, 3.5 and 3.6 shows that A a C1 function in a neigh-
bourhood of ( ḡ0, θ̄) and from Lemma (3.2 or 3.3) its differential (in the variable
g)∇g A( ḡ0, θ̄) is an isomorphism. By the implicit function theorem, there exists
a neighbourhood of θ̄ and a CB(X )-valued C1 function: θ 7→ g0(θ) defined on
this neighbourhood, satisfying (10). Formula (17) is also a consequence of the
implicit function theorem.
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3.3 Differentiability with respect to µX ,µY

To emphasise the dependency on µ := (µX ,µY ) in (11) we write

A(g;µ) := g −
w0

1−w1

∫

Y
f (y|·)

fY (y;g�µX )
dµY (y)

(18)

For the purpose of Fréchet differentiation of g with respect to the information
measure µ, the space CB(X )′ is now endowed with the total variation norm



µX





tv
:= sup
‖ f ‖L∞≤1

�

�

�

�

�

∫

X
f (x)dµX (x)

�

�

�

�

�

which makes it a Banach space (this is the strong dual of CB(X )). The same
for CB(Y )′ and on the product space,



µ




tv
:=


µX





tv +


µY





tv. Obviously
MX ×MY is not open in that space but as in Lemma 3.1 it is easy to find ε > 0
such that for any ν ∈ Btv(µ,ε) :=

¦

ν :


ν −µ




tv < ε
©

, for any g ∈ Ω(µX ), the
denominator of (18) is bounded from below by some positive constant.

Lemma 3.7. As a function of µ, A is differentiable and its differential is the linear
operator acting on λ := (λX ,λY ) as

∇µA(g,µ)λ= w0w1

∫

Y
fY (y;g�λ̃X ) f (y|·)

fY (y;g�µX )2
dµY (y)−

∫

Y
f (y|·)

fY (y;g�µX )
dλY (y)

�

1−w1

∫

Y
f (y|·)

fY (y;g�µX )
dµY (y)

�2 (19)

Proof. Let φ(g,µ) :=
∫

Y
f (y|·)

fY (y;g�µX )
dµY (y). In µY this map is linear, while in

µX

∇µX

f (y|·)
fY (y; g �µX )

: λX 7→ −
fY (y; g � λ̃X ) f (y|·)

fY (y; g �µX )2

is a bounded linear operator (λ̃X denoting the µX -absolutely continuous part
of λX ). Differentiating under the integral (lemma A.1), we obtain a Fréchet
differential

∇µφ(g,µ) : λ 7→
∫

Y

f (y|·)
fY (y; g �µX )

dλY (y)−
∫

Y

fY (y; g � λ̃X ) f (y|·)
fY (y; g �µX )2

dµY (y)

and we conclude as in the proof of Lemma 3.1 by composition with ψ : β 7→
w0

1−w1β
.

Lemma 3.8. The map: (g,µ) 7→ ∇µA(g,µ) is continuous on Ω(µX )×M (X )×
M (Y ).

Proof. The map ν 7→ fY (·;ν) being linear, (g,µ) 7→ fY (·; g � µX ) is continuous
and bounded from below by Cα for some C > 0. Thus ∇µφ (see previous
proof) is also continuous and the conclusion follows by composition with ψ.
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Lemma 3.9. The map: (g,µ) 7→ ∇g A(g,µ) is continuous on Ω(µX )×M (X )×
M (Y ).

Proof. As for Lemma 3.6 it suffices to show that the kernel κ is continuous,
now as a CB(X 2)-valued function of (g,µ):

κ(g,µ) : (x , z) 7→
w0w1

∫

Y
f (y|x) f (y|z)
fY (y;g�µX )2

dµY (y)
�

1−w1

∫

Y
f (y|x)

fY (y;g�µX )
dµY (y)

�2

Continuity is now obvious for the numerator and the denominator is the same
as for ∇µA.

Theorem 4. Suppose that the hypotheses of Lemma (3.2 or 3.3) hold. Then the
optimal density g0 ∈ CB(X ) solution of (10) is C1 as a function of µ and

∇µ g(µ) =−
�

∇g A(g(µ),µ)
�−1
∇µA(g(µ),µ) (20)

where ∇g A and ∇µA are given by (12) and (19).

Proof. Let µ̄ be fixed and let ḡ0 be the (unique) corresponding solution to (10).
Combining Lemmata 3.1, 3.7 3.8 and 3.9 shows that A a C1 function in a neigh-
bourhood of ( ḡ0, µ̄) and from Lemma (3.2 or 3.3) its differential (in the variable
g) ∇g A( ḡ0, µ̄) is an isomorphism. By the implicit function theorem there exists
a neighbourhood of µ̄ and a CB(X )-valued C1 function: µ 7→ g0(µ) defined on
this neighbourhood, satisfying (10). Formula (20) is also a consequence of the
implicit function theorem.

3.4 Joint differentiability

For simplicity, we treated differentiability in θ and µ separately. But joint dif-
ferentiability is straightforward, if tedious, along the same lines.

Lemma 3.10. The maps: (g,θ ,µ) 7→ ∇g A(g,θ ,µ) (resp. ∇θ A and ∇µA) are
continuous (in operator norm) on Ω(µX )×Θ×M (X )×M (Y ).

Theorem 5. The optimal density g solution of (P ) is C1 as a function of θ and
µ; its differential is the direct sum of (17) and (20).

The proofs are left to the reader.

3.5 Hadamard differentiability in weaker topologies

For practical purposes, e.g. in probability or statistics, the total variation topol-
ogy on the set of probability measures is much too strong (empirical measures
cannot converge to nonatomic probabilities, for instance). On the other hand,
most useful topologies are too weak to allow Fréchet differentiability. A good
compromise is provided by the notion of Hadamard differentiability [3, 10, 11].
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Definition. Let E, F be topological vector spaces. A map φ : E → F is [sequen-
tially] Hadamard differentiable at x ∈ E if there exists a bounded linear operator
H such that

1

h
�

φ(x + hu)−φ(x)
�

−Hu→h→0 0

uniformly in u on the [sequentially] compact subsets of E.

As a consequence of Lemma A.2, our results of strong Fréchet differen-
tiability (Theorems 4 and 5) translate into weak* sequential Hadamard dif-
ferentiability. Weak* compact sets in CB(X )′ are not necessarily sequentially
compact but if CB(X )′ is endowed with a metrisable topology τ stronger than
weak* (such as the uniform convergence or the Skorokhod topology for cumu-
lative distribution functions), then its compact sets are sequentially compact
(a fortiori in the weak* topology) and we get the τ-Hadamard differentiability
equivalent of Theorems 4 and 5.

A Technical lemmata

Notation: for a Banach space E, we write E′s (resp. E′w) its topological dual
endowed with the strong (resp. weak*) topology. Recall that E′s is a Banach
space normed by

‖A‖E′s
:= sup
‖u‖E≤1

|Au|

Lemma A.1. Let (X ,F ,µ) be a measured space and let U ⊂ E be open. Let
f :X × U → R be such that for µ-almost every x ∈ X :

(i). for all u ∈ U, f (x , u) has a Gâteaux derivative ∇u f (x , u);

(ii). the map u 7→ ∇u f (x , u) is continuous: U → E′s;

(iii). for all u ∈ U,


∇u f (x , u)




E′s
≤ h(x) for some h ∈ L1(µ).

Then the map u 7→ F(u) :=
∫

X f (x , u)dµ(x) is Fréchet C1 with differential

∇u F(u) :=

∫

X
∇u f (x , u)dµ(x) (21)

Note that in (21) we are integrating a Banach space (E′s) valued function,
so the integral is to be understood in the sense of Bochner.

Proof of Lemma A.1. Let v ∈ E: for ε > 0 small enough, u + εv ∈ U , so by
the mean value theorem

�

� f (x , u+ εv)− f (x , u)
�

� ≤ ε‖v‖Eh(x). By Lebesgue’s
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dominated convergence theorem it follows that

lim
ε→0

F(u+ εv)− F(u)
ε

=

∫

X
lim
ε→0

f (x , u+ εv)− f (x , u)
ε

dµ(x)

=

∫

X
∇u f (x , u)v dµ(x)

=∇u F(u)v

where ∇u F(u), defined by (21), is a bounded linear operator with norm



∇u F(u)




E′s
≤
∫

X
h(x)dµ(x)

Moreover, by the dominated convergence theorem applied to the Bochner in-
tegral (21), ∇u F(u) is continuous on U . By a classical result (see for instance
Flett [2, 4.1.7]) this implies that F is actually Fréchet C1 on U .

Lemma A.2. Any sequentially compact subset of E′w is bounded in E′s.

Proof. If (µn) is a sequence converging in E′w , then for any f ∈ E the sequence
�∫

X f (x)dµn(x)
�

is bounded, so by the Banach-Steinhaus theorem (µn) is
bounded in Es. If U is unbounded in E′s it contains a sequence whose norm
→ ∞: this sequence E′s does not converge in E′w , nor does any of its subse-
quences and this proves that U cannot be sequentially compact in E′w .
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