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Abstract

We discuss N=1 supergravity coupled to gauged chiral matter. We retain
noncanonical kinetic energy terms for both matter and gauge fields. The tree
level spontaneous breaking of supergravity in such theories is investigated.
Emphasis is placed on general results rather than any particular model.

The tree level mass matrices are calculated, and used to derive a (mass)?
sum rule that retains the effects of the noncanonical kinetic energies. Even
in the presence of noncanonical kinetic energies it is shown that under not
too restrictive conditions we can relate the masses of leptons and quarks to
the masses of their scalar partners by

+
my = mg/ziml/z .

Attention is also drawn to the crucial role played by the analyticity of the
superpotential at the origin of field space.



Chapter 1

Introduction

If supergravity has anything at all to do with the real world, then certainly it
is a broken symmetry. Explicit symmetry breaking is inelegant and teaches
us very little. On the other hand , if the underlying real theory is an extended
(N>1) supergravity, the spontaneous breaking of the extended supergravity
may take the theory through a N=1 symmetric phase. For these reasons the
study of N=1 supergravity coupled to gauged chiral matter is interesting in
that it provides a framework that may be relevant to supergravity theories
in general.

Now N=1 supergravity coupled to matter is a nonrenormalizable theory
[1,2]. Thus radiative corrections should not be taken particularly seriously.
Perhaps the best viewpoint to adopt is that N=1 supergravity is a low energy
effective theory engendered by some as yet not understood microstructure.
Note that low energy in this case means £ < mp ~ 10! GeV. If we adopt this
viewpoint then N=1 supergravity is not to be thought of as a fundamental
theory, rather its status is similar to that of the non-linear sigma model for
pions. In particular there is no justification for enforcing canonical kinetic
energy terms in the Lagrangian. If nothing else we would expect noncanonical
kinetic energies to be generated by radiative corrections in the underlying
true theory. (For similar comments see [3]).

For the reasons discussed above, all comments made in this thesis will
apply at tree level only. In particular, I shall discuss the construction of
acceptable vacua using tree level symmetry breaking only (for alternatives
see [4]). Breaking the supergravity in an acceptable way is not trivial. Even
if one succeeds in breaking the supergravity itself it is distressingly easy to
generate multiple vacua. The extra unwanted vacua commonly possess nega-



tive cosmological constant [5], or they may fail to break the gauge symmetry
[6]; the extra vacua may even be degenerate with the phenomenologically
desired vacuum [6]. At the very least the following must be satisfied:

e 1) supergravity must be broken (ms/; > 0).

)
e 2) The cosmological constant must be zero (A = V|yacuum = 0).
e 3) The gauge symmetry must be broken.
e 4) Higgsinos and gauginos should be massive.

In addition it is very desirable that:

e 5) The vacuum occurs at the unique absolute minimum of the scalar
potential V.

Many models have been constructed that violate condition 5 (e.g. [7]), these
models then have to deal with the problem of the decay of the false vacuum,
a problem that I shall eliminate by fiat by imposing condition 5.

In this thesis I shall discuss general theorems indicating when these con-
ditions may be satisfied at tree level. In addition an exhaustive discussion of
mass matrices and sum rules is presented. The (mass)? sum rule of Cremmer
et al. [2] is generalized to include the effect of noncanonical kinetic energy
terms. The leptoquark sum rule of Cremmer et al. [6] is shown to be in-
sensitive to the occurrence of noncanonical kinetic energies. The effect of
nonanalyticity in the superpotential is also discussed.

The main tool used in this analysis is the component Lagrangian for
N=1 supergravity as constructed by Bagger [1], Witten and Bagger [1], and
Cremmer et al. [2]. These papers differ in that Bagger shows how to gauge
symmetries that are realized in a nonlinear fashion. Also Bagger uses a nota-
tion that is vastly superior in that it makes manifest the geometrical structure
of the various terms appearing in the Lagrangian. On the other hand, the
work of Cremmer et al. uses only linearly realized gauge symmetries but
allows noncanonical kinetic energies for the gauge bosons. Cremmer et al.
also calculate the (mass)? sum rule, which is not done by Bagger.

For this thesis I shall be using the Lagrangian of Cremmer et al. [2],
but the notation will essentially be that of Bagger [1]. Extensive use will be
made of the geometry of Kahler manifolds and in particular of the concept of
the Kahler covariant derivative. This will unfortunately necessitate a short



chapter reviewing Kahler geometry. If one had attempted to use the notation
of Cremmer et al. [2], the retention of noncanonical kinetic energies would
quickly lead to calculations so cumbersome as to be prohibitive.



Chapter 2

Kahler Manifolds

In N=1 supergravity coupled to matter the self-interactions of the scalar fields
are described by a generalized nonlinear sigma model where the manifold of
scalar field values is a Kihler manifold [1,2].

The geometry of Kahler manifolds is well understood, easily accessible
references are the books of Goldberg [8] and Flaherty [9]. A Kéhler mani-
fold M is a complex manifold whose geometry is specified by a real valued
function, the Kéahler potential K. Complex coordinates on the manifold will
be denoted by ¢, their complex conjugates are denoted by ¢* . The metric
tensor of a Kahler manifold is given by:

82
Gij~ = D DG

K($,9) = 0,0;- K. (2.1)

The metric tensor is thus automatically Hermitian. By assumption the metric
shall be taken to be positive definite on M. Indices may be raised and lowered
using the metric and its inverse:

97" = (gi-)"" (2.2)
for example:
X'=g7 X YV =g Xi =g X7 ete. (2-3)
Note in particular that:
XY = XV = (XY £ X;Y° (2.4)



Christoffel symbols may be calculated in the usual manner. Because of the
Kéhler structure the expressions simplify radically.

Fijk = im*ak(gjm*) = (g”"*am*)azajK
r Fi*j*k* = gmi*ak* (gmj*) = (gmi*am)aj*ak*K = (szk)* (25)

all other components are zero.

Kahler covariant derivatives will be denoted by d; we have

X1 = XTI 4+TY,,; X™ (2.6)
X7 = 0,X77, (2.7)
6X; = 0X;—T™; X, (2.8)
0, X;- = 0, Xj-. (2.9)

Naturally the covariant derivative has been chosen so that the metric is
covariantly constant

The expression for the Riemann tensor simplifies to
Rijim = 0T = g% (810magit=) + (Om-9"*") (0191 (2.11)

The only nonzero components of the Riemann tensor are
Riﬂm*; Riﬂ*m; Ri*]’*l*m; and Ri*]’*lm*. (2.12)
In fully covariant form
Rijetm = —0,0m~gij» + (019ik-) """ (O~ Grjs)- (2.13)
The only nonzero components of the fully covariant Riemann tensor are
Rijeris;  Rijgpei; Rijp-; and Ry jpe. (2.14)
The Riemann tensor possesses the symmetry
Rijkl* - +Rikﬂ* — —RZ]l*k (215)
The Ricci tensor may be defined by

Rij* - gkl*Ril*kj* = gkl*Rij*kl* jrmnt gkl*Rkl*ij*‘ (216)
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Observe that the Ricci tensor is Hermitian. The contracted Bianchi identities

read
OpRij« = 0;Ryj-, (2.17)

The contracted Bianchi identities are automatically satisfied in view of the
relation

Rij* = —8,8]* {ln det(gkl*)} (219)
Acting with covariant derivatives on the Kahler potential yields

(Si(Sj*K = 6i6j*K = Gij*, (220)

S0, K = g% g =0, (2.21)

670K = & .. (2.22)

The noncommutativity of the covariant derivatives is described by the Rie-
mann tensor, in general:

[0, 0] X = —RCqap X°. (2.23)

For the particular case of a Kéhler manifold

[05,0;]XF = —RF - X™ (2.24)

[6;, 6;]XF = 0, (2.25)

0,071 Xk = +R™pije Xo, (2.26)

[0;, 6x]Xe = 0, (2.27)
ete.

On a Kéahler manifold it is possible to define two distinct Laplacians
A = 5§, (2.28)
AN = (0'0;)" = 6" 0 = 0;6° £ A. (2.29)

Acting on scalars A = A; acting on vectors however they differ by a term
proportional to the Ricci tensor

(A -AN)XF = —g"" [85;,6;-] XF (2.30)
= —{—g”* Rklij* Xl (231)
= RF X (2.32)

The lack of commutativity of the covariant derivatives will prove useful when
calculating the scalar mass matrix.



Chapter 3

The Lagrangian

The superspace form of the action for N=1 supergravity coupled to gauged
chiral matter is given in Cremmer et al. [2].

Here:

[ede = [dwdor (— 3 exp [~1K (¢, 5¢2)] (3.1)

+ Re % W(qs)}

FRe [ ful6) W) e Wi ()] ).

E is the superspace determinant.

R is the chiral scalar curvature superfield.

¢ is the superfield describing chiral matter.

V' is the superfield describing the gauge multiplet.
W*(V) is the field strength superfield, a function of V.
K is the Kahler potential.

W () is the superpotential, a function of ¢ only.

fap(®) describes the noncanonical kinetic energy terms of the gauge
bosons; it is a function of ¢ only.



Both W and f,z are analytic, since they are functions of ¢ only. However they
need not be entire— isolated singularities and/or branch cuts are acceptable.
There will be more discussion of this point later. The superpotential W
may be thought of as a scalar, though at a more technical level Witten and
Bagger [1] have shown the superpotential should actually be interpreted as
an analytic section of some holomorphic line bundle whose base space is the
Kéhler manifold of scalar fields. The gauge metric f,3(¢) is an analytic
function transforming as a symmetric tensor in the adjoint representation of
the gauge group.

Note that the chiral matter has been gauged by making the substitution

K (¢,6) = K (6,6 ¢). (3.2)

Thus the Lagrangian of Cremmer et al. [2] presupposes that the gauge group
acts on the chiral matter fields according to a linear representation. Bag-
ger [1] has extended this analysis to the gauging of symmetries represented
nonlinearly on the Kéahler manifold, but we shall not take up this particu-
lar possibility. Following Cremmer et al. then, we demand that the gauge
group acts linearly on the Kahler manifold M. This condition is obviously
not maintained under arbitrary coordinate reparameterizations of the Kéahler
manifold M. Though there are many coordinate systems available on the
Kahler manifold, we shall only be interested in using a restricted set of coor-
dinate systems, namely those coordinate systems in which the action of the
gauge group is linear.

¢ '+ 0ad;  dadt = i(EY [ta'y] ) (3.3)
¢ 0+ 0ad; dad = —i(€ [t ] ) (3.4)

Here the £ are a set of real parameters while the [t,’;] are a (in general
reducible) representation of the gauge symmetry Lie algebra.

[Note : t," j« = (ta';)"]- (3.5)

The invariance of the action under the action of the gauge symmetry thus
forces us to take

e 1) K the Kéhler potential is an invariant.

e 2) W the superpotential is an invariant.



e 3) fap the gauge metric is covariant.
In terms of explicit coordinates then

0K 0K

oK =0= 95 0gd" + 90" dao (3.6)
oK . .. . OK . . o . OK . .\
i e = (e = (i e ) .
(G o) = (5 o) = (G5l @) . )
While for the superpotential we see
ow p
oW =0= 90 Yeto; (3.8)
so that W
- i1 A —
5 e & =0, (3.9)

To discuss the behaviour of f,s first recall that the ¢, constitute a (possibly
reducible) representation of the gauge group

[ta, tﬂ] = Z'Ca/ﬂ tm/. (310)
Then since f,g is covariant in the symmetric adjoint representation

afaﬁ
Do

dcfap = YeTo (3.11)
afa,@‘
0t

Note that my generators are normalized in a nonstandard way so that they

contain a factor of the gauge coupling constant.

The geometrical interpretation of the gauge metric f,5(¢) is not particu-
larly obvious. Let us interpret the gauge fields (A%, A%, etc.) as lying in some
vector bundle over the Kahler manifold M. While f,4 itself is complex ana-
lytic the real part ff,5 = %(faﬂ + fap) is real and symmetric. If we assume
that ff,s is positive definite over all of M then we can interpret f%,5(¢)
as a metric in the vector space fibre over ¢. This now raises the question as
to the appropriate definition for the covariant derivative acting on f,5 . We

[t,'5] & = o fop + S5 fao- (3.12)



shall define the covariant derivative acting on f,3 to be just the ordinary
derivative

bifap = Oifap, (3.13)
8- fap = 0. (3.14)

At first glance, this definition looks highly noncovariant. We shall now give
it a proper geometrical interpretation.

If we make no assumptions concerning the affine connexion in the vector
bundle we may write

0i(ta’) = Oilta’r) — TP [ts"k] + TV i [ta™ k] — T™ki [ta’m), (3.15)

S (ta?1) = B3 (tas) — T0.. [ta'4]. (3.16)

Recall that the mixed components ;.- are zero. Now we have already
argued that we should choose the coordinate system on M so that the gauge
group is realized linearly. In particular this implies that the representation
matrices are constants,

ai[tajk] =0= ai*[tajk]~ (317)

Then ' ' ' '
0i(ta’r) = —TP i 1ts"k] + TV i [ta™ k] + T™ ki [ta’ ml], (3.18)
Oi- (talr) = —TP e [ts'h]. (3.19)

It is now natural to demand the covariant constraint
§i(tak) = 0 = 8i-(ta”s). (3.20)

The covariant constancy of the generators then implies that in the special
class of coordinate systems where the gauge group is realized linearly

%, =0, (3.21)

i [ta™e] — T [ta?m] = 0. (3.22)

The first of these relationships implies that in this special class of coordinate
systems

5ifo¢ﬂ - aifaﬁa (323)
Siv fag = 0. (3.24)
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This now provides a geometrical interpretation of the Kéhler covariant deriva-
tive acting on adjoint indices in terms of the covariant constancy of the gen-
erators.

To check the consistency of this interpretation we should show that in
the special linear class of coordinate systems

i [ta™k] = Tk [ta? m)- (3.25)

This is in fact easily seen as follows. The vector fields that generate infinites-
imal gauge transformations are

Vo' =i([ta'j] #7). (3.26)
The related one-forms _
Vair = Z(gzk [takj] ¢J) (3-27)
are by hypothesis Killing one-forms of the metric g;j+ [1]. This implies
Gixk [tak_]] = gjk* [tak*i*]. (328)

Differentiate with respect to ¢'

gk [ta"5] = O1gjk- [ta” i-]. (3.29)

Ty [takj] = Dpeyy ta" ] g™ (3.30)
= Fk)*l] gk*k [talk] (331)

T*: [ta'k]  as required. (3.32)

Our proposed definition of the covariant derivative of the gauge metric is thus
consistent. By hypothesis f#,5 is positive definite and symmetric. Therefore
the inverse (fz')* exists and is well defined over the whole of the Kihler
manifold M. f® and frp~! will be used to raise and lower adjoint indices.
Note however that the action of raising and lowering adjoint indices does not
commute with the action of the covariant derivative. Finally, observe

6i(fr ") = 0i(fr~ )™ = —=(fr™ ") (6: f2) (fr "), (3.33)

0 fg = 0; fg = %aifaﬁ = %&faﬂ- (3.34)
We are now almost ready to write down the component Lagrangian for N=1
supergravity coupled to gauged chiral matter.

11



Let us define
G=K+InW+hW,

and further

Da = 5ZG [taij] ¢j - (SlK [tai]‘] ¢j = Da.
Define a differential operator d by
d=(8'G)6; = (¢ 6,-G) &,
so that .
(df)aﬂ =0'G 5ifa,6‘-
Following Cremmer et al. [2], we split the Lagrangian into

L= LB + £F,K + £F,M-

The individual pieces may now be transcribed as follows:

e’ Lp = —gij- D¢’ D'¢”
_ifRaﬁ Fauu Fhww
_iflaﬁ Falw FB
—%R

—e% (6,G §'G —3) — L Dy, (fr1)*® Dg.

e Lrx = =3/ Xy D)V
_{gij*YLi(’Y : D)XRj* + h.c.}
—1e7 e {(Y, 57, Dyt)s) + huc.}
_ie_lflagDu(e A y5yt M)
+L R { (AL AR%) (6:G D,¢) + h.c.}
+3fRag{(X "y (0 - F)P4,) + hc.}
—5{(XL" bifap (- F)*ALP) +h.c.}
—se e (1, 7,1,) (5:G Do’ + 0i-G Dyp'™)
+{gij+ (1, ((v- D) )y"x1") +hoc.}

(3.35)

(3.36)

(3.37)

(3.38)

(3.39)

(3.40)

(3.41)

+H (X, (v D))xr")(0:0;04-G — Lgip-0;G) + h.c.}.

12



6_1 £FM =

B0y (3.42)
LT KA+ dfas i)
—e9{(8:6,G + 6,G 6;G) (X x1 )}
—e9?{(6;-6)-G + 0G5 G) (Xr" xr” )}
+5Da{ (W), - YARY) +hc.}
+6G/2{(ER -y [6:G] x1') +h.c.}
—{[2i (6;-Da) (Ar“Xxr")] +h.c.}
—5D*{(i (6, fap) (Xt AL?)) +hoc.}
— =497 [0i fap) [0+ f15]) AL ALY (ARYAR®) }
+is L (SR ap AL ymAR])?}
+1 fRas{ N 0P7,) ($,7,7%) + he.}
+3{(0i fap (X1 0" ML) (Y, 7uAR")) +hoc.}
%{(5 fap (7/)12 v x5t AL L?)) + hee.}
—+{[(955-XR" va X2 (€[ mihe] — [0 v57%a])] + hoc.}
%{ 9i5* XL X R )(fRaﬁXRa’Yu)\LW)] +h.c.}
(0 fa0(fR™ 1)7° 6 fpa)(YLi% XrT ) ARy Ar?)] + h.c.}

+5{l(
+i5tl
+ {0 X)) ALOAL?) (6565 fap — §0ifac (fRT')7P 65 fps)] + hc.}
[
(

1
1
4
(X' X1 )AL ML) (0i fao (fr )77 05 fop)] +hoc.}
Rijeri- — 39ij-9e-) (X x0") (Xe?™ x&")] +hoc.}

[
[
_16{
[

+
l\DI»—w—t

This component Lagrangian should be compared to the ones exhibited
by Bagger [1], by Witten and Bagger [1], and to the Lagrangian exhibited
by Cremmer et al. [2]. Note that the benefits of the covariant notation at
this stage appear to be modest. The benefits at this stage amount to the
recognition of the presence of the Riemann tensor in the quartic spin 1/2
term, the mild simplification of the quadratic spin 1/2 term when written
using covariant derivatives, and the suppression of many explicit occurrences

of the metric.

It is true that the covariant notation has not lead to any

great simplification in the component Lagrangian itself. However when we
proceed to the calculation of mass matrices the covariant notation will lead
to immense simplifications.

13



For the expert in the field I shall now give a brief critique contrasting the
covariant notation used here with the notation of Cremmer et al. [2], and
that of Bagger [1].

(1) In the notation of Cremmer et al. [2] the K&hler metric G”;7 is negative
definite. To conform to standard usage I replace G' by —G wherever it occurs
in the expressions of Cremmer et al. This is trivial, nevertheless it does
improve the readability of subsequent calculations.

(2) The index usage is completely different. Cremmer et al. only distin-
guish between index up and index down. The covariant notation uses four
types of index; up without star; down without star; up with star and down
with star;

Xt X, XV X (3.43)

These index conventions may be related to those of Cremmer et al. by
inspection of the following table:

Cremmer et al. Covariant Notation
2 Y
¢ = (¢;)* ¢ = (¢’)"

X; X
Yi Yi®

GHZJX] Xl* = gz*] XJ

G";'Y7 Y; =gy Y7

G"IG" M 97 0;-0,0,G = g7 O(g1j+) =T

As an immediate consequence of this table we see that many explicit
occurrences of G and G"~! may be swept under the rug by being replaced by

14



appropriate index contractions. Occurrences of G may often be converted
into Christoffel symbols and then combined with partial derivatives to yield
covariant derivatives.

(3) Note that the indices occurring on the spin 1/2 partners of the scalar
fields are related to their chirality thusly

xt's X;' and Xr'; Xz - (3.44)

Bagger [1] does not choose to use this notation and must instead rely
upon explicitly exhibiting (1 4 75) factors in his Lagrangian. This leads to
odd looking (but correct) terms involving contractions such as X?'Y;, i.e.
contracting on mixed starred and unstarred indices. That the left and right
chirality pieces of y transform differently follows from the fact that x is a

Majorana spinor:
x=0x"=07"x", (3.45)

therefore
xe=0C"" (xu)" (3.46)

So if xr — Uxyr then xg — U*xg, and so the left and right chirality pieces
of y transform according to complex conjugate representations.

This completes our comparison of the various notations and we now turn
attention to the computation of various mass matrices.

15



Chapter 4

The Mass Matrices

The tree level mass matrices are obtained by looking at the quadratic pieces
of the expansion of the Lagrangian £ about the vacuum. Note that it is not
sufficient to look at the quadratic pieces in the potential, it is also necessary
to investigate the behaviour of the kinetic energy terms at the vacuum. This
arises because the noncanonical form of the kinetic energy terms introduces
what may be thought of as a tree level wave function renormalization, which
must be eliminated in order to properly normalize the fluctuations and so
define the masses.

The scalar potential of N=1 supergravity coupled to gauged chiral matter
is given by

V = 90,G8G—-3)+1D, D" (4.1)
= e%(6,G8'G—3)+ L (fa")* D, Dy

The vacuum by definition occurs at a minimum of V' (i.e. §;V = 0). Further
the vacuum is assumed to satisfy V|,acuum = 0 so that there is no induced
cosmological constant at tree level.

Observe that

5V = e9l(6:0;G + 6:G §;,G) G —28,G) + L 8i(Do D) (4.3)
+(6; Do) D* — 5(6; fRap) D*DP. (4.4)

It is sometimes more convenient to separately define

Vo = e“(6;G 6'G — 3) (4.5)

16



so that
V=V, +1iD, D" (4.6)

Note that V4 is the limit of V' as the gauge coupling ¢ is set to zero. Again
observe that '

This particular combination of terms shall appear many times in the calcu-
lations that follow.

Before proceeding with the calculations we introduce the concept of the
vielbein. We have two metrics present in the problem, one for matter (g;;-)
and one for radiation (f%,5), we define vielbeins e and h by

gij* = €Z’I 6]'*J* 5]J*, (48)
s = ha hg® dap. (4.9)
The vielbeins have inverses in the usual fashion
6Ji 6i1 = (SJI, (410)
(e))" = e, (4.11)
hg® hot = 6p™. (4.12)

We can use the inverse vielbeins to construct a noncoordinate basis for the
tangent space to the Kahler manifold by employing

6y =e;t 6. (4.13)

In such a basis the commutator of d; with d;« picks up extra contributions
due to the aholonomicity of the basis. With these preliminaries disposed of,
let us turn to the problem of evaluating the mass matrices.

17



Spin 2

The graviton remains massless:

m2:0.

Spin 3/2

The gravitino acquires a mass:

_ G/2
m3/2—e/

(4.14)

(4.15)

In obtaining this mass the gravitino absorbed the “would be Goldstino” and
so finally has four polarization states. For more details, see the calculation

of the spin 1/2 mass matrix.

18



Spin 1
The relevant part of the Lagrangian is:
Ly = LR e, O g (D) (DM), (416)
€ 1 4 af uv Gij I ) .

where _ _ _ .

Du¢' = (8u0"; — ilta’;]A%0) ¢’ (4.17)
Suppose the vacuum occurs at the point ¢). Then expanding around the
minimum and throwing away fluctuations in ¢’

—_ 1 o v . Z o y . 5% *
€ 1‘Cl = _ZfRaﬁF uVFﬁ“ - gij*(_l [ta j] A 7 d%) (_H' [tﬁj k*] Aﬁu ¢0 )v
(4.18)
_ 1 a v * j* i j ol
e L= _ZfRaﬁF w71 — gije (05 [ts” k] gige[ta's) d0) A% APH. (4.19)

Now observe

0iDo = 0; (0;G [ta’ ] ") (4.20)
= (5:07-G) [t ] 6 (4.21)
This allows us to write
1 .
e 'Ly = -3 s F FOW — (8;Dg 6'Dy) A*, APF, (4.23)
We define properly normalized gauge boson fields by
At = h A (4.24)
Then
1 .
e Ly = -3 FA,, FA" —[ha® hg? (6;Ds §'D,)] A%, AP-. (4.25)

The (mass)? matrix is now just read off as

(ml)QAB = 2 hAa hBﬂ ((SiDa 5iD5),
(4.26)
tr (m1)2 = 2 (fRil)aﬂ (62'Do¢ (SlDﬂ)

19



Spin 1/2

Isolating the spin 1/2 mass matrix requires a little subtlety. The quadratic
part of the fermion Lagrangian is:

e (Lijp+ L3p) = —5fFas X (v-D)N (4.27)

{95, (v - D)x&’”" +h.c.}
—ieile“”””{(ﬂu%%Dp@/)g) + h.c.}
+¢C/? E“U“”i/),,
+ 19 2{df s AR AR? + dfag AL}
—e92{(6:0;G + 6:G 6;G) (X1 x?)}
—e92{(6-6;-G + 0-G0;-G) (Xx" X&' )}
+3Da{(ir, - YAR®) + hoc.}
+e9P{(Yg v [6,G] xif) +hee}
—{[2i (8- Da) (Ar*xr")] +hic.}
—3D{(i (0 fap) (X7 A1) +hc.}.

To get canonical kinetic energies for the spin 1/2 fields we must rescale using

the vielbeins. Define

XLJ = 69’[ XLj, (4-28)

1
Moo= — a0 4.29
NG (4.29)

The somewhat peculiar looking factor of v/2 in the definition of A* is not an
error. It will prove to be an essential part of the algebra.
After rescaling the spin 1/2 fields,

e (Lapp+ Lapg) = —3 X' (- D) (430
—{x; (v - D)xg" +h.c}
—te ' { (1,57, Dpths) + hoc.}
+€G/2 EHUW@/)U
-i—%GG/Q{[hAa hg”? Wa,@]XRa)\Rﬁ + [ha® hg” dfag]A* AL}
—e9 et es? (6:;6,G 4 6,G 6,G) (X, x7)}
—e“ e e (610;-G + 0G0 G) (X' xr”))

20



1 _
+—= D4 {(ithy, - yAr?) + h.c.
75 Da {(iv - 7AR") ¥
+e“{ (- v [0:G] x11) + h.c.}
—{\/§[QZ (62'*Da) hAa 6[*7'* (XRaXRI*)] —+ hC}
I o ; _
V) D {(i (6 fap) €47 hs” (X AL%)) +h.c.}.
The “would be Goldstino” may be isolated as that linear combination of x
and A that couples to the gravitino . Thus the “would be Goldstino” 7 is
given by

G2 15,G) o} — —=Dy AL 4.31
x e . .
mox (2 6] u! - J5Dan (431)
To properly fix the normalization, consider the vector
1 or-G
= — . 4.32
© = Gilgeiin) )
¢ = 1 6;G ; _ Lo Da (4.33)
V3 T2
then
¢le = 1(0:Gor-G+5 e Dy Dy) (4.34)
= 18+ 9V) (4.35)
= 1+ %e*G V (4.36)
_ 1 (4.37)
where we have finally used the condition that V' = 0 at the minimum.
The properly normalized “would be Goldstino” is now
t xr' G/2 T i A
= =le 0;G ——=Dj A . 4.38
m=e (1) = (2 Beia’ - oant). s
The gravitino—Goldstino coupling may be written as
V3 G2 {ER Cy nL} + h.c. (4.39)

The terms quadratic in spin 1/2 fields can be read directly from the La-
grangian. These quadratic terms will not yet yield the spin 1/2 mass matrix
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because we have not yet eliminated the contribution of the “would be Gold-
stino”. Let us call the terms quadratic in the spin 1/2 mass matrix the
pseudo mass matrix P /5. For left handed fields we have

PIJ PIA
P = 4.40
1/2 [ PBJ PAB ] ) ( )
PIJ = —eG/Z{eli er [((SZ(SJG + 6ZG 6]G)]}7 (441)
Py = +iv2 {ha® er’ [(6; Do) — %Dﬂ (5ifRaﬁ)]}’ (4.42)
Pig = % eG/2 {hAa hBﬁ dfaﬂ}- (4.43)

Note that the pseudo mass matrix for right handed fields is just ?/2, the
complex conjugate of P ;.

The key to the problem of fermion masses is to realise that the “would
be Goldstino” is an “eigenvector” of the pseudo mass matrix, specifically:

Pyjy & = (—2¢97%) ¢, (4.44)

This seemingly odd eigenvector equation, with one vector complex conju-
gated and the other not, is a reflection of the fact that P/, is a symmetric,
complex, but not necessarily Hermitian matrix.

Establishing the “eigenvector” equation is unfortunately a matter of brute

force .
_ 1
P1/2 6 - \/g <X2>a (445)
where
X, = —e%? e/ (6:0;G + 8,G §;G) §'G
+(iV2)(i/V2) e 9 ef ([@Da] — 3D’ [5ifRocﬂ]) D®, (4.46)
Xo = (+iV2) ha® ([6:Da] — 1DP[6, R o5)) 6°G
+(3)(+i/V2) ha® dfap D”. (4.47)
Now

([6:Da) = 1D [5:fRap]) D* = 5,(1D°D?[5,faf]) = 6,(3D"D,).  (4.48)
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While

[dfos] D° = 6'G [5; fap) D° = 26'G [0, f*op) D”. (4.49)
So
—G/2 , i [,G (§.5. ) , i (L a
Py &= % <_6 el ﬁf};;iﬁfﬂ ,ifi FOGD D )]> (4.50)
But
§'G 8Dy = 0'G 6;(6;G [t k<] ™) (4.51)
= §G gy [ta 1] (4.52)
= ;-G [to’ 1] 8" (4.53)
D,. (4.54)
%0 1 [(—e G2 e/t [6;V 4 2e9 §;G)
P e I
Finally we use the extremum condition ;' = 0 and obtain
Pyjy & = (=2697%) ¢, (4.56)
Having established the “eigenvector” equation we define
My = Pijs +2e97 ¢ €L (4.57)

Note that, because £7¢ = 1 = £7¢*, it follows that my/2 is a complex sym-
metric matrix satisfying

m1/2 § =0= §T ml/g. (458)

Now my s is in fact the physical mass matrix after eliminating the “would be
Goldstino”. This may be seen by observing

(X; A) Piy (’;) = (%A [m1/2 — 2eG/2§*§T] (§> (4.59)
= m (3} -2 0 (460
- {wvr-edmpr-ce(})]
—2¢92 (4.61)
= (X N)perp M2 (’;)pm _9eG/2 5 . (4.62)
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thus showing that the fields perpendicular to the “would be Goldstino”’” do
indeed have mass matrix my ;.
Now observe

_ i G2
26G/2 g*{f _ geG/Q . (SIG (5JG \/516 (5[GDA
3 —ﬁ€7G/2 DB 6JG _§€7G DA DB
(4.63)
. 2 €G/251G (5JG —% 51G DA (4 64)
N 3 —ﬁ Dpg 5]G —%e‘G/Q Dy Dp ' '
Thus we may explicitly evaluate the spin 1/2 mass matrix as
m _ mry MiB
12 maj MAB
mry = —e%fesf el [6;0.G+15,G5,G
1 ferl e [0,0,G + 10, 6,61} o)

mra = +ivIH{hat e [(6:Da) — SDH(5f "ag) — L(0,G) Dy}

map = {hAa hBﬁ [%eG/Q dfag — %G_G/z Da Dﬂ]}

This finally is the full spin 1/2 mass matrix in all its glory.

To calculate the spin 1/2 contribution to the (mass)? sum rule we need
to evaluate tr (my, T1/3). This could be calculated by inserting the mass
matrix just calculated and tracing. This is the strategy adopted by Cremmer
et al. [2]. This strategy is however grossly inefficient when noncanonical
kinetic terms are kept. A much more tractable strategy is to observe

mijp i = (Pijg+ 292670 (Prjg + 2e97%¢€T) (4.66)
= Pus Pips + 29 [€(=2e7¢T) 4 (—2e926) €T 1 269 ¢T ]
(4.67)
= Pijy Py —4e¢¢". (4.68)
Then
tr (myjo Mijz) = tr(Pijs Prja) — 4eC. (4.69)
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But now

tr(Pijz Prjp) = PIJ Prej- +2Pa; Pr-p+ Pap Pap
— O (6:6,G + G 6,G) (56°G + 6'G §G)
(6;D

[2 lDﬁ 0; fRaﬂ) (fR_I)CW (5ti - %Dé 5ifR67)]
7€ [df 8 (fR-l)m df.5 (fr1)%). (4.70)
Now define
tr(dfr fr' dfr fr') = §ldfas(fR™)7 df 5 (fRH). (4.71)
Then

tr (Prja Pijp) = €% (6;0,G+6G §;G) (607G + 6'G §7G)
+4[0;Da] [6' D] (F7)*7
+e tr (dfr fr' dfr fr')
—2(6: Do (f")™ [8°f%,5]D°)
—2(6'Dq (fz")* [0:f"15]D°)
+Dq 6 Fap) (fr")P[0° f715] D°. (4.72)

Recall that f,s transforms like a symmetric tensor in the adjoint represen-
tation. This means that

6Gfa,6‘ a fa,@' [t’YZJ] d)l {Y (5 faﬂ) ( ) {Ya (473)

(6 fas) (6°Dy) = ¢ya” fop + €15 fao- (4.74)
Applying this, we see that

(6"Da (fr')* [6:f"10)D°) = 3[(6'Da) (8if"6) (fr")™ D° (4.75)
[Cav Jos + Cas” frm] (fR )7 D’
(me + Zflm) (fR ) D

1
2
1
2
l
2€
% a6a D’ + Z[ Cas’ (flm) (flgl)m Dé]a
where we have already used the antisymmetry of the structure constants in
the first two indices. The purely imaginary piece will be cancelled when we
add the complex conjugate term. Also c,3“ = 0 since we can always choose
the structure constants to be completely antisymmetric.
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Now observe that

A(fr™h) = §'6(fz") (4.76)
= +[(fe") 6 fr (fr™") 6ifr] = [(fr™") 6°6ifr (fr™")]
+[(fr ") difr (fr ') &' fr), (4.77)

and note that §°6; fr = $0°(6;f) = 0, since f is chiral. In particular,

D[ifRag) (fr )77 [6°fR,5]D° = 1Dq [66;(fr~")*] Dg. (4.78)

=2
The trace now becomes
tr (Mo Mijz) = e¢ (0,0,G + 6,G 6;G) (6'6°G + 6'G §G)
+4(0iDy) (fr~")* (0'Dp)
+e tr(dfg fr" dfr fr™")
+3Da [A(fR7)*] Ds
—4¢C. (4.79)

Utilizing the results obtained for higher spin we finally obtain

tr(mip Mip) = (mg)? (0:0,G + 6,G 6,G) (8'6’G + 0'G 6 G)
+2tr (my)?
(mgy2)? tr(dfr frt dfr fr")
+5Da [A(fr )] Dy
—4(m3/2)2.

(4.80)
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Spin 0

Finally we calculate the mass matrix for the scalar bosons. The relevant part
of the Lagrangian is

e ' Ly = —gij- D¢ D'
~3 Da (™) D; (181
= —gij- D,¢' D'¢7" —V (4, @). (4.82)

Now suppose that V' has a minimum at ¢} and define the fluctuation A¢’ =
@' —¢b. Now by hypothesis V and 9V are zero at the minimum. So expanding
in terms of fluctuations we see

e Lo = —[gij-(¢0)] Du(Ag") D*(Ag™)
v | 0ROV 0.0,V ] (A
—(Ad7 5 A9 | 5oy aiaj*v] ( )

Api”
+0(]Ad). (4.83)
Properly normalized fluctuations may be defined using the vielbeins
ol = el Ag, (4.84)
o7 = epl AT, (4.85)
Then
el Ly = —0,4 O gl
(6" o) eI*’: eﬂi 00,V eI*ii* es’” ai*aj*vl <¢>J )
er' ey) 0;0;V er' ey’ 0,0V ¢’
+0(|Ag[?). (4.86)

The (mass)? matrix is now seen to be

o _ |er" e 0ROV ert epd 0105V
(mo) N ezi 6Jj @@V eli eJ*j* aiaj*v (487)
_ [ ep ey 0;=0;V ept egd” 50,V
N i Gli er (515]‘/ eli eJ*]'* 5i6j*v (488)
_ [ 51*5JV 6[*5J*V
6V 60V | (4.89)
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where we have repeatedly used the fact that 0V = 6V = 0 at the minimum.

Evaluating the trace of the (mass)? matrix is relatively easy. Evaluating
the (mass)? matrix itself is relatively straightforward but tedious. Let us
split the problem into manageable chunks as follows

51'* (5]V = 51* (S]% + 61'* (Sj(%DaDa), (490)
515]V (57,5]% + (57,5](%DQDO‘) (491)

The gauge contributions are

0i:0;(3Da(fr')*"Dy) = (81-0;Da) D

+% [5 3;(fr")*?1Dg
(5z*D ) (f2")* (6;Dp)
+(65-Da) [6;(fz")*"] Dg
+(6;Da) [0+ (fz")*°] Dg. (4.92)

0:0;(3Da(fr)*Ds) = (6:6;Da)

+3D4[0:6;(fr")**]Dg

+(6:Da) (fz")* (6;Dp)

+(0:Da) [6;(fz")*] Dg

+(6;Da) [0:(fz")*°] Dg. (4.93)

In general, nothing particularly enlightening can be said about the gauge
contributions to the (mass)? matrix. One simplification is to note that
6i0; Do = 0, since 8;0;D, = 6;(gju[ta* 1]¢") = 0. In a similar fashion

0i-0;Da = G- (gja~ [ta" 1+] &") (4.94)
= gje [ta" 1+] 8" e (4.95)
= gk [ta" ir] (4.96)
= [taji-]. (4.97)
Now consider the contribution §6V to the (mass)? matrix. We observe
51'*6]'% = 52'*[6G {(5]5kG + (SJG (SkG) 5kG -2 5]G}] (498)
= €% [05G {(6;0,G + 6,G 6:G) "G — 2 6,G}
+{(60;0xG + 06;G 6,G + 0;G §;-6,G) 6*G}
+{(6;61G + 6;G 0,G) 6:6*G — 2 6;-6,G]} (4.99)
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Now recall 6;0;-G = g,5-. Also observe

0i-0;0,G = [0i-,0;]0kG + 8;0i- 0, G (4.100)
= R"ij OmG + 0;(ghi-) (4.101)
= R"4j 0G. (4.102)

Combining these results

50,V = € {(6:-0°G + 6;-G 6*Q) (6,8'G + 6,G §'G)
_29i*j + Gixj ((SkG (SkG) — 5Z*G 5]G
+R" e oG 0 G (4.103)

Notice in particular that the Riemann tensor contributes to the scalar masses.
The final term of interest is now

0;0;Vo = 5i[eG {(0;06G + 6;G §;,G) oFG -2 §;G}] (4.104)
+[(0;66G + 6;G 5,G) 607G — 2 6;0;G]] (4.105)
Observing that §°6;G = ¢";, we see that

6:0;Vo = e“{(6:0;G + 6,G 6;G) + (6;6,G) [0xG 6*G — 2] + (0:6,6,G) 6*G
+(0:6,G) 6*G §;G + (6;0,G) 6*G 6;G) + 6,G 6;G [6,G 6*G — 2]}

(4.106)
+(6:0kG) 8 G 6,G + (0;6,G) 6"G §,G}. (4.107)
Now define
Gr = e’ 6G, (4.108)
G[] == €[i 6]j 5i6jGa (4109)
G[JK = €]i er €Kk (SZ(SJ(S]CG (4]_]_0)

29



The (mass)? matrix decomposes to

(m0)21J

(mO)QI*J (mO)QI*J*
(mO)QIJ (mO)QIJ*

(m3/2)2{(51*] —+ [G[*K + G[* GK] [GKJ + GK G‘]])
+5]*J(GK GK — 3) — G]* GJ
+Rp gk G G}

+asr- D+ 61-Do (fr 1) 6,Dp

+3Daler. € [0:0;(fr~")*"]) Dy

+(S[*Da (SJ(fRfl)aﬁ Dﬁ + 5]Da (S[* (fRfl)aﬂ Dﬁ.

(ma/2){(010,G + G1 G;) (G GF = 1) + Gy G*
—|—G1K GE GJ + GJK G¥ GI}

+0;Do, (fr™")* 6,Dp

+5Da(e] €] [6:0;(fr™")*’]) Ds

+01Do 0,(fr™")* D+ 061D 0r(fr™")* Dg.

(4.111)
This finally is the full expression for the scalar (mass)? matrix. In its present
form it is too unwieldy to be of any great use. Some simplifying ansitze will
be discussed in subsequent chapters.

Fortunately the trace of the (mass)? matrix is now very easy to evaluate

tr(mo)® = (mo)rr- + (Mo)’r-1
= §'6V +0,6'V
= AV +AV
= 2AV.

since A = A when acting on scalars. The explicitly calculated formula for
(mg?) -7 now yields

tr (mo)® = (ma2)*{[n+ (6:0;G + 6,G §;G) (6'¢’G + 6'G ¢’ G))]

—8,G 6'G
+Riikl G G}

30



+2tr (o)D"
+26; Do (fr™")*" 6'Dg
+D[A(fr)*1Dg
+26'De, 6;(fr )™ Dy
+26; Do 6 (fr™1)*? Dpg. (4.116)
The last two terms occurring here are complex conjugates of each other and
have previously been shown to cancel against each other (recall the spin 1/2
calculation). We also use the fact that the condition V' = 0 at the minimum
implies .
2 (M) (6:G 6'G — 3) = —D, D°. (4.117)
Additionally, recall
tr (m1)? = 2(6;Dy) (fr™1)* (6'Dyg). (4.118)
So we see
tr (m0)2 = {n[? (m3/2)2 — Da Da]
+2(ms39)? (0:6;G + 6:G §;G) (8'6°G + 6'G §7G)
—[6(m3/2)> — Do D]
+2(m3/2)2 (RZJ (SlG 5]G)
+2tr (to) D
+ tr (my)?
Da[A(fr )]s, (4.119)
And finally

tr(mg)? = (ma)? (6:0,G + 6;G §;G) (6'6’G + §'G & G)
(n— D2 (1msy2)” — Dy D]
—4(m3/2)2
+2(my))? (8°G R 6,G) (4.120)
+2tr (tq) D"
+tr (my)?
Da[A(fr™)*]Ds.

Having now exhaustively and explicitly evaluated the (mass)? matrices and
their traces, the (mass)? sum rule itself will be trivial.
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Chapter 5

The Sum Rule

Str(m®) = tr(mg) — 2tr(my)® + 3tr (m1)® — 4tr (map)®  (5.1)

— (n—1)[2mi), — DuD"] (2)
+2m3, (6:0;G + 6,G 6,G) (6" G + 6'G §'G)
—4m§/2
+2(mgyp)? (0'G R §,G)

+ tr (to) D
+ tr (mq)?
+Du[A(fr~)*1Dg

— 2(mg)s)? (8:0,G + 6,G §;G) (8'9G + 6'G ¢ Q)
—4tr (my)?
—2(mgpe)* tr (dfg fr™" dfr fr7")
—Du[A(fr)*]Dg
+8(m3/2)2

+ 3tr(my)?

— 4(m3/2)2.
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Collecting terms

Str(m?) = 2(n—1) [m3, —§ D, D°|
+2tr (t,) D*
+2(m3/2)2 ((SlG Rij 5]G)
—2(mp2)tr (dfr Sr~" dfn fn7")

(5.3)

This should now be compared to the sum rule of Cremmer et al. [2]. It is
remarkable that the extra contributions due to noncanonical kinetic energies
are so simple. When comparing to the results of Cremmer et al. [2], recall
that (ta)here - g(ta)Cremmera and that (Da)here = _(Da)Cremmer-

Having now exhibited the mass matrices and mass sum rule assuming
that V|yacuum = 0, we shall turn to the more general question of just how a
vanishing cosmological constant may be obtained.
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Chapter 6

Tuning the Cosmological
Constant

The scalar potential for N=1 supergravity coupled to gauged chiral matter
is [1,2] .
V=e(6G6G—3)+1D, D" (6.1)

We shall define the cosmological constant to be the value of V" at its absolute
minimum. More carefully we can account for the possibility that the absolute
minimum occurs at infinity in field space by defining

A=infV. (6.2)
Here the infinum is to be taken over the entire Kahler manifold M of scalar

field values. The key to this section lies in the following simple observation.

Theorem
If 3o € M : 0G|y, = 0 then
(1) ¢p is a critical point of V, (0V|4, = 0);

(2) V|¢0 <0.

Corollary
If A =0 and supergravity is broken, then V¢ € M, 0G # 0.
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Proof

The proof is trivial. We just observe that

5ZV = GG[(éi(SjG + 5ZG 5]G)(5]G — 252G] + %5i(DaDa) (63)
= e“[(6:0;G + 0,G 6;G) G — 26,G] + (0;D) D* — 1(0; [ 5) D*D?
(6.4)
and o
Do = 6:G [ta'}] ¢ (6.5)

Note that the use of covariant notation has allowed the proof to be derived
for noncanonical kinetic energies with essentially no extra work over that
which would be required for the canonical case. Observe further that the
above theorem shows us that the search for the zeros of OG is as important
for the breaking of supergravity as is the search for the zeros of df in rigid
supersymmetries. In the supergravity case the nonanalyticity of G leads to
extra technical difficulties. We shall not pursue this subject, rather we shall
prove a sort of converse to the previous theorem.

Let V. denote the potential V' with all occurrences of G replaced by eG,
being careful to remember that the index contraction §;G6°G hides an occur-
rence of the inverse metric. Thus:

V. =€ [e6,G 6'G — 3]+ L € D, D~ (6.6)

Theorem

If inf(6,G 0'G) = 1 > 0, then Jep € (0,3/n] : V,, has A = 0.

Proof
Let A, =inf V.. Then
2) Vigjmy = exp (2G) [2n— 3]+ L(2)? Do D* > 0. (6.8)
So
1) limA, = —3, (6.9)
e—0
2) Ay > 0. (6.10)



Since A, is continuous in € it follows that Jey € (0,3/n] such that A, = 0.
Note that inf(V;) is a continuous function of € even if the location of the
absolute minimum is not a continuous function of €. Further observe that in
terms of the superpotential W the scaling transformation adopted here is:

G eG. (6.11)
K+ eK. (6.12)
W We. (6.13)

Some comments on the analytic structure of the superpotential W are in or-
der. It was pointed out by Bagger and Witten [1] that the superpotential W
is an analytic section of some holomorphic line bundle constructed over the
Kahler manifold M. The word analytic is potentially misleading. What is
really required [2] is that W be a function of the ¢’s only, not of the ¢’s [i.e.
W = W (¢)]. But the superpotential does not have to be everywhere differ-
entiable in order for the Lagrangian to make sense. In particular both poles
and branch cuts are permissible, though they may be considered unpleasant.
It is useful at this stage to classify superpotentials as follows.

Class I: W analytic but not entire on M
—so that poles/branch cuts exist.

Class IT: W entire but In W not entire
—so0 that W has zeros on M.

Class III: In W entire on M.

It is common to restrict attention to Class II superpotentials. This would be
inappropriate in our discussion since Class II is not closed under the action
of the scaling transformation W +— W¢€. Indeed, elements of Class II are
in general mapped into Class I by this transformation. While commonly
occurring superpotentials are of Class II, the other possibilities should not
be ignored. In particular, if the Kdhler manifold M is compact [1], then the
superpotential is either identically zero or is of Class I.

It is possible to arrange for supergravity breaking with A = 0 by using
superpotentials from any of the Classes I, II, or ITI. This may best be seen
by explicit examples.
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Class 1

Take
K = ¢ (6.14)
W = ¢1; (6.15)
G = ¢¢+ 3Ingo. (6.16)
A quick computation yields
V =exp(69) [60] ¢ (66 — )% (6.17)
The absolute minimum occurs at ¢¢ = %, V= 0 with mgz; = eGl?2 =

3

KW | = (3e)s.

This potential has been discussed by Ferrara et al. [10], by Deser and
Zumino [11], and by Gaillard et al. [12]. We shall later return to this example
in a new disguise.

Class 11
Take the Polonyi potential [13]:
K = ¢¢; (6.18)
W = ¢+ (2—V3); (6.19)
G = ¢¢+In{|p+(2—-V3)*}. (6.20)
Class I11
Take
K = ¢¢; (6.21)
InW = 1¢%+iV3¢; (6.22)
G = o+ L2 +iVBop+1d —iV3 . (6.23)
0G = ¢+ ¢+iV3. (6.24)
Vo= “p+¢+iV3[ -3 (6.25)
= %o+ ¢)% (6.26)
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The absolute minimum occurs at V' = 0; Re ¢ = 0; and Im ¢ arbitrary, while
ms2” = e = exp(3(Re¢)? — 2v/3 Im ¢), (6.27)

my/s = exp(—V/3 Im ¢). (6.28)

These examples are sufficient to indicate that all of the Classes I, II,
and IIT are potentially of interest. We shall now leave these toy models and
return to a more general analysis. One reason that we have emphasized the
different possible analyticity structures of the superpotential W is given by
the following theorem:.

Theorem

If A =0 and supergravity is broken,
then either the superpotential W is not analytic at the origin,
or the model contains at least one gauge singlet superfield.

Proof

Assume the contrary, that the superpotential is analytic at the origin, and
that the model contains no gauge singlet superfields. We shall show that
under these conditions either supergravity is unbroken or A # 0.

If the superpotential is analytic at zero field, and does not depend on any
gauge singlets, then the gauge invariance of the superpotential implies

ow
- =0. 6.29
=3 (6.29)

Now noting that D, =0 at ¢ = 0 we see that
V(ip=0) = e {(W +W§K) (8W +WHK) -3 WW}
+3D,D" (6.30)
= S WW (6,K §'K — 3). (6.31)

The Kéhler potential must itself be differentiable (though certainly not ana-
lytic) at the origin. Then gauge invariance of the Kéhler potential implies

oK|
00 |,_,

0. (6.32)
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Therefore V(¢ =0) = -3 XK W W.
Thus either A < 0 or ¢ = 0 is a minimum of V' that does not break super-
gravity.

The significance of this theorem is that it informs us that supergravity
breaking is always technically ugly. Either the model contains gauge singlet
fields, [a fact that is mysterious at best, and at worst neatly foils any at-
tempts at family unification], or, a scarcely more palatable possibility, the
superpotential is not analytic at zero field.

It is relatively easy to guarantee a zero Cosmological constant but the
price is high. To get A = 0 one need merely construct a nonanalytic real
function G(¢, ) such that 9;G(¢, @) possesses no zeros. [More rigorously:
we really want inf(5;G 6°G) # 0]. Having found such a G it can always be
tuned to set A = 0. Unfortunately, this is unnatural in two senses:

1. The set of G’s leading to A = 0 is of measure zero in the set of all G’s.

2. One must live with either gauge singlets or a nonanalytic superpoten-
tial.

While some papers have appeared claiming to lift the unnaturalness of the
A = 0 condition (e.g. [14]), this can only be done by acts of severe violence
to the framework we have been discussing.

We shall now exhibit a model that uses the nonanalyticity of its super-
potential to simultaneously break supergravity and its gauge symmetry. We
shall then turn to a general discussion of models containing gauge singlets.

39



Chapter 7

Nonanalyticity of the
Superpotential

In the previous section we argued that supergravity breaking with A = 0
requires either a nonanalytic superpotential, or the existence of gauge singlet
fields. However we have not yet exhibited any specific examples of how the
nonanalyticity of W allows us to avoid the presence of gauge singlets.

My attention was first drawn to models of this type by the work of S.
Rudaz [15]. Rudaz considers a model with

W (¢) = mgs p? e=%/2 g(V3=1-a)([/u]-0) F
1

Here H;; is some gauge invariant matrix. Rudaz was able to show that this
choice of superpotential simultaneously breaks supergravity and the gauge
symmetry and that A = 0 at the minimum. The analysis of the previous
section indicates that the branch cut singularity in z is an essential ingredient
in this result. We note that

oW _ Hyd

00"~ vV OF Hy ¢

The fact that (g;/)v) is not well behaved as ¢ — 0 is what permits us to avoid
the use of gauge singlets.

—a—i—l] , (7.1)

for ¢ near zero. (7.3)
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We shall now exhibit a somewhat simpler example that exhibits the same
behaviour. The example will be constructed by utilizing a systematic search
among all power law superpotentials.

Consider a model of the form

K = do=0¢"d', (7.4)
W= () = (09) (75)
G = ¢¢+7In[(6d)(d¢)] (7.6)
Then

inf(0,G 6'G) = inf(|0G|?) (7.7)
= inf (|6 + 751 (7.8)
— inf (27 + P+ ﬂ%]) (7.9)
> 2y (7.10)

Thus applying the theorems of the previous section we see that:

YV v > 0, d e such that the model

K = e(¢9), (7.11)
W= (60)7, B (7.12)
G =¢[(09) + 7In[(¢)(69)]] (7.13)

has A =infV = 0.

Note that because of the simple form of the Kahler potential we can
further simplify this by defining ¢nery, = /€Poia- Then defining v = ey ;
(1t = —vlne we see that the model

K = 6, (7.14)
W= u(ge) (7.15)
G = ¢b+vn[(d)(dg)] + 2u, (7.16)

has A = 0 for at least some choices of v and pu.

Let us now evaluate the scalar potential

Vo= o+ 2025 -3} + 1(6t0)?, (7.17)
Vo= ool + ]+ dv — 3} + 5(9t¢)*, (7.18)
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Vo= {e%(00) "1 (00) Hbo(60)(90) + 4] + [4v — 3](¢6) (66) }
+1(pte)?, (7.19)

Vo= {0039} x
0\/36 — B (81— 3 ¢¢)(¢¢)}

{cbqs\ 66| — 20| + 2
+35(6t)*. (7.20)

The potential has thus been reduced to a sum of squares. It is now easily
seen that A = inf V =0 if and only if v = +2.
For v = +32 the model reduces to

$)°.

K =90, _
:_(d)d))g? _
G = ¢¢ + 5 In[(69)(¢9)] +
V = el (pp) 3 (69) 3 { 7 | lool - 4 } 3 (69
(7.21)
The absolute minimum occurs at
(a) 1(60)] = §
(b) & = /{550
(c) D=0
(d)yA=0
(e) maje = G2 = eF/2|W| = p(3e)s (7.22)

Note that the condition |(¢¢)| = 2 leaves undecided the direction of the
gauge symmetry breaking. Also note that all factors of Mp,,. have been
absorbed into my definition of the field variables. Consequently the physical
scale of the gauge symmetry breaking in this model is Mpj,ck, while the
scale of supergravity breaking is given by the free parameter ms/s.

This example shows that it is possible to simultaneously break both su-
pergravity and gauge symmetry at the tree level. This is as far as I wish
to pursue this particular avenue and we shall now return to a more general
setting to consider the case of models with gauge singlets.
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Chapter 8

Sector Structure

We shall now turn to the possibility of achieving supergravity breaking by the
inclusion of gauge singlets. The analysis so far has avoided making any sim-
plifying assumptions about that structure of the Kéhler potential (K), the
superpotential (17), of the gauge metric (f,z). To leave the model so uncon-
strained would, at this stage, lead to unmanageable algebraic difficulties. To
simplify life we shall assume that the models divide into uncoupled sectors.
The different sectors cannot be completely decoupled, since if nothing else,
they all couple to gravity. At best we can try to minimize the cross-coupling.

We shall start by assuming that the Kahler manifold describing the scalar
fields is a product manifold M = M; ® Ms, and that the metric on M is
the natural one induced from M; ® M,. Splitting the coordinates on M
according to ¢ = (¢1, o), this means we may write

K((ﬁaa) = K1(¢1a$1) + K2(¢2562)’ (81)
Gijx = [ 901 g02 ] =01 D go. (8-2)
ij*

This further implies
Dy = (8,G [ta';] ¢') = Doy + Dy . (8.3)

A subtle point is the choice of condition to be imposed on the superpotential.
The best choice appears to be

W(p) = Wi(¢1) x Wy(¢s). (8.4)

43



For this choice B _ _
G(¢a ¢) = Gl (¢1a ¢1) + G2(¢2a ¢2)? (85)

thus leading to a clean separation when G is inserted into the scalar potential.
This choice (W = W;W,) is the one advocated by Cremmer et al. [6]. An
alternative choice W(¢) = Wi(¢1) + Wa(¢2), championed by Hall et al., fails
in its primary objective, that of obtaining a clean separation of the sectors.

There is no particularly appealing choice for the gauge metric f%,5 and
we shall leave it arbitrary. We observe

V = €% (5G6'G-3)+ 3 D, D (8.6)
12 (5,61 8°Gy + 8;Gy 5'Gy — 3)
+%(Da,1 + Dy 2) (D% + D%,) (8.7)

= €@ [e7 (0;G1 8'Gy — 3) + $Da,y D*]
+e9 (€92 (6;Go 6'Gy)] + L[Da o D% + 2D, D%).  (8.8)

Our previous arguments have shown that in order to break supergravity
and have an analytic superpotential we must have gauge singlets present in
the model. Accordingly let us assume that sector 1 consists solely of gauge
singlets, while sector 2 may contain both gauge singlets and gauge multiplets.
Under this assumption D,; = 0 and we have

vV = GGQ [6G1 (6ZG1 6ZG1 — 3)]
+[e“ (€% 6;G2 0'G) + 1 D, o D% (8.9)
Vo= % ]+ [Val. (8.10)

Here V; is just the usual scalar potential for gauge singlets coupled to su-
pergravity while V5 is by construction positive semidefinite. We shall adopt
the suggestive nomenclature of calling sector 1 the cosmological sector (A
sector), and calling sector 2 the matter sector.

Indeed let us now write:

Vo= Vi +V,, (8.11)
Vi = €% (6;Gy 8°Gy — 3), (8.12)
Vi = €% e (6;G, 6'Gr) + 3 D, D°. (8.13)

Suppose now that the cosmological sector has been chosen so that V, has
an absolute minimum at ¢,° with ¥, = 0. Suppose further that the matter
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sector satisfies §;G,, = 0 at ¢,,°. Then the point (¢,°, ¢,,°) is an absolute
minimum of the full scalar potential V' with zero cosmological constant. This
justifies the terminology “cosmological sector” since it is the cosmological
sector that is responsible for setting the cosmological constant equal to zero.
It may be tempting to consider renaming the cosmological sector the hidden
sector. Resist this temptation. While it may often be the case that the
particles in the cosmological sector are very heavy this need not in general
be true.

It should be noted that this analysis has provided a very useful construc-
tive technique for building models with zero cosmological constant. One
starts with any set of gauge singlets whose mutual interactions satisfy A = 0.
(Many such examples are known. For instance, recall the models we exhib-
ited when discussing Class I, I, and III superpotentials.) Now one just pastes
on any arbitrary collection of fields such that the equation 0;Gpew fietas = 0
has one (or more) solutions. Any model constructed in this way will still
have A = 0 after inclusion of the new fields.

The most important result of hypothesizing a sector structure as detailed
above is that it implies a radical simplification of the mass matrices.

By hypothesis the vacuum in such a sector model satisfies

1) V=Vy=V,=0. (8.14)
2) 6;Gp = 0. (8.15)
3) D, =0. (8.16)
4) 6,V =6;Vy =6V = 0. (8.17)

(Naturally these conditions are interrelated.) Consider now the terms con-
tributing to the spin 0 mass matrix

(Si(Sj*V = 6Gm [5i6j*VA] + 6G 5i6j* [(Ska 5ka]

+30:0j-[Da (fr™)*" Dy (8.18)
= e [0:0,- VAl + € [gije + 0i0kGrm 0;-0"G )]
+0;Do (fr™")* 8 Dy. (8.19)

Now also
(SZ(SJV = €Gm [(SZ(S]VA] + €G (SZ(S][(Ska (Ska]

+%(Si5j[Da (fRfl)a*B D/g] (820)
= €Gm [(SZ(S]VA] + €G [2516]Gm]
+0;Do (fr 1) 6;Dp. (8.21)
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This tells us that the scalar (mass)® matrix decomposes into a direct sum

(mo)? = (mo)”, @ (mo)?,, (8.22)
0p<0;Va 007V
2 Gm | O1707VA Or<0g<Vp
(mo)"y = e l N (8.23)
(mo)2 = @ or-y + Grg-Gky 2Gr- -
0/ m 2G'1s ory + GrxGreg- |
) (8.24)
5[*.DA5J.DA 5[*_DA5J*DA
6[DA(5JDA 6IDA(5J*DA |
where we have used the fact that D, = 0 in the vacuum to write
(S[DA — (5[(hAaDa) — hAa ((S[Da). (825)

Because D, = 0 at the minimum, the mass matrix for gauge bosons may
be written

(m1)? 45 = 2(6:D4 8" D). (8.26)

In the fermion sector the “would be Goldstino” now resides solely in the
cosmological sector

nL = %(5101\ xt'). (8.27)
Thus the fermion mass matrix also decomposes into a direct sum
mij2 = Mij2, @My, , (8.28)
where _
(ml/QA)U = —60/2{6]Z€JJ [515]GA + %(SlGA(SJGA]} (829)

The matter spin 1/2 mass matrix mixes gauge non-singlet matter fields with
the gauginos

(m1/2m)1J = —mg3/2 0r07Gm
(maja, )ia =iV26;Da
(mas2, )ap = 3mss2 ha® hg” dfags. (8.30)
Where df,3 now only picks up a contribution from the cosmological sector
dfus = (6"Gp)(0i fup)- (8.31)
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This direct sum structure for the (mass)? matrices means that we can con-
struct separate (mass)? sum rules for the cosmological sector and the matter
sector.

Str (Pym?) = tr(mg)®, — 2tr (myy2)?, — 4mg)o?
. ' (8.32)

= 2m3/22[(n,\ - 1) + (SlGA Ri] 5jGA].

In the matter sector we see
tr (mo)?,, = 2ma’[nm, + 0;0,G 66 G] + tr (my)?. (8.33)
tr (m1/2)2m = m3/22[5i5jG 51(5‘7G + tr (de fR_l EfR fR_l)] + 2tr (m1)2.
(8.34)
Str (P, m®) = tr(mg)?, —2tr(my)® +3tr(m)?

(8.35)

= 2mgpi g, — tr(dfe fr ' dfr frY)).

Indeed the restrictions implied by the assumed sector structure allow us to
go even further in the reduction of the mass matrices.
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Chapter 9

The Matter Sector:
Leptoquarks and Higgses

The matter sector by construction contains both the leptoquark and Higgs
fields of the model. Let us define the leptoquarks as those superfields whose
scalar components do not acquire a gauge symmetry breaking vacuum expec-
tation value. All other superfields (including gauge singlets) will be called
Higgs fields. Consider the object §;Dy = gij-[ta’ k]¢* . Then by definition,
8; D, = 0 for the leptoquarks. Thus we see that among the spin 1/2, fields
leptoquarks do not mix with gauginos, though in general Higgsinos do mix
with gauginos. For the scalar (mass)? matrix we see that at least the gauge
contribution does not mix sleptosquarks with Higgses. Indeed, we see that
if any sleptosquark Higgs mixing, or leptoquark Higgsino mixing does occur,
this mixing can only arise from the terms involving 9,0;Gp,.
We shall now assume that 9,0;G,, is a direct sum

A decomposition of this type could certainly be achieved if the matter sector
itself had sector structure (K,, = Kpg + Ky; Wy, = WiroWy). The sector
structure hypothesis is unfortunately too strong since in such a case lepto-
quark masses are independent of the Higgs vacuum expectation values. Thus
leptoquark multiplets get gauge invariant masses. To avoid this problem, a
sufficiently general ansatz is

G = GLQ + Gy + Gz (9.2)
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where G,,;; is at least quadratic in leptoquark fields. An even more restrictive
ansatz is
Ky = Krg + K (9.3)
W = WroWpe (9.4)
where €2, taken to be at least quadratic in leptoquark fields, is responsible for
the mass splittings within leptoquark multiplets. However, it should be noted
that the only assumption that is really necessary is that 60G,, decomposes

into a direct sum when evaluated at the vacuum. Under this condition, the
matter sector mass matrices themselves decompose into direct sums:

(mO)Zm = (mO)ZLQ S (mO)QH,
(Mm1j2)m = (M1y2)rg © (Myy2)n. (9.5)

It is now easy to see that

(my)? a2 Or-g + (070G 1o(6%61-G) g 2(61-0-G) Lo
0)"LQ 3/2 2(6,;0,G) Lo 01+ 4+ (6:0xG) (6% 6,-G) Lo
(9.6
Sk (0r-0k-G) g ] [ OK=J (0x+07+G)Lg ]
(
(

)

_ 2
= M3/ [ (010 G) Lo Ork+ dx0,G) Lo Ok .=
9.7)

The scalar mass matrix is

Or7 (6r-07-G) g
= 9.8
(mO)LQ m3/2 [ (6](5JG)LQ (SIJ* ( )
For the spin 1/2 particles
(m12)g = —may2[(6r6,G) o) (9.9)

Warning: (670,G)rg = 6107(Grg + Gmiz)- The Higgs sector has not been
improved by our ansatz. Indeed,

010;Gy o1+ (0rDa6sDy) (61D ds-Dy)
(9.10)

St 516-Gn 17 §-D46,D4) (87D 46,.D
(mO)QH:mB/QZ{l o 0 Hl} l(f 40,D4) (8r-Dady-Da)
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—m32010;G g iv/261D 4
i\/ﬁ(SJDB mg/gh}AahBﬁdea,B

While the masses in the Higgs sector are in general quite complicated the
masses in the leptoquark sector are now easily diagonalized.

Since (§;0,G) is a complex symmetric matrix it may be decomposed as
follows

(mije)m = (9.11)

((5[5]G) = (UMUT)]]. (912)

Here U is a unitary matrix, U7 is its transpose , and p may be chosen to be
a real, positive semidefinite and diagonal matrix.
Now observe that

I 0G| I uvpU" | I UpU!
566G 1 |~ vt o

JH [ G

So diagonalizing (m1/2)1q leads to

(m1/2)LQ = —M3/ald,

(mo) g = ms)2 [ i l; ] : (9.14)

The eigenvalues of the scalar mass matrix are seen to be
A =my (1 £ ). (9.15)

In terms of tree level masses we now see

(mo™) g = Imsya = (may2") o) (9.16)

This sum rule now connects the masses of the leptons and quarks with those
of the sleptons and squarks. This sum rule has previously been discussed by
Cremmer et al. [6], but emerges in this context in a more general framework.
In particular the analysis presented here does not require canonical kinetic
energy terms for leptons and quarks. This sum rule is rather robust, the
technical assumptions we have made to enable derivation of this sum rule
may be summarized as:
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4 1) GTotal - GA + GHiggs + Gleptoquark + szx
e 2)

— (a) G is chosen so that A = 0.
— (b) 6;Griggs = 0 has a solution at ¢'s;ggs 7 0.

- (C) 5iGleptoquark =0 at ¢Zleptoquark =0.

An approximate sum rule may be obtained for the Higgs sector. The
derivation we used in the leptoquark sector is spoiled in the Higgs sector by

terms proportional to 0;D 4. Thus we may write

(mo™)m = [may2 & (m1/2i)H| + 0(Mygauge)-

(9.17)

This approximate sum rule relates the masses of the scalar Higgs particles to
those of their associated Higgsinos. Unfortunately, in realistic models mgquge
is likely to be of order mg/; or of order mgyr, so that this sum rule is likely

to be very badly broken.
This completes our analysis of the matter sector.
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Chapter 10

Masses in the Cosmological
Sector

In this section we shall only be discussing the cosmological sector, so we
may without ambiguity drop the subscript A. The cosmological sector by
hypothesis has no gauge interactions, while its vacuum occurs at V' = 0,
0;V = 0. These constraints imply that

(a) G G' =3, (10.1)
(b) Gy G’ = -G, (10.2)

These constraints have not yet been utilized to their fullest extent. Explicitly
evaluating our general formulae for the scalar (mass)? matrix leads to

2 2
e R (103)
(mo)®f.; = mapo”[0r-y + Grx-Gry + Ry G* Gy (10.4)
(m0)21J = m3/22[2G1J + GIJKGK] (10.5)
(mo)* = my/e” [ gK C;’*K* ] [ ‘éK*J G(;K*J* ]
1K Ork- K7 Ok

o | Rrsx"GEGL  Gropx-GE
+m3/2 [ GI]KGK R]*[KLGKGL (106)
The fermion masses are
myyz,, = mspl60,G + 3G Gy (10.7)
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These matrices may be partially diagonalized. Let the index I run from 0 to
n — 1. Then the vielbein e;* may be chosen in such a manner that G; lies
along the 0 direction and is real. That is:

G] - \/g (50[ - GI — G[*. (108)

This implies
Gor =0, Iell,2,...,(n—1)] (10.10)
Gry arbitrary, I,J € [1,2,...,(n—1)] (10.11)

Now diagonalize G, using Gy = (UpU7T);;, where p is real and diagonal
and we may choose

pry = prdry;  (no summation), (10.12)
oo = fpo = —1; all other p; positive semidefinite. (10.13)

There are n — 1 physical fermions after elimination of the “would be Gold-
stino”, and their masses are:

(m1/2)12m3/2|,u1|. I e [1,2,,(71—1)] (]_0]_4)
There are 2n scalars whose mass matrix reads
2
I 3Rr-00 V3G 10
ma)2 = 17a /02 [ Ml+[ 1J*00 IJO] . 10.15
(1mo) 3/ w1 V3Gri  3Riroo- ( )

If we assume that the contributions from the Riemann tensor and from G
are small, then the scalar masses are

(mo)*! = mgs |1+ Iu’l‘ +o(R, Grrk). (10.16)

In particular

(mo)fo =o(R, GrKk),
(mo)™ = 2mys + o(R, Grik). (10.17)

While for  running from 1 to n — 1:

(mo)=" = |majs = mup’ |+ o(R, Grix). (10.18)
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Note that if both Rjj-q0- and Gpjo are zero at the minimum, then this pre-
dicts the existence of an exactly massless scalar in the cosmological sector.
Indeed, particles in the cosmological sector are not necessarily heavy; it is in
general misleading to refer to the cosmological sector as a hidden sector.

The Class III example previously considered may be used to illustrate
this phenomena. Consider the 1-dimensional model defined by

K = ¢¢; InW = 16+ iv/3¢; (10.19)
G = o+ 102 +iVBo+ 16 —iV3 . (10.20)
Vo= %o+ )2 (10.21)

The scalar potential is
V = {exp(2[Re ¢]* — V3 Im ¢)}[2Re ¢]%. (10.22)
Then

m(Re QZS) = 2m3/2,
m(Im¢) = 0. (10.23)

Returning to our general analysis, it must be emphasized that the corrections
to our approximate mass spectrum [ o(R,Gyk) | are typically large, often
being so large that the approximate spectrum is not useful.

To complete the analysis there is one special case that is amenable to
further processing. Let us assume that the cosmological sector is minimal in
the sense that it is of complex dimension 1. In this case no spin 1/2 particles
remain after elimination of the “would be Goldstino”. The Riemann tensor
has only one nonzero component.

Rgo*og* - ROU* = R (1024)
The scalar (mass)? matrix is now
2 2 2 + 3R _2 + \/g(GOOO)*
= 10.25
(mo)™ = msy2 | —2 4+ /3G 2+ 3R (10.25)
So
tr (mo)* = (4 + 6R)mys”, (10.26)
while the masses themselves are
mo® = msa\/(2+ 3R) % 2 — v3Guool. (10.27)

This now completes our analysis of masses in the cosmological sector.
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Chapter 11

Conclusion

We have investigated the vacuum structure of N=1 supergravity coupled
to gauged chiral matter with general noncanonical kinetic energies for both
matter fields and gauge fields. We have explicitly calculated the tree level
(mass)? matrices , and have seen how the supertrace of the (mass)? matrix
is affected by noncanonical kinetic energies. The sum rule relating Lepton
and Quark masses to those of their scalar partners (m(ﬂf = ‘m3/2 + ml/g‘)
was derived in this more general context and so holds even for noncanonical
kinetic energies. Some general theorems on the occurrence of supergravity
breaking were established. In particular, attention was drawn to the crucial
role played by the analyticity of the superpotential at zero field.

%)



References

[1]

[10]

[11]

[12]

J. Bagger, Nucl. Phys. B211 (1983) 302.
a shorter discussion without gauge interactions may be found in:
E. Witten and J. Bagger, Phys. Lett. 115B (1982) 202.

E. Cremmer, S. Ferrara, L. Girardello, and A. van Proeyen, Nucl. Phys.
B212 (1983) 413.

L. Hall, J. Lykken, and S. Weinberg, Phys. Rev. D27 (1983) 2359.

J. Ellis, J. Hagelin, D. Nanopoulos, and K. Tamvakis, Phys. Lett. 125B
(1983) 275.

P. Nath, R. Arnowitt, and A. Chamseddine, Phys. Lett. 121B (1983)
33.

E. Cremmer, P. Fayet, and L. Girardello, Phys. Lett. 122B (1983) 41.
M. Claudson, L. Hall, and I. Hinchliffe, Nucl. Phys. B228 (1983) 501.
S. Goldberg, Curvature and Homology, (Dover,New York,1982).

E. Flaherty, Hermitian and Kéahlerian Geometry in Relativity,
Lecture Notes in Physics, Vol 46, (Springer—Verlag,Berlin,1976).

S. Ferrara, D. Freedman, and P. van Nieuwenhuizen, Phys. Rev. D13
(1976) 3214.

S. Deser and B. Zumino, Phys. Lett. 62B (1976) 335.

M. Gaillard, L. Hall, B. Zumino, F. del Aguila, J. Polchinski, and
G.Ross, Phys. Lett. 122B (1983) 335.

56



[ 13 ] J. Polonyi, Budapest preprint KFKI-1977-93 (1977).

[ 14 ] E. Cremmer, S. Ferrara, C. Kounnas, and D. Nanopoulos, Phys. Lett.
133B (1983) 61.

[ 15] S. Rudaz, unpublished.

57



