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Introduction

I Let X denote an n× p data matrix of rank q ≤ min(n, p).

I n is the number of data samples, p the number of variables
and for all i = 1, . . . , n, cov(xi) = Σ

Σ =

q∑
i=1

λiviv
>
i

I Replacing the original variables with linear combinations of
the original variables Xvk, k = 1, ..., q known as the PCs

vk = arg maxv var (Xv)

subject to v>k vk = 1

and v>k vj = 0 for j 6= k

I vk = (vk1, ..., vkp)
> is the p× 1 loading vector and the

projection of the data Xvk is the kth principal component.



Introduction

I In many real world applications, sparse loading vectors
have physical interpretation.

Figure 1: Decomposition of face data using sparse loading vectors (Jenatton et al. 2010)



Existing methods

I Add sparsity constraint to the optimization problem

vk = arg maxv var (Xv)

subject to v>k vk = 1

v>k vj = 0 for j 6= k
p∑
j=1

| vij |≤ t

I. Joliffe, T. Trendafilov and M. Uddin, “A modified principal component technique based on

the Lasso”, JCGS, 2003



Existing methods

I Transforming the original PCA problem into

(
α̂, β̂

)
= arg minα,β

n∑
i=1

‖ xi −αβ>xi ‖2 +λ ‖ β ‖2

subject to ‖ α ‖2= 1

I β̂ ∝ v1

I A and B are p× d

(
Â, B̂

)
= arg minA,B

n∑
i=1

‖ xi −AB>xi ‖2 +λ
d∑
j=1

‖ βj ‖2 +
d∑
j=1

λj | βj |1

subject to A>A = Id

I where | β |1=
∑p

i=1 | βi |
Zou, H., Hastie, T., Tibshirani, R., 2006. “Sparse principal component analysis”, JCGS.



Existing methods

I Panalized matrix decomposition

minu,b

∥∥X− ub>
∥∥2
F

+
∑p

i=1 αi | bi |
subject to ‖ u ‖2= 1.

I b = λv

Witten, D.M., Tibshirani, R., Hastie, T., 2009. “A penalized matrix decomposition, with

applications to sparse PCA and CCA”. Biostatistics.

Shen, H., Huang, J., 2008. “Sparse principal component analysis via regularized low rank

matrix approximation”, JMA.



Existing methods

I Equivalently, PMD is:

v̂ = arg maxv v>X>Xv

subject to ‖ v ‖2≤ 1,

| v |1≤ c

I ‖ v ‖2≤ 1 is a convex relaxation of ‖ v ‖2= 1.

Witten, D.M., Tibshirani, R., Hastie, T., 2009. “A penalized matrix decomposition, with

applications to sparse PCA and CCA”. Biostatistics.



Introductory Example: data generation model

Consider a dataset of p-dimensional vectors x ∈ Rp, where p is
the number of variables:

x = ΓWz + ε. (1)

I z ∼ N (0, Iq).

I W contains q orthonormal basis vectors in Rp.
I ε represents random noise with ε ∼ N (0, σ2Ip).

We introduce sparsity via the p× p diagonal matrix Γ, which
zeros out some entries of Wz.

Γ = diag(1, 1, 1, 1, 0, 0, . . . , 0)



Table 1: 5 samples of generated data x for p = 10

data(first 5 samples)

0.129 -0.479 -0.807 -0.347 0.220
0.749 0.221 0.496 -0.618 -0.871

-0.112 -0.733 -0.717 0.3898 -0.898
-0.053 0.146 0.059 0.0036 -0.023
-0.245 0.091 -0.090 -0.109 -0.030 . . .
0.016 0.151 0.037 0.0375 0.1639

-0.083 -0.045 -0.126 0.0170 -0.189
0.008 -0.114 0.022 0.1139 0.1318
0.131 -0.071 -0.041 0.1657 0.0532

-0.014 -0.033 -0.102 0.0338 0.0601



Introductory Example

I PCA loading vectors are non-sparse.

I Information regarding the important directions in the
feature space is lost.

I PCA has low interpretability.

Table 2: Decomposition using PCA

loading vectors v1 v2 v3 v4 v5 v6 v7 v8

PCA

-0.343 -0.030 -0.364 -0.860 0.073 -0.037 -0.029 0.030
0.239 0.301 0.798 -0.451 -0.057 0.004 -0.044 -0.075

-0.906 0.112 0.350 0.210 0.001 -0.015 0.002 0.021
-0.021 -0.943 0.304 -0.092 -0.088 -0.019 -0.036 0.010
-0.017 0.024 -0.056 0.030 -0.145 0.140 -0.756 -0.204
0.026 0.066 -0.003 0.022 -0.367 -0.614 -0.279 0.435

-0.008 -0.013 0.027 0.025 0.319 0.240 -0.153 -0.368
-0.007 0.016 -0.005 -0.021 -0.215 -0.175 0.561 -0.237
0.015 -0.036 0.015 0.042 0.479 -0.715 -0.095 -0.450

-0.057 0.017 -0.108 -0.013 -0.671 -0.037 0.001 -0.606



Introductory Example

I Using SPCA (Zou etal. 2006).

I The first PC gives the correct sparsity pattern.

Table 3: Decomposition using SPCA (PMD is similar).

loading vectors v1

SPCA

-0.340
0.236

-0.910
-0.004

0
0
0
0
0
0



Introductory Example

I As we extract more PCs (v2, . . . ,v8), the sparsity
pattern varies.

Table 4: Decomposition using SPCA

loading vectors v1 v2 v3 v4 v5 v6 v7 v8

SPCA

-0.340 0.032 -0.204 0.901 0.072 0 0.016 -0.030
0.236 -0.302 0.892 0.358 -0.040 0 0.043 0.075

-0.910 -0.100 0.284 -0.239 0.010 -0.010 0 -0.017
-0.004 0.945 0.288 0.048 -0.054 -0.066 0.027 0

0 -0.003 0 0 -0.028 0 0.767 0
0 -0.061 0 0 0 -0.900 0.117 -0.337
0 0 0 0 0.032 0.231 0.080 0.293
0 0 0 0 0 -0.063 -0.622 0
0 0.028 0 0 0.805 -0.215 0.024 0.485
0 -0.017 0 0 -0.583 -0.285 0 0.748



Preserving Sparsity in PCA

I Some studies explicitly estimate Γ.

I Results in an intricate Expectation Maximization approach.

I Requires estimating a large number of parameters.

I computationally expensive.

Mattei, P.A., Bouveyron, C. and Latouche, P., 2016. “Globally sparse probabilistic PCA”.

AISTATS.

Jenatton, R., Obozinski, G. and Bach, F., 2010. “Structured sparse PCA”. AISTATS.



Proposed Method

I while enforcing sparsity on the entries of b,

I adaptively penalize loadings to preserve sparsity pattern.

We propose:

arg minU,B

∥∥∥X−UB>
∥∥∥2
F

+

p∑
i=1

αi ‖ bi ‖2

subject to U>U = Iq

where

I bi is the ith column of the q × p matrix B>.

I Sometimes αi ← αi
√
q is used to rescale the penalty with

respect to the dimensionality of bi.



Proposed Method
Numerical Solution:

I Keeping U fixed, optimizing B:

bi =

(
1−

αi
√
q

2 ‖ U>xi ‖2

)
+

U>xi

where the operator (.)+ is set to 0 when
2

αi
√
q ‖ U>xi ‖2< 1.

I Given B, optimization with respect to U is:

min
U

∥∥∥X−UB>
∥∥∥2
F

subject to U>U = Iq

This is an orthogonal Procrustes problem, with the
solution:

U = ŨṼ>,

where
I Ũ and Ṽ are obtained from the SVD of XB = ŨΛṼ
I Ũ is n× q
I and Ṽ is p× q.



For q = 1 PCs:

min
u,b

∥∥∥X− ub>
∥∥∥2
F

+

p∑
i=1

αi | bi |

s.t. ‖ u ‖2= 1.

I SPCA/PMD are a special case of the proposed approach.

I Generalization is due to using different αi per entry of b.



Table 5: Description of the proposed adaptive sparse PCA algorithm

Algorithm

Given: X, q, α, ε.
Tuning parameters selection

Take B as the first q right singular vectors times the first q
singular values of X.
Compute the vector of tuning parameters
αi = α

‖bi‖2 for i = 1, . . . , p

While ‖ Uj −Uj−1 ‖F> ε
Update: B> per column

For j=1 to p

bi =

(
1− αi

√
q

2‖U>j−1xi‖2

)
+

U>j−1xi

Update: Uj = ŨṼ> using the SVD of XB = ŨΛṼ>

Output: U, B



Back to the example:

Table 6: Decomposition using proposed method

loading vectors v1 v2 v3 v4 v5 v6 v7 v8

Proposed

-0.805 0.059 -0.660 1.121 0.029 -0.014 0.008 -0.007
0.592 -0.627 1.524 0.620 -0.024 0.001 0.013 0.020

-2.404 -0.252 0.717 -0.310 0.000 -0.006 -0.001 -0.006
-0.053 2.028 0.598 0.130 -0.039 -0.008 0.011 -0.003

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0



Introduction

CCA finds the maximum correlation between two random
vectors:

(u1,v1) = arg maxu,v u>Σxyv

subject to u>Σxxu = 1,

v>Σyyv = 1

where

Σxy = E[xy>]

Σxx = E[xx>] and Σyy = E[yy>]

x ∈ Rp and y ∈ Rq



Introduction

r ≤ min(p, q) loading vectors can be extracted:

I for i = 1, . . . , r the vectors ui and vi are estimated.

I u>i uj = 0 for j = 1, . . . , i− 1.

(Û, V̂) = arg maxU,V tr(U>ΣxyV)

subject to U>ΣxxU = Ir,

V>ΣyyV = Ir

where

tr(.) is the trace operator.

U = [u1, . . . ,ur]

V = [v1, . . . ,vr]



Introduction
In practice:

1

n
X>Y → Σxy

1

n
X>X→ Σxx

1

n
Y>Y → Σyy

where

I n is the number of samples.

I X and Y are n× p and n× q matrices.

I number of samples should be the same for X and Y

I we can alternatively solve the equivalent problem:

(Û, V̂) = arg min
U,V
‖ XU−YV ‖2F (2)

instead of maxU,V tr(U>XY>V).



Existing Solution

I Penalized Matrix Decomposition for Sparse CCA:

(û, v̂) = arg maxu,v u>X>Yv

subject to u>X>Xu ≤ 1,v>Y>Yv ≤ 1,

| u |1≤ c1, | v |1≤ c2,

I In (Witten et al. 2009), X>X and Y>Y are assumed to be
diagonal.

Witten, D.M., Tibshirani, R. and Hastie, T., 2009. A penalized matrix decomposition, with

applications to sparse PCA and CCA. Biostatistics.



Introductory Example: data generation model

I Consider the sparse data generating model:

x = ΓxWxz + εx

y = ΓyWyz + εy

where

I Γx and Γy are diagonal matrices that enforce sparsity.

I Wx and Wy are orthogonal matrices.

I z ∼ N (0, Ir).

I εx and εy are random Gaussian noise vectors.



Introductory Example

I n = 300 samples of p = 10 and q = 11 dimensional vectors.

I The number of common components (i.e., dimension of z)
is r = 4.

I noise variance for both signals is σ2 = 0.1.

I Sparsity patterns for x and y are:

Γx = diag(1, 1, 1, 1, 0, . . . , 0)

Γy = diag(0, . . . , 0, 1, 1, 1, 1, 1)



Introductory Example

Using PMD:

Table 7: loading vectors of X from PMD

U

0.83
-0.08

0.4
0.38
0.01

0
0
0
0
0



Introductory Example

Remaining loading vector matters have varying sparsity pattern.

Table 8: loading vectors of X from PMD

U

0.83 0.02 -0.56 0.04
-0.08 0.33 0.08 0.97

0.4 -0.66 0.6 0.15
0.38 0.68 0.56 -0.2
0.01 0 -0.02 0.01

0 -0.01 -0.04 0.01
0 0.02 0 0
0 -0.01 0 0.02
0 0 0 0
0 0 0 0



Introdctory Example

Similarly for Y

Table 9: loading vectors of Y from PMD

V

0
0
0
0
0
0

-0.1
-0.14
0.68

-0.15
0.69



Introductory Example

Remaining loading vector matters have varying sparsity pattern.

Table 10: loading vectors of Y from PMD

V

0 -0.02 0 0
0 0 0 0
0 0 0 0
0 0.01 0 0
0 0 -0.01 -0.03
0 0.01 0 0

-0.1 0.41 0.37 0.81
-0.14 -0.62 0.76 0
0.68 0.01 0 0.32

-0.15 0.67 0.42 -0.38
0.69 0.05 0.32 -0.33



Proposed Method

Our proposed method uses adaptive weights for the sparsity
penalty:

min
U,V
‖ XU−YV ‖2F +

p∑
i=1

αi ‖ ui ‖2 +

q∑
j=1

βj ‖ vj ‖2 (3)

where

ui represents the ith row of U,

vj represents the jth row of V.



I The computation of U and V are obtained by a block
coordinate descent method where each of the variables are
computed row by row using the closed form solutions.

vj =
1

y>j yj

(
1− 1

‖ y>j Ej ‖2

)
+

y>j Ej

where yj is the jth column of Y, Ej = XU−
∑q

i=1,i 6=q yiv
i and

()+ = max(0, x)



Proposed Method

Table 11: loading vectors of X - Proposed method

U

0.028 -0.009 0.019 0.009
0.014 -0.016 0.009 0.002

-0.026 0.029 -0.015 0.009
-0.026 0.011 -0.017 0.006

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0



Proposed Method

Table 12: loading vectors of Y - Proposed method

V

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0.018 -0.007 0.012 0.008
0.028 -0.006 0.019 0.006

-0.024 0.022 -0.015 0.003
-0.016 0.017 -0.01 -0.002
-0.025 0.009 -0.017 -0.008



Proposed Method for Sparse CCA

Applications



Applications

I Sparse PCA
I Hand-written digit recognition.
I Blind source separation of single-subject fMRI data.



MNIST digit recognition

I MNIST is a popular benchmark for evaluating PCA.

I The goal is to classify a given image of a handwritten digit.



I contaminate background with noise.

I Sparse PCA can be used to select a subset of the pixels.

Figure 2: SPCA, PMD, SSPCA, and Proposed. backgrounds: clean (left), uniform (middle),
and non-uniform (right) noise.



MNIST digit recognition

I Using sparse PCA as a pre-processing step for
nearest-neighbor classification of digits.

I As the number PCs increases, the proposed
method (black) is not confused into selecting
background pixels.

MNIST classification



fMRI source Separation

I Single-subject functional connectivity analysis using
function Magnetic Resonance Imaging (fMRI) data.

I Uses Independent component Analysis (ICA).

Xvoxels×timepoints = Spatial×Temporal

I One of the issues of using ICA for fMRI data is
high-dimensionality, which

I Negatively impacts reproducability of ICA results.
I Is computationally expensive.

I fMRI researchers use PCA as a dimension reduction stage.

I However, the issue with PCA is that it distorts the spatial
arrangement of brain signals.

Proposed solution:

I Using sparse PCA can focus only on local brain regions
that have valuable information.



fMRI source Separation

Source separation pipeline for fMRI data:

I Spatial maps are reconstructed by calculating the
correlation of the resulting q time series with the original
data.



fMRI source Separation: Simulated data

Extracting spatial maps for simulated fMRI-like data:

Xp×n = Sp×qTq×n + ξ (4)

where

I S: q spatial maps of dimension p× 1.

I T: q time series of dimension n× 1 calculated from a
independent Gaussian processes.

I ξ: White Gaussian noise with variance σ2.



fMRI source Separation: Simulated data

I Left half shows first q = 4 loading vectors of PCA.

I ICA (right half) works better when sparsity is preserved
across components.



fMRI source Separation: Real data

I For real fMRI data.

I Task-related spatial maps for finger-tapping experiment.

I Subject asked to tap right finger in a block-event paradigm.

I desired activation: Motor cortex.



fMRI source Separation: Real data

I Estimated spatial activations:

Figure 3: Spatial maps corresponding to motor cortex.

I Less spurious results from using proposed sparse PCA.



fMRI source Separation: Real data
I Corresponding time series.

Figure 4: Time-courses for finger-tapping experiment. Blue:
ground-truth, Red: estimated time-course using ICA.
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Code available at: https://github.com/idnavid/sparse_PCA

https://github.com/idnavid/sparse_PCA
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