Yuichi Hirose, Haylem Rayner, Stefanka Chukova and Binh Nguyen
December 6, 2019
We consider a set of warranty data taken from model year 2001 vehicles sold mainly in calendar years 2000 and 2001. The ``cut’’ off date for this dataset is Oct., 24, 2003.
In the warranty data,
Thus we have two usage measures (age and mileage), but one of them (mileage) is incompletely observed. We model the warranty claims as recurrent events from a repairable system.
It is wellknown (see Baik, Murthy and Jack (2004)) that the intensity function \(\nu(t, u)\) and the conditional intensity function \(\nu_c(t,u)\) of this underlying two-dimensional nonhomogeneous Poisson process are identical to the hazard function of the lifetime of the product, i.e., \[ \nu_c(t,u) = \nu(t,u) = h(t,u) = \frac{f(t,u)}{\bar{F}(t,u)}. \]
Also, the probability of having no failure in \([t,t+dt) \times [u,u+du)\) is given by \[ P\{N (t, t+dt; u, u+du) = 0\} = 1 - h(t,u)dt\hspace{.1ex}du + o(dt\hspace{.1ex}du). \]
In order to derive the likelihood, we need to evaluate the following probabilities:
[(Type A)] For \(j=1,\ldots,n_i\), \[\{ \textrm{one failure in } [t_{ij}, t_{ij}+dt) \times [u_{i,j}, u_{i,j}+du)\} .\]
[(Type B)] For \(j=0,1,\ldots,n_i\), \[\{ \textrm{no failure over } (t_{ij}, t_{i(j+1)}) \times (u_{ij}, u_{i(j+1)})\}.\]
Under 2D-NHPP scenario, as given above, the likelihood of the observed events generated by the \(i^{th}\) unit is
\[\begin{eqnarray*}\label{i_likelihood} L_i & = & \prod_{j=1}^{n_i} h(t_{ij},u_{ij}) \prod_{j=0}^{n_i}\exp\left\{-\int_{t_{ij}}^{t_{i (j+1)}} \int_{u_{ij}}^{u_{i(j+1)}} h(r,s) ds dr \right\}, \end{eqnarray*}\]and the combined likelihood of the data for all units is \[\begin{eqnarray*}\label{M_likelihood} L %&=& \prod_{i=1}^M L_i \\ \nonumber &=& \prod_{i=1}^{M} \left\{\prod_{j=1}^{n_i} h(t_{ij},u_{ij}) \prod_{j=0}^{n_i}\exp\left\{-\int_{t_{ij}}^{t_{i (j+1)}} \int_{u_{ij}}^{u_{i(j+1)}} h(r,s) ds dr \right\} \right\}, \end{eqnarray*}\] where \(t_{i, n_{i+1}} = \mbox{min}\hspace{1ex} (a_i, T_0)\), \(u_{i, n_{i+1}} = U_0\) and \(t_{i0} = u_{i0} = 0.\)
For a given copula function \(C(x,y)\), the two-dimensional joint survival copula \(\overline{C}(x,y)\) is analogous to the joint survival function \(\overline{F}(t,u)\). It is well known that \[\begin{equation}\label{surv} \overline{F}(t,u) = 1-F_T(t)-F_U(u)+F(t,u), \end{equation}\] where \(F(t,u)\) is the joint cdf, \(F_T(t)\) and \(F_U(u)\) are the marginal cdfs. Then by substituting in \(C(x,y)\) and using the Sklar’s theorem (, page 18) into () we arrive at \[\begin{equation} \overline{C}(F_T(t),F_U(u)) = 1-F_T(t)-F_U(u)+ C(F_T(t),F_U(u)). \end{equation}\]
Therefore, the survival copula without marginal distributions is \[\begin{equation} \overline{C}(x,y) = 1 - x - y + C(x,y),\end{equation}\] where \(0 \leq x \leq 1\) and \(0 \leq y \leq 1\). The mixed partial derivative of the copula \(C(x,y)\) is the copula density. Substituting the joint survival copula in place of the survival function and the copula density leads to \[\begin{equation}h_C(x,y) = \cfrac{\frac{\partial^2 C (x,y)}{\partial x \partial y}}{1 - x - y + C(x,y)}.\end{equation}\]
The best fit for the marginal of \(T\) was found to be the Weibull distribution with \(\beta_1=0.903\) and \(\theta_1=864.896\), i.e., distribution with cumulative hazard function \[\hat{\Lambda}_T(t)=\left(\frac{t}{864.896}\right)^{0.903}.\]
Similarly, the best fit for the marginal of \(U\) was found to be the Weibull distribution with \(\beta_2=0.911\) and \(\theta_2=314.295\), i.e., distribution with cumulative hazard function \[\hat{\Lambda}_U(u)=\left(\frac{u}{314.295}\right)^{0.911}.\]
Name | Copula \(C(u, v)\) | Parameter \(\theta\) |
---|---|---|
Independence | \(uv\) | |
Gumbel | \(\exp\biggl\{-\bigg(\log(u)^\theta + \log(v)^\theta\bigg)^{1/\theta}\biggr\}\) | \(\theta \in [1, \infty]\) |
Clayton | \(\max\{u ^{-\theta} + v ^{-\theta} - 1, 0\} ^{-1/\theta}\) | \(\theta \in [-1, \infty)\backslash\{0\}\) |
AMH | \(\frac{uv}{1 - \theta(1 - u)(1-v)}\) | \(\theta \in (-1, 1)\) |
Joe | \(1 - \big((1-u)^\theta + (1-v)^\theta - (1-u)^\theta(1-v)^\theta\big)^{1/\theta}\) | \(\theta \in [1, \infty)\) |
FGM | \(uv + \theta u v(1-u)(1-v)\) | \(\theta \in (-1, 1]\) |
Copula | ln L | AIC | Parameters |
---|---|---|---|
Product | -587465 | 1174932 | ——- |
Ali | -572875 | 1145752 | delta=1.000 |
Clayton | -565068 | 1130138 | delta=4.118 |
FGM | -583761 | 1167524 | delta=1.000 |
Frank | -566861 | 1133724 | delta=13.373 |
Joe | -570028 | 1140058 | delta=7.480 |
Gaussian | -564643 | 1129288 | rho=0.923 |
Student-t | -564626 | 1129256 | nu=55, rho=0.922 |
Gumbel | -564387 | 1128776 | delta=0.214 |
Based on the value of AIC, the Gumbel copula with \(\delta=0.214\) is the best fitted copula.
We treat each elementary region as a Bernoulli random variable \(X\) with probaibilty \(h(t,u)\delta t \delta u\):
\[ X \sim \textrm{Bernoulli}(p=h(t,u)\delta t \delta u). \]
Repeat the same procedure for the new region.
Wu (2014) proposed a method of creating asymmetric coplua from symmetric one. For a given copula function \(C(u, v)\), the proposed asymmetric copula takes the form \[ C_{WU}(u, v) = p_0C(u, v) + p_1\bar{C}_1(u, v) + p_2\bar{C}_2(u, v) \] where \(\sum_{i=0}^{2}p_i = 1\) and \[ \bar{C}_1(u, v) = v - C(1- u, v), \ \ \bar{C}_2(u, v) = u - C(u, 1-v). \]
Mukherjee et. al. (2018) proposed another method of creating asymmetric coplua. For given two symmetric copula functions \(A(u,v)\) and \(B(u,v)\), the proposed asymmetric copula is \[ C_{KH}(u,v) = A(u^{\theta_1},v^{\theta_2})B(u^{1-\theta_1},v^{1-\theta_2}), \] where \(0 \leq \theta_1 \leq 1\) and \(0 \leq \theta_2 \leq 1\).
Copula | AIC |
---|---|
KH (Clayton, Clayton) | 839761.39 |
KH (Clayton, Gumbel) | 840223.62 |
KH (FGM, Clayton) | 840479.57 |
KH (Max, Clayton) | 840481.76 |
KH (Min, Clayton) | 840482.03 |
KH (Joe, Clayton) | 840711.57 |
KH (AMH, Gumbel) | 842520.04 |
KH (Joe, Gumbel) | 842520.04 |
KH (FGM, Gumbel) | 842520.04 |
KH (Gumbel, Gumbel) | 842520.04 |
KH (Min, Gumbel) | 842522.04 |
KH (Max, Gumbel) | 842692.79 |
Wu(Gumbel) | 844252.90 |
Gumbel | 844366.35 |
Wu(Clayton) | 845135.83 |
Clayton | 845160.01 |
KH (Max, Joe) | 845239.56 |
KH (Joe, Joe) | 846724.36 |
KH (AMH, Clayton) | 847060.09 |
KH (Joe, AMH) | 849395.83 |
KH (Joe, FGM) | 849539.47 |
Joe | 849891.64 |
KH (Min, Joe) | 854619.55 |
AMH | 854803.72 |
Wu(Min) | 855933.50 |
KH (Max, AMH) | 856219.76 |
Max | 858857.45 |
KH (Max, FGM) | 859697.92 |
KH (FGM, AMH) | 861122.03 |
KH (AMH, AMH) | 861159.76 |
KH (FGM, FGM) | 861763.73 |
FGM | 861934.77 |
Wu(FGM) | 861946.80 |
Wu(AMH) | 862223.01 |
KH (Max, Max) | 862571.52 |
KH (Max, Min) | 864848.54 |
Wu(Joe) | 865956.33 |
Min | 866181.04 |
Wu(Max) | 866194.86 |
KH (Min, AMH) | 866236.35 |
KH (Min, FGM) | 866237.40 |
KH (Min, Min) | 866334.64 |
Based on the value of AIC, the KH (Clayton, Clayton) copula is the best fitted copula.
Different algorthm for simulating data.
Goodness of fit measure.
More rubust approach.
Two-dimensional failure modeling with minimal repair, Baik, J and Murthy, DNP and Jack, Nat, Naval Research Logistics (NRL), 2004.
Construction of asymmetric copulas and its application in two-dimensional reliability modelling, Wu, Shaomin, European Journal of Operational Research, 2014.
Construction of bivariate asymmetric copulas, Mukherjee, Saikat and Lee, Youngsaeng and Kim, Jong-Min and Jang, Jun and Park, Jeong-Soo, Communications for Statistical Applications and Methods, 2018.