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Abstract We give a survey on fold-up derivatives, a notion which was in-
troduced in Khmaladze (2007) and extended in Khmaladze and Weil (2014)
to describe infinitesimal changes in a set-valued function. We summarize the
geometric background and discuss in detail applications in statistics, in par-
ticular to the change-set problem of spatial statistics. We formulate Poisson
limit theorems for the log-likelihood ratio in two versions of this problem and
present also a central limit theorem.
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1 Introduction

The differentiation of set-valued functions encompasses a topic, which has
seen several approaches by Artstein (1995, 2000), Aubin (1981), Aubin and
Frankowska (1990), Bernardin (2003), Borwein and Zhu (1999) and which has
diverse and important applications, for example in the theory of optimal con-
trol and convex analysis, to name only two. As an illustration of probabilistic
research connected with set-valued analysis, we refer to Kim and Kim (1999).
Derivatives of set-valued functions also arise in statistics, in particular in con-
nection with the change-set problem. For such applications, it turned out that

E.V. Khmaladze

School of Mathematics and Statistics,

Victoria University of Wellington, P.O.Box 600, Wellington, New Zealand
E-mail: Estate.Khmaladze@Qvuw.ac.nz

W. Weil

Institute of Stochastics, Department of Mathematics,
Karlsruhe Institute of Technology, 76128 Karlsruhe, Germany
E-mail: wolfgang.weil@kit.edu



2 Estate Khmaladze, Wolfgang Weil

a new approach was necessary, the fold-up derivatives, by which the infinites-
imal changes in a set-valued function are described by a set in the normal
cylinder of the limit set. This concept was introduced in Khmaladze (2007)
for convex sets and extended to rather general closed sets in Khmaladze and
Weil (2014). In the following, we give a survey on fold-up derivatives, we de-
scribe the geometrical background and we discuss in detail its applications
in statistics. To motivate the notion of fold-up derivatives, we start with a
possible application in the analysis of infinitesimal changes in images.

1.1 Infinitesimal changes of sets and images

In image analysis, an image is often represented by a vector-valued function
{f(z),x € D} on a rectangular array D — for example pixels x on a computer
screen. The vector f(z) describes certain properties of the image like the color
and the intensity of this color in the pixel z. For simplicity, let us assume
that f is one-dimensional, for example given by the intensity of the color
“black”. In order to apply analytic methods, it is advantageous to neglect
the discrete structure of D and also the restriction to the two-dimensional
setting and consider D as a subset of R? and call a (real-valued) function
f={f(x),z € D} an image on D.

Consider now images f; which change in time ¢ in a continuous way. At
the moment ty, we have an image f;, and at time ¢ = g + ¢ we have a small
perturbation of f;,, if € is small. To analyze this small change, as ¢ — 0, we
may end up with derivatives {df,(z)/dt,z € D} at t = to, as a function of
. This may be a natural approach to study continuous changes in images.
As a wvector field of velocities, this family of derivatives plays the key role,
for example, in fluid mechanics, see, e.g. Landau and Lifshitz (1987). In the
statistical “change-set problem” we are dealing with a different sort of changes.
Namely, consider a set F(tp) C D and another set F(t) C D, which is a
small deformation of F(tg), if t — to is small. We will later assume that the
sets F'(t), F'(tg) are compact and that F(t) — F(to) in the Hausdorff metric.
Then let fi,(z) = 1(x € F(to)) be the indicator function of F'(ty) and let
fi(z) = 1(z € F(t)) be the indicator function of F(t). In this situation, there
will be either no derivative df:(x)/dt at x or the derivative will be trivial and
equal to 0. How can one still consider the transition from F(t) to F(to) as
smooth and differentiable? We will explain this in more detail in Subsection
1.4 below.

Let us slightly shift our attention. Instead of the indicator function 1(z €
F) we now consider the set F itself as the object of interest; we could call
it an image, but in the context of the statistical change-set problem we shall
discuss, it is called a change-set (Khmaladze et al. (2006Db)).

In the change-set problem we do not assume that we observe or know our
change-set. All we have are random observations, the distribution of which
depends in some particular way on the underlying set F'. Then we would
want to formulate hypotheses about the unknown F and try to test these
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hypotheses based on the observations we have. Moreover, we want to obtain
statistical tests to discriminate between the null hypothetical set F = F(tp)
and its small perturbation F'(t); the more observations we have, the smaller
deviations we might be able to detect. Thus, the variable ¢ in F'(t) is now a way
to describe a family of possible alternative change-sets, which are approaching
the set F, chosen as the primary candidate as a true change-set.

There is a vast literature on estimation of the change-set F' based on ran-
dom observations, to some of which we refer here: Carlstein and Krishnamoor-
thy (1992), Ripley and Rasson (1977), Khmaladze et al. (2006b), Miiller and
Song (1996) and Korostelev and Tsybakov (1993), which have more references.
Among more recent ones, which study estimation of sets within non-parametric
classes or functionals of sets, we refer to Baillo and Cuevas (2001) and Cuevas
et al. (2007).

However, results about the testing problems concerning change-sets are
rather scarce. This unbalance can be explained by difficulties in the analysis
of a neighborhood of a set and, in particular, by the lack of an appropriate
notion of derivative of a set-valued function.

1.2 Testing statistical hypotheses: local tests, parametric families of
distributions

Let us briefly recall how do we test a hypothesis within a parametric family of
distributions, depending on some k-dimensional parameter 6. Suppose { Py, 0 €
O} is such a family, where © C R* and each P is a distribution in R?.
Assume that 6y is an interior point of @ and, given an i.i.d. sequence of d-
dimensional random variables {X;}_,, we take Py, as a null hypothesis about
the distribution of each X;. As the alternative hypothesis to Py, we consider
Py, and assume that 6. — 0y, as ¢ — 0.
The log-likelihood ratio in this situation has the form

n

(0
n 07 dPOO

Assume that the parametric family is regular at fp, in the sense that the Taylor
expansion is valid up to the second term,

n

L (B0, 02) =(0 — 60) "o 0, (%) — 5 D262 — 00) oy 0, (X))

i=1
+op(]16- — 6o*), (1)
where the k-dimensional vector [, the score function, is defined as

d dPy,
log.0.(Xi) = %1 a5,
0

(X3)

)

0.=0o

Expansions of this form (or of a more sophisticated form) can be found in
the statistical literature through decades, say, from the textbook of Cramér
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(1999), first published in 1946, to the modern textbooks, such as van der Vaart
(1998). Let us add to this setting another assumption, that . is differentiable
in € at 6y,

0. — 6y =evy+o(e), e€—0,

where the derivative v is a fixed vector in R*. Then, L, (o, 0.) will attain a
form, very convenient for asymptotic analysis,

n
82

Ln(00,0:) = ey Y log 0. (Xi) — ) > [ og,0. (X)) + 0p (%),
1=1

i=1

and it becomes easy to establish the rates of ¢ — 0 and n — oo which will
compensate each other so that L, (6y,6:) converges in distribution to a well
defined and “visible” limiting object. If lg, 5. is square-integrable with respect
to Py, , one can choose e = 1/4/n. A full analysis of situations like this, when the
sample size increases, but alternative and hypothetical distributions approach
each other at the same time, is the subject of contiguity theory (see, e.g., Le
Cam (1986), Le Cam and Yang (2000), Chapter 3, Hajek and Shidak (1967),
Chapter 7.1, and Oosterhoff and van Zwet (2012)).

1.3 Local tests for the change-set problem (first version)

In the cases when 6 is a functional parameter, as in the semi-parametric situ-
ation, expansions like (1) are still useful and differentiability of 6. in € is well
understood (see, e.g., Kosorok (2008)).

However, consider the class of statistical problems, where 6 is another infi-
nite dimensional parameter — a set. This is the case in the change-set problem
below. In this problem, we have a family of distributions P, indexed by sets
F, and we consider Pp () as a null distribution and Pp(.) as the alternative
distribution. So, to obtain the form of the local test statistics we will need to
differentiate Pp(.) with respect to F'(¢) and F'(¢) with respect to ¢, and the
question is, how to do this?

Let us consider a first version of the change-set problem. Denote again
F(0) = F and let N,, be a Poisson process on some measurable set D C R?
with intensity measure nAg, where

Ap(A)=A(ANF)+ A(ANF*), AcCD.

Here, A and A are two intensity measures on D with densities (intensities)
A(z) and A(z),z € D, with respect to the Lebesgue measure g in R%, and F*
is the complement of F' (see Figure 1). Then it is not difficult to deduce (see
Daley and Vere-Jones (2005), Karr (1991)), that the log-likelihood ratio of the
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distribution of N, under F(¢) and under F(0) respectively, has the form

Lo(F,F(e)) = /[1{z € F()} — 1{z € F}]In > ()N, (d=)

>

—n [ € FE)} - 1z € P - ) (huald2)

= /[l{z €EFE)\F} —1{z € F\ F(e)}] ln§(z)Nn(dz)
—n [z € FE\F} - 1z € FAFENA - NEna(ds). (@)
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Fig. 1 The points shown here form a realization of a Poisson process with constant intensity
inside F' and three times higher than outside, where it is also constant. The set F'is a faintly
shown triangle, and the total number of points is 300. Without looking on F', an eye may
have difficulties identifying this triangle as a change set. The problem is to test whether the

change-set is this triangle or another nearby shape.

Suppose now that F, F'(g) are compact and F(¢) — F in the Hausdorff
metric. Then, as ¢ — 0, both sets F(¢) \ F and F \ F(e) shrink towards
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the boundary OF of F. What can we say about the possible limit of the
integral expressions on the right side of (2), when n — oo and € — 0 with an
appropriate rate?

An immediate attempt for the second integral in (2), which is to multiply
and divide by ¢, leads to

ns/ 1{z € F(e)} —1{z € F}

3

(A = A)(2)paldz),

which, under appropriate conditions (see Section 5.1), converges to a general-
ized function concentrated on the boundary OF of F. This is a very natural
object in itself and will not require, as it may seem, a differentiation of F'(g) in
e per se. However, we will show in Section 5 that such a generalized function
is unsuitable to describe the limiting object. This fact will be better visible
when one divides the first integral in (2), taken with respect to N,,, by ¢.

1.4 The change-set problem (second version)

Let us consider another particular formulation of the change-set problem. It is
graphically illustrated in Figure 2. Suppose we have an i.i.d sequence of pairs
(X;,Y;)™,, where X; € D is a random location and Y; is a corresponding mark
(see Mammen and Tsybakov (1995); Khmaladze et al. (2006a)). This mark can
be one-dimensional or it can be very high-dimensional, listing, for example, the
concentration of several minerals at different depths in a well at location X;.
It is enough for us to assume, however, that Y; is a one-dimensional random
variable. The defining property of the change-set F' is that, for locations X;
in this set, the distribution of Y; is some probability measure P, while for
locations X; outside F' the mark Y; has a different “grey-level” distribution
P. The (marginal) distribution of X; on D is some absolutely continuous
Q, unrelated to the possible change-set F'. As before, F' is the parameter of
interest in the problem. Then, the differential of the joint distribution of the
pair (X;,Y;) is
Pldy) 78 P(dy) MR Q(d),

and if we take a particular set ' = F'(0) as a hypothetical change-set and
another set F'(e) as its alternative, then the log-likelihood ratio of the two
corresponding distributions becomes

n

La(F, () = S [1{X: € F(e)} — 1{X; € F}]In %(m). 3)
=1

Here, we implicitly assumed that P is absolutely continuous with respect to
P, which looks like an additional regularity assumption but is of only little
consequence for us. Note that, if P and P have mutually singular parts, the
statistical problem of discrimination between F(0) and F'(e) will become only
easier.
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Fig. 2 About 300 points are scattered now uniformly, and points in the same triangle F' as
in Figure 1, are shown as “stars” with probability 0.8; points outside the triangle are shown
as “stars” with probability 0.3.

Let now N,, denote the binomial process generated by the pairs (X;, Y;)? ;,

Na(,C) = YUY <P €C), yeRrCCS, (4)

i=1
Then,

dpP
Lu(FFE) = [ In %0 ()N, (dy., da)
Rx (F()\F)

dP
- / tn 2L ()N, (dy, d). (5)
Rx(F\F(g))

There is a clear similarity between the form of the log-likelihood ratios in (2)
and (5), and in both of them, in order to establish the limiting object for
L, (F,F(g)), we need to define such a limiting object for the process N,, on
shrinking sets F'(¢)\ F' and F'\ F'(¢). Again, as in (2), in (5) it will not be true
that the limiting process should live on the boundary of F'.

The set F'(¢), given for all small € > 0, is a set-valued function. Looking on
the change-set problem in the breadth it requires, we should speak not about
one set-valued function passing through F(0) at e = 0, but about a class
of such set-valued functions, giving rise to many likelihoods, asymptotically
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Fig. 3 In comparison, a “non-parametric estimation” of F' is illustrated here: for the same
points as in Figure 2, the Voronoi tessellation is constructed and the union of the tiles with
“stars” as nuclei is shaded. On the left, the marking of points as “stars” or “circles” is the
same as in Figure 2, while on the right the marking is changed — all points in F', and none
outside F', are marked as stars.

connected with the class of derivatives of F(¢). We can anticipate, that the
limiting process will live on the class of these properly defined derivatives.

Before we move on to set-valued derivatives, and compare the testing prob-
lem with the problem of estimation of sets, we show in Figure 3 two non-
parametric estimations of the set F'. Both of them are the maximum likelihood
estimators within their corresponding models. The one on the left is, we be-
lieve, not consistent. The one on the right is certainly consistent. This fact and
the rate of its convergence was the matter of investigation in Khmaladze and
Toronjadze (2001), Penrose (2007), Reitzner et al. (2012), Théle and Yukich
(2016), see also Schneider and Weil (2008), p. 482.

1.5 Set-valued derivatives

Suppose that for each ¢ € R we are given a Borel set F(¢) € R%. Thus, we have
a set-valued function. To consider a relatively general set-up, assume that each
F(e) is a solid set, a compact set which is the closure of its interior points and
such that pg(0F(g)) = 0. We also assume that F'(¢) is continuous in € in the
Hausdorff metric, although more general forms of continuity were considered
in Khmaladze (2007) and Khmaladze and Weil (2014). Since we are interested
in differentiability of F(¢) in € at some particular value €y, we may choose
g0 = 0 and consider our set-valued function in some small interval [0, 7] with
constant T

Differentiation of set-valued functions is not a new topic and does not
start with our attempt to introduce a new type of derivative. The topic has
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a long history and several approaches to the problem of differentiation form
now an important and well developed mathematical theory. In Khmaladze
(2007) and Khmaladze and Weil (2014), we referred to literature sources in
differential inclusions, such as Aubin and Cellina (1984), in differentials of
F(e) understood as different forms of affine mappings, such as Artstein (1995,
2000), Lemaréchal and Zowe (1991), and in derivatives considered as tangen-
tial cones, an approach which is particularly interesting for problems in convex
analysis, see Aubin (1981), Aubin and Frankowska (1990), Borwein and Zhu
(1999), Pflug (1996). We will not compare our method with the various exist-
ing notions, but merely say that it was surprising to see that the change-set
problem of statistics required still another approach.

The derivative of F'(¢) at ¢ = 0 which we introduce may be called a fold-
up derivative, since it lifts points in R? to a cylinder. It uses the natural
decomposition of a point z ¢ F' = F(0) in the form

z=ux+ tu, (6)

where z is the point in the boundary OF nearest to z, ¢ is the distance of z
from OF and u the direction from x to z. Since we want to allow deviations
F'(e) from F not only to the outside but also to the inside of F', a correspond-
ing decomposition (6) has to be performed on F' as well. The existence and
uniqueness of the decomposition (6), and the decomposition of the Lebesgue
measure it induces, lead to interesting and deep questions in geometric mea-
sure theory. We will discuss these geometric aspects in Section 2, but mention
here that at the basis there is the Steiner formula from convex geometry and
its generalization to closed sets provided in Hug et al. (2004).

For the asymptotic analysis of F'(g), as ¢ — 0, we need the local magnifi-
cation map, introduced in Khmaladze (2007) as

Teiz > (t/e,x,u),

by which the outside of F' is mapped, or folded up, to a part of what we call
the normal cylinder ¥ = R x Nor(F'), where the normal bundle Nor(F) of F
consists of the pairs (z,u) arising from (6). The derivative of F'(¢) at ¢ = 0
will then be a subset B in X

A strong support for the use of the normal cylinder comes from the de-
scription of the change-set problem above. Namely, let F' be a solid set of
reach € > 0. This means that for all points z ¢ F' which have distance smaller
than ¢ from F, the nearest point in F' is unique, whereas for § > ¢ there are
points z with distance § to F which have at least two nearest points in F'.
Let Ai(e) = Ay, As(e) = As be two sets in the e-neighborhood of F and let
B; = 7.(A1) and By = 7.(A3) be the corresponding sets of magnified points
as above. Then, if A; and A, are disjoint, the magnified sets By and By will
also be disjoint. If N,, is, for each n, a Poisson process on R%, the number of its
jumps in A; and in A5 are two independent Poisson random variables. If we
use 7. to map these jump points Z onto random points (¢, X, U) in the cylin-
der X, there will be no apparent controversy and the image process 7.(N,,)
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Fig. 4 The circle with the part in “horseshoe” shape cut out is F'. The union of F' and the
narrow strips protruding in this cut-off region is F'(¢). The symmetric difference F(g)AF
cannot be magnified inside the plane without causing the images of the disjoint strips to
overlap. This would be in conflict with the theory in many respects. Another dimension is
necessary to describe the derivative, as shown in the figure: the strips A; and Az are folded
up and magnified.

on X is still a Poisson process. However, if we map Z onto Z = X + (U, the
point Z stretched in R?, the image points from N, on A; and on A; may
lie in overlapping sets, see Figure 4, which would be incompatible with the
independence properties of spatial Poisson processes.

Later we will see that we can consider the cylinder I' = R x JF, which is
convenient for visualization, and project derivative sets from X to I' (this is
already used in Figure 4).

2 Geometric background

For a set-valued derivative of a family F(¢) at a set F' C R?, as we have it in
mind, the points in the neighborhood of F' have to be inspected. A quantitative
description of the neighborhood of a set, in case the set is compact and convex
(a convez body K), has been obtained as early as 1840 by Jacob Steiner, with
his now famous Steiner formula, see Gruber (1993) and Schneider (2013), p.
223. We describe this first and then turn to local versions and generalizations,
for convex bodies K and after that for quite general closed sets F.

2.1 The classical Steiner formula

For a convex body K C R, we consider the outer parallel body
K, ={zeR%:dg(x) <t}, t>0,
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which is built by all points 2 which have Euclidean distance dg(z) to K
less or equal t. The Steiner formula expresses the volume Vy(K;) of K; as a
polynomial in ¢,

d
Va(Ky) =Yt kg Vi (K). (7)
=0

Here, r4—; is the (d — j)-dimensional volume of the unit ball B4~J in R4,
The most interesting aspect of this formula are the coefficients V;(K) which
describe the geometric structure of K, respectively the boundary 0K of K.

In the formulation of (7), we used modern terminology. Steiner proved the
result for polytopes and smooth bodies K in dimensions d = 2 and d = 3,
where the coefficients had a simple geometric interpretation. For d = 3, the
volume, the surface area, the integral mean curvature and the Euler charac-
teristic arise. The general situation was prepared by Minkowski, who used a
similar expansion of the volume of a sum set

k k
Vati Ky + 12Ky + -+ tp Ki) = Y oo Yty ot V(K. K

for t; > 0 and convex bodies K;, to introduce mized volumes V(Ky, ..., Ky),
a notion which is at the heart of the Brunn-Minkowski theory in convex ge-
ometry. Notice that the Steiner formula is a special case, since K; = K + tB?,
where B? C R? is the unit ball. We refer to the book of Schneider (2013), for
an up-to-date survey on the Brunn-Minkowski theory, including variants of
the Steiner formula and historical remarks on the development of the theory,
and for explanations and further details of most notions and results which we
present in this section.

From Minkoswki’s approach, it turns out that the coeflicients in the poly-
nomial expansion (7) are special mixed volumes of K and B¢. Such quantities
also showed up later in integral geometric formulas, a fact which motivated
to call them quermassintegrals. Nowadays it is more popular to use a rescaled
version of these functionals, the intrinsic volumes V;(K), since they are in-
dependent of the dimension of the ambient space. Hence, for a j-dimensional
body K in R%, 0 < j < d, the value V;(K) is just the j-dimensional volume of
K. Moreover, the subscript j corresponds to the degree of homogeneity of Vj,
Vi(aK) = a?V;(K) for a > 0. We emphasize that V;(K) is the (d-dimensional)
volume of K, V4_1(K) is half the surface area, Vi(K) is proportional to the
mean width and V,(K) is the Euler characteristic, thus V5 (K) = 0, if K = 0,
and Vy(K) = 1, if K # ). The remaining functionals V;(K) can be expressed as
certain curvature integrals over 0K, if K has a smooth boundary. For example,
Va—2(K) is then up to a constant the integral mean curvature of K.

Polynomial expansions of volumes of parallel sets have been later studied
for other set classes as well, an example is Weyl’s tube formula for smooth
manifolds (Weyl (1939)) or Federer’s formula for sets of positive reach (Federer
(1959)). We will come to such a general result in a moment, but describe the
convex situation a bit further.
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Convex bodies have nice geometric properties, their boundary structure is
well understood. They include sets with a rather discrete boundary structure
like convex polytopes, which are convex hulls of finitely many points, but
also convex sets which are bounded by a smooth manifold. The boundary
OK of a convex body K has finite (d — 1)-dimensional Hausdorff measure
H4 1 and OK determines K uniquely. In each boundary point z there is at
least one supporting hyperplane which leads to an outer normal u(x), but a
point € QK can have more than one, and thus infinitely many, normals. This
behaviour makes convex bodies especially useful for a local description of their
neighborhood. In particular, we get a local version of (7) in a very natural way.
Such local Steiner formulas have been proved in 1938 by Fenchel and Jessen,
introducing the area measures of K, and in 1959 by Federer, establishing the
curvature measures, actually for a larger class of sets K, the sets of positive
reach.

2.2 The local Steiner formula in the convex case

We describe the local result using a common generalization of area and cur-
vature measures, the support measures due to Schneider (1979). For a convex
body K C R%, we choose a Borel set A C R? x S9!, where S4~! denotes the
unit sphere in R%. As we have already indicated above, each point z € R\ K
has a (unique) decomposition

z =+ tu, (8)

with @ = pr(2) € 0K, u = uk(2) = F=5y € S9! and t = d(z) > 0. Here,
pi (2) is the point in K nearest to z (the metric projection of z onto K) and
uk(z) is an outer normal of K in the point px(z). The property that each z
outside K has a unique nearest point in K is of course due to the convexity of
K, in fact it characterizes convex sets by Motzkin’s theorem (Motzkin (1935)).
We now define the local outer parallel set of A,

Ar={z€ K;\ K : (pr(2),ux(z)) € A}, t>0.

Then, A; is a Borel set in R? and the following local Steiner formula holds for
the Hausdorff measure of Ay,

clli( )tJQd (K, A) 9)

with finite (nonnegative) measures Oy(K,-),...,04_1(K, ) on R% x S~ the
support measures of K. Actually, the measures ©;(K,-) are concentrated on
the normal bundle

Nor(K) = {(z,u) : x € 0K, u is an outer normal of K at x}.
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The image measure of ©;(K,-) under the projection (z,u) — x yields the
curvature measure C;(K, -) and the image under (z,w) — u is the area measure
Si(K,-) of K. A comparison of (9) and (7) shows that

dkq—;

(3)

6;(K,Nor(K)) = Ci(K,RY) = S;(K, S 1)

Vi(K),

fori=0,...,d—1.

If we consider a deviation K(¢) as a (not necessarily convex) set in the
neighborhood of a convex body K, it would be a too narrow model to allow
local changes of K only to the outside, if K is d-dimensional. Hence, we should
also consider a Steiner-type decomposition of K itself. Here, we can make use
of the fact that, for H%-almost all z € K, the metric projection par (z) onto
the boundary 0K is unique. The set Sk of points z € K which have more
than one nearest point in 0K is called the (inner) skeleton of K. The inner
parallel body K_; of K, t >0, is defined as

K ,={z2€K:z+tB*C K}.

Notice that K_; + tB¢ C K, but in general we do not have equality here.
The largest value r = 7(K) > 0 such that (K_,), = K is called the interior
reach of K. As a local counterpart, we define the local (interior) reach r(x) of
a boundary point x € 9K as the largest » > 0 such that x is in the boundary
of a ball B(y,r) with center y and radius r and with B(y,r) C K (r(z) =0
means that there is no such ball). Then r(K) = mingecgx r(z). If K has no
interior points, we have r(z) = 0 for all x € K = K, hence r(K) = 0, but we
can have r(K) = 0 in many other cases, for example if K is a convex polytope.
Then r(x) = 0 for all € K, which are not in the relative interior of a facet of
K. The following result is the most general version of a (local) Steiner formula
for convex bodies. For any H%integrable real function f on R%, we have

[ i) = zd: (d - 1) /N " [ O:(x) Flo + tu)t 1 dtOg_ (K, d(z, u)

=N
(10)
(see, e.g., Theorem 1 in Khmaladze and Weil (2008)).

2.3 Extension to solid sets

Although the assumption of a convex body underlying the statistical situation
is very convenient from a geometrical point of view, for applications it will be
useful to consider more general set classes. For polyconvex sets (finite unions of
convex bodies) or sets of positive reach, extensions of the concepts and results
described above in the convex case are possible with appropriate modifications.
We now consider a rather general framework allowing closed sets F' C R? with
only a few regularity properties. The approach uses a general Steiner formula
for closed sets (Theorem 2.1 in Hug et al. (2004)).
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In general, closed sets F' can have quite a complicated structure. They need
not have a defined inner and outer part. Even for compact F, the boundary
OF can have infinite (d — 1)-dimensional Hausdorff measure H4~1(0F) = oo
or positive Lebesgue measure H%(OF) > 0. Boundary points z € F need
not have any normal, but also can have one, two or infinitely many normals.
Consequently, the normal bundle Nor(F') of F (or Nor(9F) of OF), as it was
defined in Hug et al. (2004) as an extension of the same notion for convex
bodies, can also have a rather complicated structure. Moreover, the support
measures of F', which were introduced in Hug et al. (2004) as ingredients of the
general Steiner formula, are no longer finite nonnegative measures but signed
Radon-type measures. They are finite only on sets in the normal bundle with
local reach bounded from below.

In the following, we concentrate on solid sets, that is, compact sets F' which
are the closure of their interior and satisfy H%(GF) = 0. The assumption of
compactness is convenient but not essential here. Since we only work with
concepts which are locally defined, an extension to unbounded closed sets
(satisfying the appropriate conditions) is easily possible.

For a solid set F', in contrast to the convex case, the nearest point map
z — pp(2) € OF need not be defined for all z € R% \ F anymore, since the
smallest distance dp(z) can be attained in several points of F. Fortunately,
the (outer) skeleton

Sp={z€R¥\ F: apoint in F nearest to z is not unique}

of F is a set of Lebesgue measure 0 (see Hug et al. (2004)). For z ¢ FUSE, the
metric projection pp(z) exists uniquely and we can define the corresponding
outer normal

z—pr(z)
up(2) = ——.
SN FEPRel
As in the convex case, we get
z=ux+tu (11)

with z = pp(2), u = up(z) and t = dp(z). We define the (outer) normal
bundle Nor, (F) by

Nory (F) = {(z,u) : x € OF,u is an outer normal of F at x}

and remark that a point € JF can have more than one outer normal (for
example, it can have two opposite outer normals). In contrast to the convex
case, there can be also boundary points z € JF without an outer normal.
Those boundary points then do not contribute to the outer normal bundle.
Another important difference to the convex situation is that we need not have
pr(x + tu) = x for (v,u) € Nory (F) and all ¢ > 0. This fact gives rise to the
outer reach function ri = ri p of F, which is defined on Nory (F'),

ry(@,u) = sup{s > 0: pp(e + su) = 2},

Of course, convex bodies K have reach function r4 g = oo.
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Since F is the closure of its interior, we can extend the decomposition (11)
to the interior of F, as we did in the full-dimensional convex case. This then
involves an inner reach function r_ of F'. The situation is most easily solved if
we define the inner reach function r_ of F' as the outer reach function of F™*,
the closed complement of F', and obey the reflection R : (z,u) — (2, —u). The
fact that, for compact F, the set F™* is not compact, is not a problem here,
since we work with locally defined notions. A problem which does occur comes
from the fact that the outer normal bundles of F' and F™* need not fit together.
Namely, a boundary point x of F' which has an outer normal u with respect to
F appears in a pair (z,u) € Nory (F). Of course, x is also a boundary point
of F*, but it need not have an outer normal with respect to F*, and hence
(z, —u) might not be a point in Nory (F™*). Therefore, we define the (extended)
normal bundle Nor(F) of F as

Nor(F) = Nor, (F) U R(Nor, (F*))

and extend the outer and inner reach functions appropriately (by 0). Notice
that in Hug et al. (2004) and Khmaladze and Weil (2008) a slightly different
notation was used. The following local Steiner formula for solid sets F' is then
a consequence of Theorem 5.2 in Hug et al. (2004). It reads

f(z)H(dz) (12)
Rd
d ry(z,u)
=> <J ~ 1)/N F)/ - flx 4 tw) ! dt0,_;(F, d(x,u))
j=1 or r_(z,u

and holds for any measurable bounded function f with bounded support on
R? and for certain set functions ©;(F,-), i = 0,...,d — 1, on the right side
which we call the support measures of F.

Full dimensional convex bodies K are solid and for them (12) just reduces

o (10). Moreover, we then have Nor(K) = Nory(K), ry(x,u) = oo for all

(z,u) € Nor(K), and r_(x,u) = r(x). Moreover, the support measures in (10)
are those defined by (9).

For non-convex sets F', the situation is more complicated since the set
functions ©;(F, ) need not be finite Borel measures anymore. First, they may
have positive and negative values, hence they are signed functions, for example,
if F' has convex and concave pieces in the boundary. Moreover, ©;(F, A) is not
defined for all Borel sets A C Nor(F'), but only for those for which the (outer
and inner) reach functions are bounded from below by a positive constant (r-
bounded sets). Such set functions ©;(F,-) are called r-measures. The situation
can be compared to (signed) Radon measures in functional analysis which are
also not defined on all Borel sets of a space, but only on bounded sets. For the
details on r-bounded sets and r-measures, which we leave out here, we refer
to Hug et al. (2004).
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2.4 First order terms, regular points and the normal cylinder

Because of the polynomial-like nature of (12), the set-valued derivatives which
we describe in the next section will be driven by the support measure ©4_1(F, )
and they will live on the normal cylinder of F'. Therefore, we will have a closer
look at the structure of this (d — 1)-st support measure and we also introduce
the normal cylinder X of F'.

If K is a convex body, the (d — 1)-st curvature measure Cyq_1 (K, ) is the
Hausdorff measure H~! on the boundary and the area measure Sq_; (K, -) is
the image of this Hausdorff measure under the Gauss map v : 0K — S 1 2 —
u(x). Remember here that Cy_1(K,-) and Sy_1(K, ) are the image measures
of ©4_1(K,-) under the projections (z,u) — z, resp. (z,u) — u. Now, it is an
important fact, that % !-almost all boundary points = of a convex body K
are regular points, that is, they have one and only one outer normal u(z) and
so the Gauss map is defined almost everywhere (see e.g. p. 92 in Schneider
(2013)).

With small adjustments, a similar result holds also for closed sets F'. Here,
we call a point € OF regular, if F' has one outer normal u or two opposite
(outer) normals u, —u in z (the latter usually occurs in flat parts of F'). For
a solid set F, the set O?F of regular points x € F with two opposite outer
normals seems to be negligible, however Example 1 in Ambrosio et al. (2008)
shows that H4~1(9%(F)) > 0 can occur. If we add

HEH O (F)) =0 (13)
to our conditions on F', then we have
O4-1(F,-) = / 1{(z,u(x)) € -}JH Y (da), (14)
reg(F)

where reg(F') is the union of all regular points of F' and of F*. Notice however
that, in contrast to the convex case, we may still have H?~1(0F \ reg(F)) > 0
(see Hug et al. (2004)).

Given a solid set F' € R?, we can use the decomposition (11) to map a
point z to the triple (¢, z,u) representing it. This works for z ¢ Syr U OF and
the corresponding triple lies in the normal cylinder

Y =XY(F) =R x Nor(F).

Here t = dp(z) > 0,if 2 ¢ F, and t = —dpp(z) < 0, if z € F. In the convex
case, the whole upper part X = {(¢t,z,u) € X : t > 0} of X appears as the
image, whereas in the lower part X~ = {(t,xz,u) € X : t < 0} the images
build a bounded subset. For general solid F', the image set in the upper half
cylinder XF can have bounded and unbounded parts, whereas the images in
)~ are again bounded.

The normal cylinder X may be difficult to visualize. Namely, since F' may
have more then one normal in x € OF, it is in general not enough to think of
X as the cylinder over the base F. However, with respect to the measure

M=H"®6,_(F,-), (15)
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which will play a prominent role in the definition of derivatives in the next
section, the situation is different. Namely, if F' is a solid set and (13) is satisfied,
(14) shows that for M-almost all points (¢, z,u) € X, the mapping (¢, z,u) —
(t,z) is injective and the image measure of M under this mapping is the
measure

m=H'®Cy_1(F,-)=H @H!

on the cylinder I' = R x OF. Hence, with respect to M, the cylinders X’ and
I" can be identified.

3 Fold-up derivatives

We return to the situation which we described in the introduction. Namely, we
consider a set-valued function (F(¢),0 < e < 1), with F(¢) in R?, and want
to define the derivative at F' = F(0). The approach to define a set-valued
derivative was developed in Khmaladze (2007) for convex bodies and sets of
positive reach as F', and later was extended in Khmaladze and Weil (2014) to
rather general closed sets — to the solid sets of the previous section. To explain
the essential ideas, we may concentrate on solid sets F'(¢) which satisfy (13)
and assume that F'(¢) — F in the Hausdorff metric, as € — 0. This means that
the symmetric difference F(e)AF will lie in the neighborhood (OF).7 of the
boundary dF, with some constant T > 0, for small enough €. We can assume
F(e)AF C (OF )ep for 0 <e < 1.

3.1 The definition

In order to define the derivative of F(e) at F, we use the representation (11)
and define the local magnification map 7.,

€

Te(z) :( 7pF(Z)auF(Z))7
for z ¢ FUSp, and

Te(2) = (=

for z € F'\ (OF U Sr). Remark that 7.(z) lies in the normal cylinder X' of F.
In fact, 7. is bicontinuous and one-to-one as a mapping from R¢\ (Syr U OF)
onto the set 7.(R%\ (Spr UOF)) C . Consider the image

B(e) = 1=(A(¢))

of A(e) = F(¢)AF under the local magnification map. If the sets B(e) con-
verge, as € — 0, in a reasonable way to a set B C Y, then B will be our
derivative set.

In order to motivate the appropriate notion of convergence on X, consider
the image 7oy of the Lebesgue measure pg on (OF).r under 7. Suppose that

7pF(Z)a 7uF(Z))7
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the reach functions of F satisfy 74,7 > ¢. Then, for a Borel set A C (9F ).,
such that C' = 7.(A) = [-T,T] x A, A C Nor(F), the local Steiner formula
(12) yields

d d—1 eT i1
mom©) =3 (121) /. ooy | ) € CH 0 (o)

d
2(d—-1 , -

= - < . > (eT) Oq_,;(F,A)

— g\ —1

J

Here, the leading term in € is 27'04_1 (F, fl) Therefore, it seems natural to use

the measure M from (15) on X' and define B(e) — B by M(B(g)AB) — 0.

Definition (Khmaladze (2007), Khmaladze and Weil (2014)). For 0 <& <1,
let A(e) be a Borel set with A(e) C (OF).r. The set-valued mapping A(e) is
differentiable at OF, for ¢ = 0, if there exists a Borel set B C X such that

M(1-(A(e))AB) = 0, ase —0.

The set-valued function F'(¢) is differentiable at F', fore = 0, if A(e) = F(e)AF
is differentiable at OF. The set B is then called the fold-up derivative of A(e)
at OF (respectively of F(e) at F') and we write
d d

%F(ENE:O = £A(€)|€:O =B.

Note that in Khmaladze (2007) and Khmaladze and Weil (2014) a condition
of essential boundedness of the sets A(e) was used which is automatically
fulfilled here, since we assumed A(e) C (OF).r.

Fig. 5 Shifted circles converge to the initial one. The first shifted circle is quite far, the
next is nearer, but the last is almost indistinguishable from the initial one. However, the
fold-up sets change little and the convergence to the derivative is visible.

If we consider the image B of the derivative set B under the M-almost
everywhere defined map (¢,z,u) — (¢, ), then B sits in the cylinder I" =
R x OF and is in fact in one-to-one correspondence with B. Let us map now
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SSml

Fig. 6 Ellipses approaching a circle. The first ellipse is quite far, the next is nearer, but the
last ellipse is almost indistinguishable from the original circle. However, again, the fold-up
sets change little, visualizing the convergence to the derivative.

the set B onto R?, by (t,z) — x + tu(z). Here, u(z) is the unique normal
in z, if x € reg(F) and —u(x) is the normal (with respect to F*), if x €
reg(F*) \ reg(F). The corresponding image B will only represent B, if we
can distinguish overlapping points 1 + tyu(z1) = x2 + tau(za) coming from
different boundary parts x; # zo of F. Figure 4 illustrates this situation.
Figures 5 and 6 show the fold-up derivative in two simple situations, shifted
circles converging to the original circle and ellipses converging to a circle.

3.2 Derivative in measure

The fold-up derivative (d/de)F(e) at € = 0 can also be called the derivative
in measure, not only since the symmetric difference metric with respect to M
is used in the definition, but also for a reason which we explain now.

Let P be an absolutely continuous measure on R% with density f > 0 and
let ' C R be a solid set. We assume that f(z),z € R can be approximated
in the neighborhood of OF by functions f 4+ = 0 from outside and f_>0
from inside, defined on OF and depending only on psr(z). More precisely, we
assume that

%/ {0 < d(F,2) < e}|f(2) = 1+ (pr(2))|pa(dz) =0,

Rd

é/ HO < d(F”,2) <e}|f(2) = f-(pr=(2))|pa(dz) = 0, (16)
Rd

as € = 0. Now define a measure Q on X' by
@(d(svxau)) =ds x f+(x)9d—1(Fa d(ac,u)) on ZJra

and
Q(d(s,z,u)) = ds x f_(2)Oq_1(F,d(x,u)) on X~.
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Theorem 1 (Khmaladze (2007), Khmaladze and Weil (2014)) Suppose that
the measure P satisfies condition (16) and suppose that the functions f_, fy
are integrable with respect to |O;|(F,-), fori=0,...,d—1. Let A(e) C (OF )1
be differentiable at OF (with derivative B C X'). Then

4 PAE)]m0 = QL A©)]m0) = Q(B). a7)

Equation (17) highlights the fact that the fold-up derivative of a set-valued
function is a set-valued function, and shows how to interchange the differenti-
ation in € with taking measure.

For the proof, the asymptotic behavior of e "!P(A(e)) has to be established,
since P(A(0)) = 0 due to our assumption pugq(OF) = 0. Condition (16) allows
to replace here P by the absolutely continuous measure P on (OF).r with
density f 4 outside F' and density f_ in F. Now the outside and inside parts
AT(e) = A(e)\ F and A~ (¢) = A(g) N F can be treated separately, in a totally
analoguous way.

The Steiner formula (12) shows that

ry(z, u)/\s B
/ / D) Lar 0@ + tw)dt Og_ (F, d(x, u))
Nore(F)

ry(z, u)/\s _
(.7 - 1) /Nor (F) / 1A+(€) (x * tu>

7 dt O (F,d(z,u)). (18)

The sum of the higher order terms is o(e). For the first summand in (18), we
have

(z u)/\e B
/ / )1A+(5)({E+tu)dt9d 1(F d(x u))
Nor (F)

:/ 1{0<t< +(€’ v A1} fo(@)Lpe otz w)M(d(t, z,u))
x
with BT (¢) = 7.(A™(¢)). The differentiability of A(e) implies that of A™(e)

(with limit BT). Therefore, the function |15+ (t,z,u) — 1g+(t,z,u)| tends
to 0 M—a.e. on Y. The Dominated Convergence Theorem then implies that

1I@’(A"’(E)) — /2 1{0 <t <1} fy(2)1p+(t, 2, u)M(d(t,z,u)) = Q(B™).

3.3 Subgraphs and other examples

What are natural examples of fold-up derivatives? We describe one class here,
the subgraphs, and then use this to give further examples, the outer parallel
sets.
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We start with a solid set F' = F(0) and consider a family (h.,0 <e < 1) of
nonnegative measurable functions on Nor(F') (with hg = 0). As F(e) we take
the subgraph

hesub ={z =2+ tu: (x,u) € Nor(F),0 <t < h.(x,u) Ary(z,u)},
and assume the following two conditions.

(a) For each (x,u) € Nor(F), ¢ — h.(x,u) is differentiable at ¢ = 0 with
derivative g(z,u). Thus

h
# — g(z,u), €—0.
(b) There is a § > 0, such that the function maxg<c<s % is bounded and
integrable with respect to @4_1(F,-). Hence,
hs(x7 u)

max ———— < T, (19)
0<e<é £

for some T > 0 and

/ max he(@,w) Ou—1(F,d(z,u)) < co.
N

OI‘(F) 0<e<é e

Proposition 2 (Khmaladze (2007), Khmaladze and Weil (2014)) Let F be
solid and let h.,0 < e <1, be a family of nonnegative measurable functions on
Nor(F) satisfying conditions (a) and (b). Then, A(g) = he sub is differentiable
at OF and the derivative is

B={(t,z,u): 0 <t <g(x,u),(x,u) € Nor(F)}.
A particular simple case is given by h. = g,
g(gjvu) = hK(u)7 (:L‘,U) € NOI‘(F),

where hg is the support function of a convex body K C R¢ with 0 € K.
Condition (a) is here obvious and (b) reduces to the integrability of hx with
respect to Oq_1(F,-). The derivative set B is then

B={(t,z,u) : 0 <t <hg(u),(z,u) € Nor(F)} = (hk,r)sub (20)

where hg p(x,u) = hx(u), (x,u) € Nor(F).

Notice that the subgraph h. sup, obtained in this case, is different in general
from the outer parallel strip F'+ ¢K \ F. However, the latter family has the
same derivative B given by (20). This follows from (Khmaladze and Weil 2008,
Theorem 12), which needed in addition that ©4_1(F,Nor(F)) < co and that
H4!-almost all points x € OF are normal (which means that there is some
ball C C F with x € C).
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There is also a local parallel set arising from the local reach function,
Foloe=FU{z=z+tu: (z,u) € Nor F,0 < t <er(z,u) Ae}.

This set is the subgraph of eh, h(z,u) = r(z,u) A 1, (z,u) € Nor(F). Here,
F. 1oc is differentiable with derivative

B ={(t,z,u) : (x,u) € Nor(F),0 <t <r(x,u) Al},

see Khmaladze and Weil (2014), Corollary 11.

A further natural situation would be to consider the sublevel set F(c) =
{z : g(x) < ¢} of a function g on R?. We believe that the fold-up derivative of
F(c+e¢) at e = 0 is the subgraph of the gradient of g at the level c. However,
this still has to be proved.

4 Convergence of likelihood ratios

Coming back to the change-set problem, as it was described in the Introduction
in two versions, we explain now the role of the fold-up derivatives in this
setting. Recall that we consider a family (F(g),0 < e < 1) of solid sets with
F = F(0) and A(e) = F(e)AF C (OF).r. It may seem that as soon as
the functional convergence in distribution of the local processes N, (A(e)) is
established, it will not be difficult to state the convergence in distribution
results for the local likelihood ratio processes in the change-set problems — at
least, as they were formulated in the Introduction. However, this requires a
more detailed argument and we will clarify this point below.

As we have seen in the previous section, in construction of fold-up deriva-
tives we can restrict the local magnification map to the points z € R?, which
project to regular points of the boundary, i.e. to the points with unique outer
normal u and with —u being the inner normal. This, in its turn, allows to map
such z directly onto cylinder I', which is much easier to visualize:

t
if 2=z +tu(z), then 7.(2) = (:l:g,x).

We use this adjustment throughout this section.

4.1 Local processes in the Poissonian case

For the first formulation of the change-set problem and for the Poissonian case,
when n — co,e — 0 and ne — S > 0, it may seem that the limit theorem was
basically established in (Khmaladze and Weil 2008, Theorem 2). However, let
us consider the situation more closely.

Namely, we may assume that the intensity A on the change-set F and the
grey-level intensity A on the closed complement F™* are continuous functions in
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the neighborhood (9F).r of the boundary dF. That is, we assume that there
are limits from inside and outside of F,

1

1

€ /F\F(g) IM2) = AMpr(2))|pa(dz) — 0,

as e — 0, and X and X are different functions on F.
Now let N,,(A), A C (OF).r, be the Poisson point process in the narrow
strip (OF).r with intensity measure

M) =n [ S@pad) w0 [ Nowalde)
ANF ANF=

Let us split the jump points Z € (OF).r of N,, into those which project onto
regular points pp(Z) € reg(F) on the boundary 9F and those which have
non-regular projections. Map the jump points with regular projections onto
the cylinder I' = R x OF, 7.(Z) = (¢, Z), where & = p(Z) € OF, and let
Ny, e be the point process defined by these images. Let INV,,s denote the part of
the Poisson process N,, with jump points such that their projections are not
regular. Then the following result holds true.

Theorem 3 If n — co,e — 0, so that ne — S > 0, and if (21) is satisfied,
then the point process N,,s converges to 0 in probability, while the point process
Ny, converges in the total variation norm to the Poisson point process Nuo
on I' with intensity measure

Ap(B) =8 [ / Ma)dtH ™ (dx) + / Az)dtHI ™ (de)
B+ -

This result is, basically, equivalent to Theorem 2 in Khmaladze and Weil
(2008). The proof of it uses the following arguments. The local magnification
map 7. maps (OF).r into I'T = [-T,T] x OF so that the Borel o-algebra
in (OF)cr is mapped into the Borel o-algebra in I'r. The thinned Poisson
process Ny, — Ny, is mapped to the Poisson process N,, . on I'r, with intensity
measure, which is the image of the intensity measure A,,. Omitting the higher
order terms, cf. (12), this measure becomes

Apne(B) = /

Mz + te)u(z)dtH 1 (dx) + / Mz — teu(z))dtH¥ ™ (dx).
B+

Then it follows that Ag,, . converges in total variation to Ar. This implies the
convergence of the Poisson distribution of IV, . to a Poisson distribution with
intensity measure Ap (see, e.g., Daley and Vere-Jones (2005), Chapter 11 in
vol. 2, or Karr (1991)).

Note now that in Theorem 3 there is no mention of differentiation and the
sets B there are just Borel sets in I'p. Thus the statement seems general and
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sufficient for all purposes. However, this is not the case. Given a particular
set-valued function F'(¢), or a finite number of such functions, and sets A(e) =
F(e)AF, this theorem does not tell us what will be the limit distribution of
random variables N, (A(g)). In the time when Khmaladze and Weil (2008)
was submitted the notion of fold-up derivative of Khmaladze (2007) did not
exist yet and thus an unusual situation occurred: there was a functional limit
theorem, but no corresponding finite-dimensional limit result. Using the notion
of differentiability, the one-dimensional limit theorem below has a very simple
proof. Simple as it is, it requires fold-up derivatives.

Theorem 4 Suppose the conditions of Theorem & are satisfied. Suppose also
that F(g) is differentiable at F' and B is its fold-up derivative. Then, the ran-
dom variables N, (A(e)) converge in distribution to a Poisson random variable
Noo(B), where

ENw(B) = Ap(B).

The proof proceeds as follows. The image of the thinned random variable
N, (A(g)) — Nps(A(e)) under the local magnification map is the random vari-
able N,.(B(e)) where B(e) = 7.(A(¢g)), just as in Theorem 3. The expected
value of N,.(B(¢)) is Apn(B(e)) and the measure Ap,, . converges in to-
tal variation to Ap. However, our differentiability assumption guarantees that
B(e) has a limit in measure M. The intensity measure A is absolutely contin-
uous with respect to M, and therefore Ap(B(e)) — Ap(B), which completes
the proof.

4.2 Convergence of the log-likelihood ratio (first version)

We note that the random part of the likelihood function in (2) is an integral
with respect to the point process IV,,. We use now Theorem 3 and a differen-
tiability assumption for F'(¢) and deduce the following statement on the limit
distribution of the likelihood in (2).

Corollary 5 Suppose n — co,e — 0 so that ne — S > 0, and suppose
(21) is satisfied. Then if F(e) is differentiable and B is its fold-up derivative,
the log-likelihood statistic L, (F, F(€)) converges in distribution to the random
variable

ix xT) — \— T =1 (dx
/B+1n>\( ) Noo (dt, dz) /B+()\ ) (@) deHe (d)

_ / ) 1n§(x)zvoo(dt,dx) + / (% — \)(@)dtH " (dx). (22)
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In the simple but practically interesting situation, when A(x) = eA(z) on
the boundary 0F', we obtain

In(c) Noo (BT) — (¢ — 1) - Az)dtH (dx)

—In(¢)Neo(B™) + (c — 1)/ Mz)dtH* ! (dz).

If we want to obtain the limit of L, (F, F(¢)) under the sequence of alter-
natives, when the true change-sets are now F'(¢) and we still have n — oo, —
0,ne — S, we notice that nothing will change in the geometric structure of
the problem; F'(¢) still remains differentiable at F' with the same derivative.
What will change is the intensity measure which drives the Poisson process
N, on the strip (OF)cr.

This measure will now be

An(A) = n/AnF( )X(z),ud(dz) + n/AmF( . A 2)pa(dz).

Mapped by the local magnification map onto the normal cylinder X~ and then
projected onto I', it will converge to the intensity measure of N, under the
alternatives,

Apa(B) = /

B+

Az)dtH (dx) + / ) dtH ™ (dx).

The expression in (22) will not change, but the process N, now has intensity
measure Ap ¢ and not Ap. This implies, by the way, that the expected value
of (22) will increase by the quantity

/ In %(x)[;\(x) (@) dEH (dx).
B

We see that the local likelihood ratio test will have some power for alter-
natives, converging to the null hypothesis with the rate e = 1/n, a property
it shares with the change-point problems on the line (see Brodsky and Dark-
hovsky (1993)).

4.3 Convergence of the log-likelihood ratio (second version)

The situation with the asymptotic behavior of the likelihood (5) is, in many
respects, similar. First, let us replace the assumption that the number n of
observations (X;,Y;)™ , is fixed and assume that it is a Poisson random vari-
able v with expected value n. This is not an important change in the present
context, but it makes the process in (4) with n replaced by v again a Poisson
process N,,. Its intensity measure under the null hypothesis is

EN, (y, A) = nP(y)Q(AN F) + nP(y)Q(AN F). (23)
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The point to note is that considered on (OF).r the process N,(co,-) is a
Poisson point process, similar to what we had above in the first problem, the
difference being that now the intensity measure does not depend on F'. How-
ever, the splitting of the jump points of N,,, with locations X; in (4), into those
with regular, respectively non-regular, projections onto dF is still useful. It is
still true that the process based on the points 7.(X;) on I" with X; € (OF).r
and pg(X;) regular, form the leading part, while the point process based on
X; € (OF)er, where prp(X;) is not regular, is asymptotically negligible in
probability.

Another point to note is that the local magnification map 7. maps the
locations X; to pairs ({;, =;) in I', but it will not alter the marks Y; at all, and
their conditional distribution, given (;, is

115(dy)1{<iZO}JJ(dy)l{Ci<O}7

which does not depend on F. What depends on F' here are the points =;.
Therefore, as soon as the process N, . on I', based on the pairs ((;, =),

converges to a Poisson process on I', the point process of triples (Y;, (;, =)

will converge to a Poisson process on R x I', and its intensity measure will be

M((=o0.9] % B) = [ 1{(t.) € BYP(u)"I=01 o) <Ot~ (do).

The statement on the convergence in distribution of the log-likelihood statistics
follows, here we abbreviate (¢, z) by z.

Corollary 6 (Asymptotic null distribution of statistics (5)) Under the con-
ditions of Theorem /4, the log-likelihood statistic L, (F, F(e)) of (5) converges
in distribution to the random variable

dP dP
In — (y)Noo (dy, dz —/ In — (y)Noo (dy, dz). 24
| wipwNay i~ [ wE Nz, (20

The case when both P and P are Bernoulli distributions is illustrated in
Figure 2. The data points on the right hand side of Figure 3 illustrate the case
of degenerate Bernoulli distributions, with (1) = 1 and p(1) = 0.

4.4 Central limit theorems

In the situation, where ¢ is asymptotically not as small as 1/n, but is such
that ne — oo, the intensities A and X in the first formulation of the change-set
problem, and the distributions P and P in the second formulation, can change
with n and approach each other. If this mutual convergence is not too quick,
the tests based on (2) and (5) will have power against such alternatives.

If ne — oo, the number of jump points of N,, will increase unboundedly
and the limit theorems for this process should be Gaussian and not Poisson.
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For the first change-set problem, the Gaussian limit theorems for NV,, have
been studied in the neighborhood of convex bodies in Einmahl and Khmaladze
(2011). Here, we consider the second change-set problem.

Suppose that the distribution P depends on some one-dimensional param-
eter 0 in a smooth way, such that the expansion analogous to (1) is true,

2
In %( ) =0l(y) — %ZZ(y) +op(6%). (25)

Here the usual assumptions on [ are that
/l(y)P(dy) =0, /lQ(y)P(dy) <00

Thus, as § = 6, — 0, the distribution Ps5 approaches the distribution P from
the “direction” [. We want now to find the rates of §,, and € = ¢,, such that
the statistic (5) converges to a proper random variable.

Let us subtract from N, in the right-hand side of (5) its expected value
(23) and add the corresponding term, which gives

n [0 P QU F) [ 10 S ) Pla) QU R, 26)

Using expansion (25), we can evaluate the expected values of In(dPs/dP)(y),

/m%( )P(dy) = _7/12 + 0(6%),
[ ) pray) - /1 iy >%<y>P<dy>
/l2 P(dy) + o(6?).

These relationships are easy to establish heuristically, while their formal justi-
fication can be found, for example, in Janssen (1995, 2000) and van der Vaart
(1998).

Thus, the shift part (26) of our statistic L, (F(¢), F') is of order ndZe,,, and
it is necessary that this quantity stays bounded. Hence, we assume that

n — 0o,e, — 0,6, — 0, such that néian =5 < 0.

Now consider the central part which we normalize by \/ne,,. If we put

2(9.0) = ——= (No(y.0) —n [PWQ(C N F) + PG)QC N FF] ).

1
/NEn
where C' € R? is a Borel set, then this central part can be re-written as

N / In @( )zn(dy,dx)f/ In dp“( )zn(dy, dz) | .
Rx(F(e)\F) 4P Ex(F\F(s)) AP
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Since z, is the centered and normalized form of the Poisson process NV,
in R x (OF)re, it retains the property of having independent increments on
disjoint sets. This implies that the two integrals above are independent random
variables. The variance of the first integral (including the factor y/ne) is

n / (mfﬁj) (1) P(dy) Q(F(e) \ F)

_ 5/1%@13(@)% +op(1), n— oo,

since we assumed ndZe, = S, while for the variance of the second integral we
obtain

n / (mffﬁ) (1) P(dy) Q(F \ F(c))

—S/l2 F\QF( ))+0P(1)

= S/l2 F\QF( 2 +op(l), n—oo.

These asymptotic relationships lead to the statement that follows below.
Consider the Poisson process NN, . introduced earlier in this section. It lives
on the cylinder I'. The intensity measure of N, . is of the form

e 5(y, B) = [Bpg(y)l{tZO}P(y)l{t<°} dt H'™ (dz) (27)

which, as we recall, is the image of EN, (y, -) on I". The image of the normalized
process z,,, which we denote by z, ¢, is the process N, . centered by the measure
IT,,. s and normalized by 1/,/ne,,

1
ZV,E(ya B) = \/TT [Nu,s(yaB) - Hna,é(ya B)] ,

where B is a Borel set in I'.
Finally let A be a class of set-valued functions

{A(g) : A(e) C (OF)er,0<e <1}

which are differentiable at OF, for ¢ = 0. For each ¢ > 0, let B. be the class
of images of the sets A(e) € A under the local magnification map 7. and then
projected onto I'.

Theorem 7 If the class of indicator functions of B. € B satisfies the metric
entropy condition of (van der Vaart and Wellner 1996, Sec. 2.11.3), then the
sequence of processes

{ZV,E((_OOv yl, Be), B: € B.}
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converges in distribution, as € — 0, to a Brownian motion z on
{(=o00,y] x B,y € R, B € By},
where By is the class of derivative sets of the set-valued functions in A.
From the theorem we get the following result.
Corollary 8 If the conditions of Theorem 7 hold and (25) is satisfied, then

we have, for ne, 02 = S,

Ln(F(g),F)is[/R l(y)z(dy,dm)—/

RxB—

-s| [ Pwra [ wta+ [ ewra

U(y)=(dy, dw)]

x B+

’Hd_l(d;v)} .
B-

We remark that, for the asymptotic normality of the statistic L,,(F, F(g)),
we do not need the functional convergence in Theorem 7. The one-dimensional
convergence of one set-valued function A(e) = F(e)AF would be sufficient.
Moreover, one could prove this asymptotic normality even without the notion
of derivative of F(¢)AF. However, if we want to understand properly why
L, (F, F(e)) is asymptotically Gaussian, and more importantly, what would be
the asymptotic “structure” of many statistics Ly, (F, F'(¢)) for many deviations
F(e) from F, the notion of fold-up derivatives of these sets and the notion of
Brownian motion on these derivatives is indeed necessary.

5 Further remarks and outlook

In this final section, we collect some remarks on possible extensions and vari-
ants of the differentiability approach which we have presented.

5.1 Fold-up derivatives versus generalized functions

In the Introduction, we already considered the tempting possibility to use the
difference

1{zeFe)} —1{z€e F(0)} =1{z € F(e) \ F(0)} —1{z € F(0) \ F(e)},

divide it by € and consider the limit to describe the shrinkage of F'(¢) AF(0) as
e — 0. Indeed, if F'(¢) is differentiable at F/(0) = F with the fold-up derivative
B, and if ¢ is from the class C2°(R¢) of smooth functions with compact support
on R? (test functions), then both integrals in

E/Rd 0(2)1{z € F(e) \ F}pa(dz) — %/Rd ©(2)1{z € F\ F(e)}pa(dz)

€

will converge to limits gg+(¢),g5-(¢), which yields generalized functions
gp+.9p- on R% concentrated on OF. The proof of this convergence uses
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T T 1
-a 0 € 2¢

Fig. 7 The random points in (0,e] and (g,2¢] on the X-axis are mapped by the local
magnification map into random points in (0, 1] and (1, 2] on the Y-axis.

the Steiner formula and the assumption that F(e) is differentiable. In fact
an asymptotic analysis, similar to the arguments which led to Proposition 1,
shows that gg+ and gp-, which are formally linear functionals on C°(R%),
can actually be realized as measurable, nonnegative functions on JF, such
that

g5+ (9) = / (@) (VMM (dz), g5 (p) = / (@) (2)HE (de).
oOF oF

Moreover, the functions v+ and yg- are related to the positive and negative
parts Bt C I't and B~ C I'~ of the derivative B and, for H? '-almost all
x € OF, the values yp+ (), vp- () are given by the lengths of the intersections
BN (R4 x {z}) and BN (R_ x {z}).

It may look very natural to use the pair gg+,gg- or even their difference
g = g+ — gp- to describe the limiting processes, whether in Poisson or
Gaussian asymptotics. However, this is not appropriate. As the arguments
below show, there are infinitely many fold-up derivatives B, rather distinct
from the point of view of the local processes, but which correspond to the
same pair gg+,gp-. In other words, the language of generalized functions is
too coarse for our needs in the change-set problem.

This is already visible in a one-dimensional situation. Indeed, let F =
[—a,0] and F(e) = Fi(¢) = [—a, €], for some a > 0. Thus, Fi(e) \ F = (0,¢],
while F'\ Fy(e) = ). The local magnification map will produce the set (0,1] x
{0} C I', see Figure 7, which does not depend on € and is the fold-up derivative
of Fy. If we now take Fy(e) = [—a,0] U (g, 2¢], then the fold-up derivative will
be the set (1,2] x {0}.



Fold-up derivatives of set-valued functions and the change-set problem 31

If now X1, ..., X, are independent uniform random variables on, say, [0, 1],
then the classical local binomial process

N ([0, te]) = > 1{X; < te}

is mapped into N, .([0,%]), which for ne — 1 converges to a Poisson process
with intensity 1, or expected value ¢, and the number of points in F(g)\ F' and
Fy(e) \ F, which are N,,(0,¢]) and N, (e, 2¢]), will be mapped to N, ((0,1])
and N, -((1,2]) and both converge to Poisson random variables with the same
parameter 1. The differences Fi(g) \ F and Fy(e) \ F are disjoint and so are
their fold-up derivatives. Hence the two limiting Poisson random variables are
independent. This aspect is, however, lost as soon as we turn to generalized
functions. Both integrals

2te

1 / C o(2)1fz € (0.4]}ds and é / o()14z € [te, 2te]}d2

€ Jo te

converge to tp(0), and thus define the same generalized function at the bound-
ary point z = 0. This example can be easily extended to the d-dimensional
situation.

5.2 The change set problem and chimeric alternatives

The concept of chimeric alternatives was introduced in Khmaladze (1998).
These are the alternatives, which remain on a certain non-diminishing Hellinger
distance from the hypothetical distribution, but which, as far as the empirical
process is concerned, are asymptotically undetectable.

More exactly, consider a sequence of distributions P,,, alternatives to the
distribution P, with density with respect to the distribution P of the form

dP, 1
b ) = 1 5 =hn(2) (28)

where
lim [ h2(2)P(dz) = const > 0,

while
/hn(z)¢(z)P(d2) — 0 forany fixed ¢ € La(P).

The last property of h,, says that this sequence runs away from the space, it
does not have a limiting point in Lo(P). There are many ways of visualizing
such sequences. One is when functions h,, oscillate more and more with in-
creasing n. One other, the spike alternatives in Khmaladze (1998), is when the
functions h,, are concentrated on subsets of P-probabilities which converge to
ZEero as n — oo.
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Given a sequence of i.i.d. random variables {Z;}"_,, a function-parametric
empirical process to test whether P is indeed the distribution of each Z; is
defined as

vn(qb):x/ﬁl /¢ , ¢ €D C Ly(P).

The class @ of square integrable functions, on which v, (¢) is considered, is a
part of the setting and depends on the user. Functionals from this process, like,
for example, sup 44 [vn ()| are used as test statistics. In order that v,, converge
in distribution to a Brownian bridge, the class @ has to satisfy certain metric
entropy conditions, but we simply assume that these conditions are satisfied.
Moreover, we are willing to assume that all ¢ are bounded functions. What we
want to clarify here is what will be the distribution of our empirical process
under a chimeric alternative. Under the null hypothesis, Fv,(¢) = 0 and
Evi(¢) = ||¢]|% and v, (¢) is asymptotically normal with these parameters.
Under a chimeric alternative

Eoa(é / oz P(d2))

/¢ ( +Fhi( )) P(dz) =0

as it follows from the definition of chimeric alternatives and boundedness of
¢; as a consequence

20) = [P+ [#6) () + D213 Pa)
~ [#@P@) + o),

and therefore under chimeric alternatives the random variable vy, (¢), for any
¢, has asymptotically the same Gaussian distribution as under the hypothesis.
So, tests based on v,, will asymptotically have no power.

Now let us see what is the corresponding situation in the change-set prob-
lem. Consider, for example, its second formulation. As it can be seen from
Subsection 1.4, the square root of the likelihood ratio of distributions of each
pair (X;,Y;) under F(e) and under F is

(dﬁ >(1(16F(s))—1(z€F))/2

(29)

dp

=1+1(z € A(e)) (dp(y)

(1(zeA™ ()~ 1L(zEA™(e)))/2
) “1] @0
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and comparison with (28) shows that here

ha(,y) = Vil(z € A(e)) (‘”D@)

-1

(1(z€AT (e))~1(z€A™ (€)))/2
dP >

This function is non-zero only on the shrinking set A(e) and its Lo-norm under
the null distribution is

2

- 1/2
nQ(ate) | (jﬁ@)) ~1] ar)

2

- —1/2
+nQ(a=@) [ (;@Z(y)) -1) aP).

We already know that if F(¢) is differentiable at F and its fold-up derivative
is B, and if ne — S, then

nQ(AT(e)) = S [ dtH'(dx) and nQ(A () = S [ dtHY(dx),
B+ B~
and therefore the Lo-norm of h, has a positive limit. This implies that the
set F'(¢) indeed creates a chimeric alternative to F', and that the conventional
approach based on empirical processes would not be useful.

5.3 Boundary sets

As a second class of sets, the boundary sets F are considered in Khmaladze
and Weil (2014). These are nonempty compact sets F' C R? with F = OF and
pa(F) = 0. We may also assume jig_1(F) > 0. Hence F* = R% and r_ = 0.
For a boundary set F, the Steiner formula (12) holds, but consists only of the
outside part. Consequently, we only need the upper part X, of the normal
cylinder Y. The definition of the fold-up derivative follows the same lines as
in the solid case, the distinction between F' and OF is not necessary here. The
support measure Og4_1(F, ) satisfies

Oa-1(F,") :/ (F)[l{(x,V(va)) €} + (2, —v(F.x)) € JH (do),
reg
(31)

see (Hug et al. 2004, Prop. 4.1). Notice that there are still topological phe-
nomena, also for boundary sets, which are counter-intuitive. One expects that
in most points z of a boundary set F' there are two normals vp(z), —vr(z),
but there are examples where H4~1(9'F) > 0 and H?~1(9*F) = 0. Here, 0'F
is the set of boundary points with precisely ¢ normals, ¢ = 1, 2.
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Since the values ri (z,u),r4(z, —u) are different, in general, the normal
cylinder X' cannot be identified with the cylinder I = R x 0F in a natural
way, but we would need two copies Ff’ , F2+ of the upper part of I".

Otherwise, the properties of the derivative, Theorem 1 and most of the
considerations made above for solid sets carry over to boundary sets with
obvious modifications (see Khmaladze and Weil (2014), for details).

5.4 Variations of solid sets

With respect to the local Steiner formula, various set classes have been con-
sidered in the literature, which generalize convex sets one one hand and are
not as general as solid sets on the other hand. The purpose is to see which
additional structure of the support measures ©;(F,-),i = 0,...,d — 1, (often
called curvature measures or Lipschitz-Killing curvatures) can be obtained if
the sets F' have further regularity properties. One example is the question, for
which sets F the support measures satisfy (locally or globally) a kinematic
formula like the classical principal kinematic formula in integral geometry or
the Crofton formula, see Schneider and Weil (2008), Chapter 5. In this direc-
tion, the most general set class at the moment are the DC-sets of Fu et al.
(2016). Another question is, whether or under which additional conditions on
F' the support measures are connected to further local and global quantities
in geometry, like the lower order Hausdorff measures, the Minkowki content,
or the perimeter. Here, the paper Ambrosio et al. (2008) gives a good account
of the various relations.

From the probabilistic point of view, it is a natural question, which of the
geometric results, relevant to set-differentiation, hold for graphs or subgraphs
of trajectories of stochastic processes, like the Wiener process. However, we
are not aware of investigations in this direction.
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