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Galton–Watson Branching processes

ξ : the offspring distribution

m := E[ξ] the mean offspring

Zn : the population size at generation n,

Zn+1 =
Zn∑
i=1

ξn,i , n ≥ 0

E[Zn |Z0] = Z0 m
n (exponential growth)

The MLE of m based on Z0,Z1, . . . ,Zn :

m̂n =

∑n
i=1 Zi∑n

i=1 Zi−1

Supercritical case m > 1 : m̂n → m on {Zn →∞} (consistency).
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In reality. . .

Biological populations do not grow exponentially

Population sizes tend to fluctuate around a carrying capacity

99.9% of all species are extinct

Extinction occurs slowly – often after millions of years
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Population-size-dependent branching processes

ξ(z) : the offspring distribution at population size z , z ≥ 1

m(z) := E[ξ(z)] the mean offspring at population size z

Zn : the population size at generation n,

Zn+1 =
Zn∑
i=1

ξn,i (Zn), n ≥ 0

E[Zn |Zn−1] = Zn−1 m(Zn−1)

Example : the Beverton-Holt (B-H) binary splitting model :

ξ(z) ∼ 2 Ber(p(z)) with p(z) =
K

K + z
, where K : carrying capacity

m(z) =
2K

K + z
, m(z) ≥ 1⇔ z ≤ K
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Population-size-dependent branching processes
B-H model with K = 20
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The MLE of m(z) based on Z0,Z1, . . . ,Zn :

m̂n(z) :=

∑n
i=1 Zi 1{Zi−1=z}

z
∑n

i=1 1{Zi−1=z}

Example :

m̂200(10) = (18 + 14 + 16 + 20 + 10 + 18 + 16 + 14 + 12)/(10 ·9) = 138/90 = 1.53
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Asymptotic properties of the estimator

Histogram of m̂n(z) for z = 10 and n = 2000, based on 5000 simulations

Real value of m(z) = 1.3333 ; Empirical mean of m̂n(z) = 1.3349

Conditional on Zn > 0, m̂n(z)→ m↑(z) = 1.3334 6= m(z) as n→∞
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How do m(z) and m↑(z) differ ?

K = 20, v = 1
(v : efficiency)
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K = 8, v = 0.7
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Conditioning on Zn > 0

Q : the sub-stochastic transition probability matrix of {Zn} restricted
to the transient states {1, 2, . . .}

We set the following conditions :

(A1) There exists z ∈ N and n ≥ 1 such that (Qn)zz > 0
(A2) lim supz→∞m(z) < 1
(A3) For each ν ∈ N, supz∈N E [ξ01(z)ν ] <∞.

Under these conditions,

P[Zn → 0] = 1 (almost sure extinction)

Qn ∼ ρnvu>, where ρ := limn→∞(Qn)
1/n
ij , and u, v > 0 such that

u>Q = ρu>, Qv = ρv , u>1 = 1, and u>v = 1.
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Conditioning on Zn > 0
For n fixed : the process {Z`}0≤`≤n conditioned on Zn > 0 is a
time-inhomogeneous Markov chain :

P[Z
(n)
` = j |Z (n)

`−1 = i ] := P[Z` = j |Z`−1 = i , Zn > 0]

= Qij

e>j Q
n−`1

e>i Qn−`+11
.

As n→∞ :

P[Z ↑` = j |Z ↑`−1 = i ] := lim
n→∞

P[Z` = j |Z`−1 = i , Zn > 0]

= Qij

e>j ρ
n−` v

e>i ρn−`+1 v

= Qij
vj
ρvi

.

{Z ↑` }`≥0 is a positive recurrent time-homogeneous Markov chain
called the Q-process
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The Q-process and ‘Q-consistency’

In {Zn} : m(z) = z−1
∑

j≥1 j Qzj

In {Z ↑n } : m↑(z) = z−1
∑

j≥1 j Q
↑
zj with Q↑ij := Qij

vj
ρvi

Theorem (Braunsteins, H., Minuesa (2019))

Under Assumptions (A1)–(A3), for any z ∈ N, initial state i , and ε > 0,
m̂n(z) satisfies

lim
n→∞

Pi [|m̂n(z)−m↑(z)| > ε |Zn > 0] = 0 ‘Q-consistency’
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Asymptotic normality

(uivi )i≥1 : stationary distribution of {Z↑n }, σ2↑(z) =

∑∞
k=1 k

2Q↑zk
z2

− (m↑(z))2

Theorem (Braunsteins, H., Minuesa (2019))

Under Assumptions (A1)–(A3), for any z ∈ N, initial state i , and x ∈ R,
m̂n(z) satisfies

lim
n→∞

Pi [{n uzvz/σ2↑(z)}1/2
(
m̂n(z)−m↑(z)

)
≤ x |Zn > 0] = Φ(x),

where Φ(x) is the standard normal distribution.
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Proof approach : coupling and martingale CLT

We use a MEXIT coupling ({Ẑ (n)
` }, {Ẑ

↑
` }) of

{Z (n)
` }0≤`≤n : the time-inhomogeneous Markov chain {Z`}0≤`≤n

conditioned on Zn > 0

{Z ↑` }0≤`≤n : the time-homogeneous Markov chain {Z`}0≤`≤n
conditioned on Z∞ > 0

Let τ := min{` ≤ n : Ẑ
(n)
` 6= Ẑ ↑` } (un-coupling time)

P̂(τ ≤ k) = dTV

(
{Z (n)

` }0≤`≤k , {Z ↑` }0≤`≤k

)
, k ≤ n
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Proof approach : coupling and martingale CLT
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Theorem (Braunsteins, H., Minuesa (2019))

Under Assumptions (A1)–(A3), for any initial state i and any q > 0, there
exist constants C (i , q) and N(i , q) such that

P̂(τ ≤ n − C (i , q) log n) ≤ 1

nq
for all n ≥ N(i , q).
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‘Q-consistency’ versus C -consistency

‘Q-consistency’ : for any ε > 0,

lim
n→∞

P[|m̂n(z)−m↑(z)| > ε |Zn > 0] = 0

C -consistency : for any ε > 0,

lim
n→∞

P[|m̃n(z)−m(z)| > ε |Zn > 0] = 0

The estimator m̂n(z) is Q-consistent but not C -consistent

Thankfully, in our PSDBP, m↑(z) ≈ m(z) because {Z ↑` } ≈ {Z`}

Are there situations where we may prefer C -consistency ?

We often study endangered populations because they are still alive !
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Subcritical Galton–Watson branching processes
Mean offspring m < 1 (almost sure extinction – rapid extinction)

Conditional on Zn > 0, regardless the value of m < 1

m̂n =

∑n
i=1 Zi∑n

i=1 Zi−1
−→ 1 as n→∞ (Q-consistency)
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For small values of n and large values of Z0, m̂n is a decent (but not
efficient) estimator of n

For large values of n, the sample Z0,Z1, . . . ,Zn > 0 is too biased
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Subcritical Galton–Watson branching processes

Assume that
Var [ξ]

m
= am + b

This holds if ξ is geometric, Poisson, binomial (and more ?)

Theorem (Braunsteins, H., Minuesa (2019))

A C-consistent estimator for m is given by

m̃n :=

∑n
i=1(Zi − b)∑n

i=1(Zi−1 + a)
.
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The Q-process {Z ↑` } of a GW process
The size-biased tree

White nodes have offspring distribution ξ

Blue nodes have offspring distribution SB[ξ] (size-biased distribution of ξ)

E [Z ↑` |Z
↑
`−1] = (Z ↑`−1 − 1)m + (E [ξ2]/m) = Z ↑`−1 m + (Var [ξ]/m)

Var [ξ]

m
= am + b ⇒ m =

E [Z ↑` |Z
↑
`−1]− b

Z ↑`−1 + a
17



Unbiasing

Var [ξ]

m
= am + b, m̃n :=

∑n
i=1(Zi − b)∑n

i=1(Zi−1 + a)
=

children

parents

ξ ∼ Poi(m) : a = 0, b = 1, SB[ξ]
d
= 1 + ξ

ξ ∼ Geom(1/(m + 1)) : a = 1, b = 1, SB[ξ]
d
= 1 + ξ + ξ′

ξ ∼ 2 Ber(m/2) : a = −1, b = 2, SB[ξ] = 2
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Another useful interpretation of {Z ↑` }
{Z ↑` − 1} : GW process with immigration and offspring law ξ

Law of the number of immigrants : SB[ξ]− 1

Theorem (Braunsteins, H., Minuesa (2019))

A C-consistent estimator for m is given by

m̄n := 1− 1

2

∑n
i=1(Zi − Zi−1)2∑n
i=1(Zi−1 − Z̄n)2

, where Z̄n :=

∑n
i=1 Zi−1

n

+ a C-consistent estimator for Var[ξ].
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Comparison of the estimators

Given Zn > 0,

m̂n =

∑n
i=1 Zi∑n

i=1 Zi−1

→ 1,

m̃n :=

∑n
i=1(Zi − b)∑n

i=1(Zi−1 + a)
→ m ,

m̄n := 1−
1

2

∑n
i=1(Zi − Zi−1)2∑n
i=1(Zi−1 − Z̄n)2

→ m

Mean squared error :
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Comparison of the estimators
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Supercritical Galton–Watson branching processes

Mean offspring m > 1 (positive chance of survival)

Conditional on Zn > 0,

m̂n =

∑n
i=1 Zi∑n

i=1 Zi−1
−→ m as n→∞ (C-consistency)

m̃n =

∑n
i=1(Zi − b)∑n

i=1(Zi−1 + a)
−→ m as n→∞ (C-consistency).
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Geometric offspring distr. with mean m = 1.01, and Z0 = 1
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Supercritical Galton–Watson branching processes
Mean squared errors

m̂n =

∑n
i=1 Zi∑n

i=1 Zi−1
, m̃n =

∑n
i=1(Zi − b)∑n

i=1(Zi−1 + a)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

n

0

0.5

1

1.5

2

2.5

3

Geometric offspring distr. with mean m = 1.01, and Z0 = 1
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Conclusion

We studied the asymptotic properties of the estimator m̂n(z) of the mean
offspring at population size z in PSDBP

This lead us to

the concept of ‘Q-consistency’ for estimators in branching processes
which become extinct almost surely

the construction of C -consistent estimators for subcritical GW
processes

Ongoing work :

How to use the estimators m̂n(z) for z ≥ 1 to estimate a single
parameter θ ?

How to construct C -consistent estimators for PSDBP ?
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