Sparse PCA and CCA Revisited

Abd-Krim Seghouane, Navid Shokouhi and Inge Koch

Department of Electrical and Electronic Engineering The University of Melbourne, Australia School of Mathematical Statistics, University of Western Australia

December 6, 2019

Introduction

- ▶ Let **X** denote an $n \times p$ data matrix of rank $q \leq \min(n, p)$.
- *n* is the number of data samples, *p* the number of variables and for all i = 1, ..., n, $cov(\mathbf{x}_i) = \Sigma$

$$\mathbf{\Sigma} = \sum_{i=1}^q \lambda_i \mathbf{v}_i \mathbf{v}_i^ op$$

• Replacing the original variables with linear combinations of the original variables $\mathbf{X}\mathbf{v}_k$, k = 1, ..., q known as the PCs

$$\mathbf{v}_{k} = \operatorname{arg\,max}_{\mathbf{v}} \quad \operatorname{var}\left(\mathbf{X}\mathbf{v}\right)$$

subject to $\mathbf{v}_{k}^{\top}\mathbf{v}_{k} = 1$
and $\mathbf{v}_{k}^{\top}\mathbf{v}_{j} = 0 \text{ for } j \neq k$

• $\mathbf{v}_k = (v_{k1}, ..., v_{kp})^{\top}$ is the $p \times 1$ loading vector and the projection of the data $\mathbf{X}\mathbf{v}_k$ is the k^{th} principal component.

Introduction

 In many real world applications, sparse loading vectors have physical interpretation.

Figure 1: Decomposition of face data using sparse loading vectors (Jenatton et al. 2010)

► Add sparsity constraint to the optimization problem

$$\mathbf{v}_{k} = \arg \max_{\mathbf{v}} \quad \operatorname{var} \left(\mathbf{X} \mathbf{v} \right)$$

subject to
$$\mathbf{v}_{k}^{\top} \mathbf{v}_{k} = 1$$

$$\mathbf{v}_{k}^{\top} \mathbf{v}_{j} = 0 \text{ for } j \neq k$$

$$\sum_{j=1}^{p} |v_{ij}| \leq t$$

I. Joliffe, T. Trendafilov and M. Uddin, "A modified principal component technique based on the Lasso", JCGS, 2003

▶ Transforming the original PCA problem into

$$\begin{pmatrix} \hat{\boldsymbol{\alpha}}, \hat{\boldsymbol{\beta}} \end{pmatrix} = \operatorname{arg\,min}_{\boldsymbol{\alpha}, \boldsymbol{\beta}} \sum_{i=1}^{n} \| \mathbf{x}_{i} - \boldsymbol{\alpha} \boldsymbol{\beta}^{\top} \mathbf{x}_{i} \|^{2} + \lambda \| \boldsymbol{\beta} \|^{2}$$
subject to $\| \boldsymbol{\alpha} \|^{2} = 1$

•
$$\hat{\boldsymbol{\beta}} \propto \mathbf{v}_1$$

• **A** and **B** are $p \times d$

$$\begin{pmatrix} \hat{\mathbf{A}}, \hat{\mathbf{B}} \end{pmatrix} = \arg\min_{\mathbf{A}, \mathbf{B}} \quad \sum_{i=1}^{n} \| \mathbf{x}_{i} - \mathbf{A}\mathbf{B}^{\top}\mathbf{x}_{i} \|^{2} + \lambda \sum_{j=1}^{d} \| \boldsymbol{\beta}_{j} \|^{2} + \sum_{j=1}^{d} \lambda_{j} | \boldsymbol{\beta}_{j} |_{1}$$

subject to $\mathbf{A}^{\top}\mathbf{A} = \mathbf{I}_{d}$

• where
$$|\beta|_1 = \sum_{i=1}^p |\beta_i|$$

Zou, H., Hastie, T., Tibshirani, R., 2006. "Sparse principal component analysis", JCGS.

Panalized matrix decomposition

$\blacktriangleright \mathbf{b} = \lambda \mathbf{v}$

Witten, D.M., Tibshirani, R., Hastie, T., 2009. "A penalized matrix decomposition, with applications to sparse PCA and CCA". Biostatistics.

Shen, H., Huang, J., 2008. "Sparse principal component analysis via regularized low rank matrix approximation", JMA.

• Equivalently, PMD is:

$$\hat{\mathbf{v}} = \arg \max_{\mathbf{v}} \quad \mathbf{v}^{\top} \mathbf{X}^{\top} \mathbf{X} \mathbf{v}$$

subject to $\| \mathbf{v} \|^2 \le 1$,
 $\| \mathbf{v} \|_1 \le c$

• $\|\mathbf{v}\|_2 \leq 1$ is a convex relaxation of $\|\mathbf{v}\|^2 = 1$.

Witten, D.M., Tibshirani, R., Hastie, T., 2009. "A penalized matrix decomposition, with applications to sparse PCA and CCA". Biostatistics.

Introductory Example: data generation model

Consider a dataset of *p*-dimensional vectors $\mathbf{x} \in \mathbb{R}^p$, where *p* is the number of variables:

$$\mathbf{x} = \mathbf{\Gamma} \mathbf{W} \mathbf{z} + \boldsymbol{\epsilon}.$$
 (1)

 $\blacktriangleright \mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_q).$

• W contains q orthonormal basis vectors in \mathbb{R}^p .

• $\boldsymbol{\epsilon}$ represents random noise with $\boldsymbol{\epsilon} \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I}_p)$.

We introduce sparsity via the $p \times p$ diagonal matrix Γ , which zeros out some entries of \mathbf{Wz} .

$$\Gamma = diag(1, 1, 1, 1, 0, 0, \dots, 0)$$

Table 1: 5 samples of generated data **x** for p = 10

	0.129	-0.479	-0.807	-0.347	0.220	
	0.749	0.221	0.496	-0.618	-0.871	
	-0.112	-0.733	-0.717	0.3898	-0.898	
data (finat E gammalag)	-0.053	0.146	0.059	0.0036	-0.023	
data(mst 5 samples)	-0.245	0.091	-0.090	-0.109	-0.030	
	0.016	0.151	0.037	0.0375	0.1639	
	-0.083	-0.045	-0.126	0.0170	-0.189	
	0.008	-0.114	0.022	0.1139	0.1318	
	0.131	-0.071	-0.041	0.1657	0.0532	
	-0.014	-0.033	-0.102	0.0338	0.0601	

- ► PCA loading vectors are non-sparse.
- Information regarding the important directions in the feature space is lost.
- ▶ PCA has low interpretability.

loading vectors	\mathbf{v}_1	\mathbf{v}_2	\mathbf{v}_3	\mathbf{v}_4	\mathbf{v}_5	\mathbf{v}_6	\mathbf{v}_7	\mathbf{v}_8
	-0.343	-0.030	-0.364	-0.860	0.073	-0.037	-0.029	0.030
	0.239	0.301	0.798	-0.451	-0.057	0.004	-0.044	-0.075
	-0.906	0.112	0.350	0.210	0.001	-0.015	0.002	0.021
	-0.021	-0.943	0.304	-0.092	-0.088	-0.019	-0.036	0.010
	-0.017	0.024	-0.056	0.030	-0.145	0.140	-0.756	-0.204
IUA	0.026	0.066	-0.003	0.022	-0.367	-0.614	-0.279	0.435
	-0.008	-0.013	0.027	0.025	0.319	0.240	-0.153	-0.368
	-0.007	0.016	-0.005	-0.021	-0.215	-0.175	0.561	-0.237
	0.015	-0.036	0.015	0.042	0.479	-0.715	-0.095	-0.450
	-0.057	0.017	-0.108	-0.013	-0.671	-0.037	0.001	-0.606

 Table 2: Decomposition using PCA

- ▶ Using SPCA (Zou etal. 2006).
- ▶ The first PC gives the correct sparsity pattern.

Table 3: Decomposition using SPCA (PMD is similar).

loading vectors	\mathbf{v}_1	
SPCA	$\begin{array}{c} -0.340\\ 0.236\\ -0.910\\ -0.004\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\end{array}$	
	0 0 0	

As we extract more PCs (v₂,..., v₈), the sparsity pattern varies.

loading vectors	\mathbf{v}_1	\mathbf{v}_2	\mathbf{v}_3	\mathbf{v}_4	\mathbf{v}_5	\mathbf{v}_6	\mathbf{v}_7	\mathbf{v}_8
	-0.340	0.032	-0.204	0.901	0.072	0	0.016	-0.030
	0.236	-0.302	0.892	0.358	-0.040	0	0.043	0.075
	-0.910	-0.100	0.284	-0.239	0.010	-0.010	0	-0.017
	-0.004	0.945	0.288	0.048	-0.054	-0.066	0.027	0
CDCA	0	-0.003	0	0	-0.028	0	0.767	0
SPCA	0	-0.061	0	0	0	-0.900	0.117	-0.337
	0	0	0	0	0.032	0.231	0.080	0.293
	0	0	0	0	0	-0.063	-0.622	0
	0	0.028	0	0	0.805	-0.215	0.024	0.485
	0	-0.017	0	0	-0.583	-0.285	0	0.748

 Table 4: Decomposition using SPCA

Preserving Sparsity in PCA

- Some studies explicitly estimate Γ .
- Results in an intricate Expectation Maximization approach.
- Requires estimating a large number of parameters.
- computationally expensive.

Mattei, P.A., Bouveyron, C. and Latouche, P., 2016. "Globally sparse probabilistic PCA". AISTATS.

Jenatton, R., Obozinski, G. and Bach, F., 2010. "Structured sparse PCA". AISTATS.

Proposed Method

- ▶ while enforcing sparsity on the entries of **b**,
- ▶ adaptively penalize loadings to preserve sparsity pattern.

We propose:

arg min_{**U**,**B**}
$$\|\mathbf{X} - \mathbf{U}\mathbf{B}^{\top}\|_{F}^{2} + \sum_{i=1}^{p} \alpha_{i} \|\mathbf{b}_{i}\|_{2}$$

subject to $\mathbf{U}^{\top}\mathbf{U} = \mathbf{I}_{q}$

where

- ▶ \mathbf{b}_i is the i^{th} column of the $q \times p$ matrix \mathbf{B}^{\top} .
- Sometimes $\alpha_i \leftarrow \alpha_i \sqrt{q}$ is used to rescale the penalty with respect to the dimensionality of \mathbf{b}_i .

Proposed Method

Numerical Solution:

► Keeping **U** fixed, optimizing **B**:

$$\mathbf{b}_i = \left(1 - \frac{\alpha_i \sqrt{q}}{2 \parallel \mathbf{U}^\top \mathbf{x}_i \parallel_2}\right)_+ \mathbf{U}^\top \mathbf{x}_i$$

where the operator $(.)_+$ is set to 0 when $\frac{2}{\alpha_i \sqrt{q}} \parallel \mathbf{U}^\top \mathbf{x}_i \parallel_2 < 1.$

▶ Given **B**, optimization with respect to **U** is:

$$\min_{\mathbf{U}} \left\| \mathbf{X} - \mathbf{U} \mathbf{B}^{\top} \right\|_{F}^{2} \text{ subject to } \mathbf{U}^{\top} \mathbf{U} = \mathbf{I}_{q}$$

This is an orthogonal Procrustes problem, with the solution:

$$\mathbf{U} = \tilde{\mathbf{U}}\tilde{\mathbf{V}}^{\top},$$

where

- $\blacktriangleright~\tilde{\mathbf{U}}$ and $\tilde{\mathbf{V}}$ are obtained from the SVD of $\mathbf{XB}=\tilde{\mathbf{U}}\Lambda\tilde{\mathbf{V}}$
- $\tilde{\mathbf{U}}$ is $n \times q$
- and $\tilde{\mathbf{V}}$ is $p \times q$.

For
$$q = 1$$
 PCs:

$$\min_{\mathbf{u},\mathbf{b}} \left\| \mathbf{X} - \mathbf{u}\mathbf{b}^{\top} \right\|_{F}^{2} + \sum_{i=1}^{p} \alpha_{i} \mid b_{i} \mid$$

s.t. $\| \mathbf{u} \|_{2} = 1.$

- ▶ SPCA/PMD are a special case of the proposed approach.
- Generalization is due to using different α_i per entry of **b**.

Table 5: Description of the proposed adaptive sparse PCA algorithm

Algorithm Given: X, q, α , ϵ . Tuning parameters selection Take **B** as the first q right singular vectors times the first q singular values of \mathbf{X} . Compute the vector of tuning parameters $\alpha_i = \frac{\alpha}{\|\mathbf{b}_i\|_2}$ for $i = 1, \dots, p$ While $\| \mathbf{U}_{i} - \mathbf{U}_{i-1} \|_{F} > \epsilon$ **Update:** \mathbf{B}^{\top} per column For j=1 to p $\mathbf{b}_{i} = \left(1 - \frac{\alpha_{i}\sqrt{q}}{2\|\mathbf{U}_{j-1}^{\top}\mathbf{x}_{i}\|_{2}}\right) \mathbf{U}_{j-1}^{\top}\mathbf{x}_{i}$ Update: $\mathbf{U}_j = \tilde{\mathbf{U}}\tilde{\mathbf{V}}^\top$ using the SVD of $\mathbf{X}\mathbf{B} = \tilde{\mathbf{U}}\Lambda\tilde{\mathbf{V}}^\top$ Output: U, B

Back to the example:

Table 6: Decomposition using proposed method

loading vectors	\mathbf{v}_1	\mathbf{v}_2	\mathbf{v}_3	\mathbf{v}_4	\mathbf{v}_5	\mathbf{v}_6	\mathbf{v}_7	\mathbf{v}_8
	-0.805	0.059	-0.660	1.121	0.029	-0.014	0.008	-0.007
	0.592	-0.627	1.524	0.620	-0.024	0.001	0.013	0.020
	-2.404	-0.252	0.717	-0.310	0.000	-0.006	-0.001	-0.006
	-0.053	2.028	0.598	0.130	-0.039	-0.008	0.011	-0.003
Dropogod	0	0	0	0	0	0	0	0
Proposed	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0

Introduction

CCA finds the **maximum correlation** between **two random vectors**:

$$\begin{aligned} (\mathbf{u}_1, \mathbf{v}_1) &= & \arg \max_{\mathbf{u}, \mathbf{v}} \quad \mathbf{u}^\top \boldsymbol{\Sigma}_{\mathbf{x}\mathbf{y}} \mathbf{v} \\ & \text{subject to} \quad & \mathbf{u}^\top \boldsymbol{\Sigma}_{\mathbf{x}\mathbf{x}} \mathbf{u} = 1, \\ & & \mathbf{v}^\top \boldsymbol{\Sigma}_{\mathbf{y}\mathbf{y}} \mathbf{v} = 1 \end{aligned}$$

where

$$\begin{split} & \boldsymbol{\Sigma}_{\mathbf{x}\mathbf{y}} = E[\mathbf{x}\mathbf{y}^{\top}] \\ & \boldsymbol{\Sigma}_{\mathbf{x}\mathbf{x}} = E[\mathbf{x}\mathbf{x}^{\top}] \text{ and } \boldsymbol{\Sigma}_{\mathbf{y}\mathbf{y}} = E[\mathbf{y}\mathbf{y}^{\top}] \\ & \mathbf{x} \in \mathbb{R}^{p} \text{ and } \mathbf{y} \in \mathbb{R}^{q} \end{split}$$

Introduction

 $r \leq \min(p,q)$ loading vectors can be extracted:

• for i = 1, ..., r the vectors \mathbf{u}_i and \mathbf{v}_i are estimated.

•
$$\mathbf{u}_i^\top \mathbf{u}_j = 0$$
 for $j = 1, \dots, i - 1$.

$$\begin{aligned} (\hat{\mathbf{U}}, \hat{\mathbf{V}}) &= \arg \max_{\mathbf{U}, \mathbf{V}} \quad tr(\mathbf{U}^{\top} \boldsymbol{\Sigma}_{\mathbf{xy}} \mathbf{V}) \\ \text{subject to} \quad \mathbf{U}^{\top} \boldsymbol{\Sigma}_{\mathbf{xx}} \mathbf{U} &= \mathbf{I}_r, \\ \mathbf{V}^{\top} \boldsymbol{\Sigma}_{\mathbf{yy}} \mathbf{V} &= \mathbf{I}_r \end{aligned}$$

where

tr(.) is the trace operator. $\mathbf{U} = [\mathbf{u}_1, \dots, \mathbf{u}_r]$ $\mathbf{V} = [\mathbf{v}_1, \dots, \mathbf{v}_r]$

Introduction In practice:

$$\begin{split} &\frac{1}{n} \mathbf{X}^{\top} \mathbf{Y} \to \boldsymbol{\Sigma}_{\mathbf{x}\mathbf{y}} \\ &\frac{1}{n} \mathbf{X}^{\top} \mathbf{X} \to \boldsymbol{\Sigma}_{\mathbf{x}\mathbf{x}} \\ &\frac{1}{n} \mathbf{Y}^{\top} \mathbf{Y} \to \boldsymbol{\Sigma}_{\mathbf{y}\mathbf{y}} \end{split}$$

where

- n is the number of samples.
- X and Y are $n \times p$ and $n \times q$ matrices.
- \blacktriangleright number of samples should be the same for ${\bf X}$ and ${\bf Y}$
- we can alternatively solve the equivalent problem:

$$(\hat{\mathbf{U}}, \hat{\mathbf{V}}) = \arg\min_{\mathbf{U}, \mathbf{V}} \| \mathbf{X}\mathbf{U} - \mathbf{Y}\mathbf{V} \|_{F}^{2}$$
 (2)

instead of $\max_{\mathbf{U},\mathbf{V}} tr(\mathbf{U}^{\top}\mathbf{X}\mathbf{Y}^{\top}\mathbf{V})$.

Existing Solution

Penalized Matrix Decomposition for Sparse CCA:

$$\begin{aligned} (\hat{\mathbf{u}}, \hat{\mathbf{v}}) &= & \arg \max_{\mathbf{u}, \mathbf{v}} \quad \mathbf{u}^\top \mathbf{X}^\top \mathbf{Y} \mathbf{v} \\ & \text{subject to} \quad & \mathbf{u}^\top \mathbf{X}^\top \mathbf{X} \mathbf{u} \leq 1, \mathbf{v}^\top \mathbf{Y}^\top \mathbf{Y} \mathbf{v} \leq 1, \\ & | \mathbf{u} |_1 \leq c_1, | \mathbf{v} |_1 \leq c_2, \end{aligned}$$

▶ In (Witten et al. 2009), $\mathbf{X}^{\top}\mathbf{X}$ and $\mathbf{Y}^{\top}\mathbf{Y}$ are assumed to be diagonal.

Witten, D.M., Tibshirani, R. and Hastie, T., 2009. A penalized matrix decomposition, with applications to sparse PCA and CCA. Biostatistics.

Introductory Example: data generation model

• Consider the sparse data generating model:

 $\mathbf{x} = \mathbf{\Gamma}_{\mathbf{x}} \mathbf{W}_{\mathbf{x}} \mathbf{z} + \boldsymbol{\epsilon}_{\mathbf{x}}$ $\mathbf{y} = \mathbf{\Gamma}_{\mathbf{y}} \mathbf{W}_{\mathbf{y}} \mathbf{z} + \boldsymbol{\epsilon}_{\mathbf{y}}$

where

- $\Gamma_{\mathbf{x}}$ and $\Gamma_{\mathbf{y}}$ are diagonal matrices that enforce sparsity.
- \triangleright W_x and W_y are orthogonal matrices.
- $\blacktriangleright \mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_r).$
- $\epsilon_{\mathbf{x}}$ and $\epsilon_{\mathbf{y}}$ are random Gaussian noise vectors.

- ▶ n = 300 samples of p = 10 and q = 11 dimensional vectors.
- The number of common components (i.e., dimension of z) is r = 4.
- noise variance for both signals is $\sigma^2 = 0.1$.
- ► Sparsity patterns for **x** and **y** are:

$$\Gamma_{\mathbf{x}} = diag(1, 1, 1, 1, 0, \dots, 0)$$

$$\Gamma_{\mathbf{y}} = diag(0, \dots, 0, 1, 1, 1, 1, 1)$$

Using PMD:

Table 7:	loading	vectors	of \mathbf{X}	from	PMD
----------	---------	---------	-----------------	------	-----

U	$\begin{array}{c} 0.83 \\ -0.08 \\ 0.4 \\ 0.38 \\ 0.01 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$	
	0 0 0 0	

Remaining loading vector matters have varying sparsity pattern.

	0.83	0.02	-0.56	0.04
	-0.08	0.33	0.08	0.97
	0.4	-0.66	0.6	0.15
TT	0.38	0.68	0.56	-0.2
U	0.01	0	-0.02	0.01
	0	-0.01	-0.04	0.01
	0	0.02	0	0
	0	-0.01	0	0.02
	0	0	0	0
	0	0	0	0

Table 8: loading vectors of **X** from PMD

Similarly for ${\bf Y}$

Table 9: loading vectors of ${\bf Y}$ from PMD

	1	
	0	
	0	
	0	
	0	
	0	
\mathbf{V}	0	
•	0	
	0	
	0.1	
	-0.1	
	-0.14	
	0.68	
	0.08	
	-0.15	
	0.69	
	0.00	

Remaining loading vector matters have varying sparsity pattern.

	0	-0.02	0	0
	0	0	0	0
	0	0	0	0
V	0	0.01	0	0
V	0	0	-0.01	-0.03
	0	0.01	0	0
	-0.1	0.41	0.37	0.81
	-0.14	-0.62	0.76	0
	0.68	0.01	0	0.32
	-0.15	0.67	0.42	-0.38
	0.69	0.05	0.32	-0.33

Table 10: loading vectors of \mathbf{Y} from PMD

Our proposed method uses adaptive weights for the sparsity penalty:

$$\min_{\mathbf{U},\mathbf{V}} \| \mathbf{X}\mathbf{U} - \mathbf{Y}\mathbf{V} \|_{F}^{2} + \sum_{i=1}^{p} \alpha_{i} \| \mathbf{u}^{i} \|_{2} + \sum_{j=1}^{q} \beta_{j} \| \mathbf{v}^{j} \|_{2} \qquad (3)$$

where

$$\mathbf{u}^i$$
 represents the i^{th} row of U,
 \mathbf{v}^j represents the j^{th} row of V.

The computation of U and V are obtained by a block coordinate descent method where each of the variables are computed row by row using the closed form solutions.

$$\mathbf{v}^{j} = \frac{1}{\mathbf{y}_{j}^{\top} \mathbf{y}_{j}} \left(1 - \frac{1}{\parallel \mathbf{y}_{j}^{\top} \mathbf{E}_{j} \parallel_{2}} \right)_{+} \mathbf{y}_{j}^{\top} \mathbf{E}_{j}$$

where \mathbf{y}_j is the j^{th} column of \mathbf{Y} , $\mathbf{E}_j = \mathbf{X}\mathbf{U} - \sum_{i=1, i \neq q}^{q} \mathbf{y}_i \mathbf{v}^i$ and $()_+ = \max(0, x)$

Table 11: loading vectors of ${\bf X}$ - Proposed method

	0.028	-0.009	0.019	0.009
	0.014	-0.016	0.009	0.002
	-0.026	0.029	-0.015	0.009
TT	-0.026	0.011	-0.017	0.006
U	0	0	0	0
	0	0	0	0
	0	0	0	0
	0	0	0	0
	0	0	0	0
	0	0	0	0

Table 12: loading vectors of ${\bf Y}$ - Proposed method

	0	0	0	0
	0	0	0	0
	0	0	0	0
37	0	0	0	0
	0	0	0	0
	0	0	0	0
	0.018	-0.007	0.012	0.008
	0.028	-0.006	0.019	0.006
	-0.024	0.022	-0.015	0.003
	-0.016	0.017	-0.01	-0.002
	-0.025	0.009	-0.017	-0.008

Proposed Method for Sparse CCA

Applications

Applications

- ▶ Hand-written digit recognition.
- ▶ Blind source separation of single-subject fMRI data.

MNIST digit recognition

- ▶ MNIST is a popular benchmark for evaluating PCA.
- ▶ The goal is to classify a given image of a handwritten digit.

- contaminate background with noise.
- ▶ Sparse PCA can be used to select a subset of the pixels.

Figure 2: SPCA, PMD, SSPCA, and Proposed. backgrounds: clean (left), uniform (middle), and non-uniform (right) noise.

MNIST digit recognition

- Using sparse PCA as a pre-processing step for nearest-neighbor classification of digits.
- As the number PCs increases, the proposed method (black) is not confused into selecting background pixels.

MNIST classification

fMRI source Separation

- Single-subject functional connectivity analysis using function Magnetic Resonance Imaging (fMRI) data.
- ▶ Uses Independent component Analysis (ICA).

 $\mathbf{X}_{voxels \times timepoints} = \mathbf{Spatial} \times \mathbf{Temporal}$

- One of the issues of using ICA for fMRI data is high-dimensionality, which
 - ▶ Negatively impacts reproducability of ICA results.
 - ► Is computationally expensive.
- ▶ fMRI researchers use PCA as a dimension reduction stage.
- However, the issue with PCA is that it distorts the spatial arrangement of brain signals.

Proposed solution:

 Using sparse PCA can focus only on local brain regions that have valuable information.

fMRI source Separation

Source separation pipeline for fMRI data:

 Spatial maps are reconstructed by calculating the correlation of the resulting q time series with the original data. fMRI source Separation: Simulated data

Extracting spatial maps for simulated fMRI-like data:

$$\mathbf{X}_{p \times n} = \mathbf{S}_{p \times q} \mathbf{T}_{q \times n} + \boldsymbol{\xi}$$
(4)

where

- S: q spatial maps of dimension $p \times 1$.
- T: q time series of dimension $n \times 1$ calculated from a independent Gaussian processes.
- $\boldsymbol{\xi}$: White Gaussian noise with variance σ^2 .

original spatial maps

fMRI source Separation: Simulated data

- Left half shows first q = 4 loading vectors of PCA.
- ICA (right half) works better when sparsity is preserved across components.

fMRI source Separation: Real data

- ▶ For real fMRI data.
- ▶ Task-related spatial maps for finger-tapping experiment.
- Subject asked to tap right finger in a block-event paradigm.
- desired activation: Motor cortex.

fMRI source Separation: Real data

▶ Estimated spatial activations:

Figure 3: Spatial maps corresponding to motor cortex.

▶ Less spurious results from using proposed sparse PCA.

fMRI source Separation: Real data

► Corresponding time series.

Figure 4: Time-courses for finger-tapping experiment. Blue: ground-truth, Red: estimated time-course using ICA.

References

- 1. Seghouane, Shokouhi, Koch, "Sparse Principal Component Analysis with Preserved Sparsity Pattern", IEEE Trans. on Image Processing, 2019.
- 2. Seghouane, Shokouhi, "Sparsity Preserved Canonical Correlation Analysis", IEEE Trans. on Pattern Analysis and Machine Intelligence, 2019.

Code available at: https://github.com/idnavid/sparse_PCA