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Galton—-Watson Branching processes

@ & : the offspring distribution

m := E[¢{] the mean offspring

Z, : the population size at generation n,

Zy
Zn—&—l = Zgn,iy n> 0
i=1

E[Z,| Zo) = Zo m" (exponential growth)
@ The MLE of m based on Zy, Z1,...,2Z, :

i, = i
n
Yo Zie1

Supercritical case m > 1 : M, — m on {Z, — oo} (consistency).



In reality. ..

Biological populations do not grow exponentially

Population sizes tend to fluctuate around a carrying capacity

99.9% of all species are extinct

@ Extinction occurs slowly — often after millions of years
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Population-size-dependent branching processes
@ &(z) : the offspring distribution at population size z, z>1
e m(z) := E[{(z)] the mean offspring at population size z

@ Z, : the population size at generation n,

Zny1 = Zgn,(z n>0

° IEf[Zn ‘ Zn—l] =21 m(Zn—l)

Example : the Beverton-Holt (B-H) binary splitting model :

o £(2) ~ 2Ber(p(2)) with p(2) = .
2K

e m(z) = , m(z)>1ez<K

where K : carrying capacity




Population-size-dependent branching processes
B-H model with K = 20
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The MLE of m(z) based on 2y, Z1,...,2Z, :

_ Z?:l Z; ]l{ZFl:Z}
z 27:1 ]l{ZiA:Z}

mn(z)

Example :
Mo00(10) = (184 14+ 16+20+ 10+ 18+ 16+ 14+12) /(10-9) = 138/90 = 1.53



Asymptotic properties of the estimator

Histogram of rfi,(z) for z =10 and n = 2000, based on 5000 simulations
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Real value of m(z) = 1.3333; Empirical mean of m,(z) = 1.3349

Conditional on Z, > 0, i,(z) — m'(z) = 1.3334 # m(z) as n — oo



How do m(z) and m'(z) differ?
K=20,v=1 .

(v : efficiency) 18]
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Conditioning on Z, > 0

@ @ : the sub-stochastic transition probability matrix of {Z,} restricted
to the transient states {1,2,...}

@ We set the following conditions :

(A1) There exists z € N and n > 1 such that (Q"),, >0
(A2) limsup,_,., m(z) <1
(A3) For each v € N, sup, .y E[£01(2)"] < 0.

Under these conditions,

e P[Z, — 0] =1 (almost sure extinction)

1/n

i and u, v > 0 such that

o Q" ~ p"vu', where p = lim,_ o (Q")

T

v Q=pu', Qu=pv, u'l=1 and u'v=1



Conditioning on Z, > 0
@ For n fixed : the process {Z;}o<¢<n conditioned on Z, >0 is a
time-inhomogeneous Markov chain :

Pz =j|ZP =0 = PlZy=j|Ziy=1i, Zy> 0]

e/ Q"1
Qi gTor it

@ Asn—o0:
Pz} =j1Z[ =i = lim PlZy=j|Z1 =i, Zy>0]
eij”_f v
eiTpn—ﬁ—l—l v

Vi
PVi
{ZZT}@ZO is a positive recurrent time-homogeneous Markov chain

called the Q-process



The Q-process and ‘Q-consistency’

eIn{Z,}: m(z)=z71 j>1J Qs
. _ -1 - At : T .
@ In {Zn} . mT(Z) =Z JZ]-J QZ_[ with QU T QI_[ pVj

Theorem (Braunsteins, H., Minuesa (2019))

Under Assumptions (A1)—(A3), for any z € N, initial state i, and € > 0,
mn(z) satisfies

lim P;[|A1,(z) — m'(2)| > €| Z, > 0] =0 ‘Q-consistency’
n—oo
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Asymptotic normality

(u;vi)i>1 : stationary distribution of {Z]}, o' (2)

Theorem (Braunsteins, H., Minuesa (2019))

_ SRR

(m'(2))?

z2

Under Assumptions (A1)—(A3), for any z € N, initial state i, and x € R,

mp(z) satisfies

Jim Bi{nzve /% (2) 12 (1n(2) = m (2)) < x| 2y > 0] = D(x)

where ®(x) is the standard normal distribution.

0.16

0.14
0.12

0.1
0.08
0.06 -
0.04
0.02

0 L . . |
1.25 1.3 1.35 1.4
ma(2)

1.45

11



Proof approach : coupling and martingale CLT

We use a MEXIT coupling ({26(")}, {2}}) of

° {Zg(n)}ogfén : the time-inhomogeneous Markov chain {Z;}o</<p
conditioned on Z, >0

° {Zg}ogegn : the time-homogeneous Markov chain {Z;}o</<n
conditioned on Z,, > 0

Let 7 :=min{{ < n: 2;(") # fg} (un-coupling time)

A

P(r < k) =drv ({Zg(n)}ogegk, {Zg}ogz§k> , k<n
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Proof approach : coupling and martingale CLT
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Theorem (Braunsteins, H., Minuesa (2019))

Under Assumptions (A1)—-(A3), for any initial state i and any q > 0, there
exist constants C(i,q) and N(i, q) such that

2 1
P(r <n-—C(i,q) logn) < - for all n > N(i, q).
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‘@-consistency’ versus C-consistency

@ 'Q-consistency’ : for any € > 0,
lim P[|M,(z) — m'(2)| >e|Z, >0 =0
n—oo

@ C-consistency : for any € > 0,

lim P[|mp(z) — m(z)| >e|Z, >0] =0

n—oo

The estimator rfi,(z) is Q-consistent but not C-consistent
Thankfully, in our PSDBP, m'(z) ~ m(z) because {ZZT} ~ {Z}

Are there situations where we may prefer C-consistency ?
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‘@-consistency’ versus C-consistency

@ 'Q-consistency’ : for any € > 0,
lim P[|M,(z) — m'(2)| >e|Z, >0 =0
n—oo

@ C-consistency : for any € > 0,

lim P[|mp(z) — m(z)| >e|Z, >0] =0

n—oo

The estimator rfi,(z) is Q-consistent but not C-consistent
Thankfully, in our PSDBP, m'(z) ~ m(z) because {ZZT} ~ {Z}
Are there situations where we may prefer C-consistency ?

We often study endangered populations because they are still alive!
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Subcritical Galton—-Watson branching processes
@ Mean offspring m < 1 (almost sure extinction — rapid extinction)

e Conditional on Z, > 0, regardless the value of m < 1

n
A
My, = % —1 as n— oo (Q-consistency)
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Geometric offspring distribution with mean m = 0.9, and Z; = 100

@ For small values of n and large values of Zy, m, is a decent (but not
efficient) estimator of n

o For large values of n, the sample Zy, Z1,...,2Z, > 0 is too biased



Subcritical Galton—-Watson branching processes

Assume that

Varld] =am+b
m

This holds if £ is geometric, Poisson, binomial (and more ?)

Theorem (Braunsteins, H., Minuesa (2019))

A C-consistent estimator for m is given by

Z?:I(Zi — b)
Yora(Zia+a)

m, =

16



The Q-process {Z, } of a GW process

The size-biased tree

White nodes have offspring distribution &
Blue nodes have offspring distribution SB[¢] (size-biased distribution of &)

ElZ] 1zl ] = (Z, —1)m+ (E[e})/m) = Z_, m+ (Var[¢]/m)

4
Var[¢] Coamab = . ElZ,1Z,_,]-b

m ZfT—l +a 17



Unbiasing

S>71(Zi—b) _ children
S7 (Zi1+a)  parents

m ) n-

66 S HOoN

/
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/T O /QQ})
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€ ~ Poi(m) : a=0,b=1 SBlgZ1+¢
¢~ Geom(1/(m+1)): a=1b=1 SBl¢]Z1+¢+¢
¢ ~ 2Ber(m/2) : a=-1,b=2, SB[¢]=2



Another useful interpretation of {Z,'}
{ZeT — 1} : GW process with immigration and offspring law &
Law of the number of immigrants : SB[{] — 1

Theorem (Braunsteins, H., Minuesa (2019))

A C-consistent estimator for m is given by

f,=1— 12! l(Z Zi— 1) ’
23 1(Ziea = Z,)?

+ a C-consistent estimator for Var].

ZI IZ’ 1

where Z




Comparison of the estimators
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Geometric offspring distribution with mean m = 0.9, and Z; = 100




Comparison of the estimators

Given Z, > 0,
n
n 7z
= 72’:1 Lo,
i Zia
3 Yia(Zi = b)
My =

Yh(Zicita)

myi=1— — Y]
23550 (Zi1 — Zn)
—m

Mean squared error :
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Geometric offspring distribution with mean m = 0.9, and Z; =1
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Supercritical Galton—Watson branching processes

@ Mean offspring m > 1 (positive chance of survival)
e Conditional on Z, > 0,

& 27:1 Zi .
M, = S5=—— —m as n — oo (C-consistency)
Yim1Zi-1
T (Zi—b
m, = Zn’_l( i=b) —m as n — oo (C-consistency).
2i=1(Zi-1+3)
—,
*mn
T4y, |
4‘5 50

Geometric offspring distr. with mean m = 1.01, and Z; =1
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Supercritical Galton—Watson branching processes

Mean squared errors
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Geometric offspring distr. with mean m = 1.01, and Z, =1
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Conclusion

We studied the asymptotic properties of the estimator r1,(z) of the mean
offspring at population size z in PSDBP
This lead us to

@ the concept of ‘Q-consistency’ for estimators in branching processes
which become extinct almost surely

@ the construction of C-consistent estimators for subcritical GW
processes

Ongoing work :

@ How to use the estimators rfip(z) for z > 1 to estimate a single
parameter 67

@ How to construct C-consistent estimators for PSDBP ?

24



Main references

B P. Braunsteins, S. Hautphenne, and C. Minuesa
Parameter estimation in branching processes with almost sure extinction.
In preparation, 2019.
ﬁ P. A. Ernst, W. S. Kendall, G. O. Roberts, and J. S. Rosenthal.
MEXIT : Maximal un-coupling times for stochastic processes.
Stochastic Processes and their Applications, 129(2) :355-380, 2019.
F. Gosselin.

Asymtotic behaviour of absorbing Markov chains conditional on nonabsorption for applications in conservation biology.
The Annals of Applied Probability, 11(1) :261-284, 2001.

Estimation theory for growth and immigration rates in a multiplicative process.
Journal of Applied Probability, 9(2) :235-256, 1972.

ﬁ C. C. Heyde, and E. Seneta.

A. G. Pakes.

Non-parametric estimation in the Galton-Watson process.
Mathematical Biosciences, 26(1) :1-18, 1975.

Thank you for your attention

?\)ACEMJ

25



