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Uniform random variables

Let U1, . . . ,Un be i.i.d. Uniform[0,1] random variables. Randomly
reorder them into the order statistics

U(1) < U(2) < · · · < U(n).

Then:

nU(1)
d→ Exponential(1) as n→∞, and

the points (nU(1),nU(2), . . . ) can be approximated by a Poisson
point process (X1,X2, . . . ) of rate 1 on (0,∞), in the sense that for
each fixed k ,

(nU(1), . . . ,nU(k))
d→ (X1, . . . ,Xk ).
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Uniform random variables

The points (nU(1),nU(2), . . . ) can be approximated by a Poisson point
process (X1,X2, . . . ) of rate 1 on (0,∞), in the sense that for each
fixed k ,

(nU(1), . . . ,nU(k))
d→ (X1, . . . ,Xk ).

However, this result is not strong enough for all purposes:

Example
Let 0 < β < 1. How big is

N = min
{

k ≥ 2 : U(k) − U(k−1) < n−1−β
}
?
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Uniform random variables – stronger version

The points (nU(1),nU(2), . . . ) can be approximated by a Poisson point
process (X1,X2, . . . ) of rate 1 on (0,∞), in the sense that for a fixed
sequence k = kn with k = o(

√
n), there is a coupling of

(nU(1),nU(2), . . . ) and (X1,X2, . . . ) such that

P(nU(i) = Xi for all i = 1, . . . , k) = 1− o(1).

Example
Let 0 < β < 1. How big is

N = min
{

k ≥ 2 : U(k) − U(k−1) < n−1−β
}
?

Heuristic: nU(k) − nU(k−1) ≈ Xk − Xk−1, which are i.i.d. Exponential(1).
Each one has probability ≈ n−β to be smaller than n−β, so N should
be of order nβ.
If 1/2 < β < 1, we cannot apply the coupling stated above.
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Exponential random variables – exact version
Consider now E1, . . . ,En i.i.d. Exponential(1) random variables. We can
produce an exact coupling for the whole sequence of order statistics by
marking and thinning the Poisson point process (Xk )

∞
k=1.

Definition
Associated with Xk , let Mk be a mark chosen i.i.d. and uniformly from
{1,2, . . . ,n}. Say that k ∈ N is thinned if Mk = Mk ′ for some k ′ < k .

In other words, a point from the Poisson point process is thinned if it
has the same mark as a smaller point.

Theorem
We can couple E1, . . . ,En and (Xk )

∞
k=1 such that

(E(i))
n
i=1 = (1

n Xk )k∈N is unthinned,

i.e.,
{Ei , i = 1, . . . ,n} =

{1
n Xk : k is unthinned

}
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Exponential random variables – exact version
Theorem
We can couple E1, . . . ,En and (Xk )

∞
k=1 such that

(E(i))
n
i=1 = (1

n Xk )k∈N is unthinned,

i.e.,
{Ei , i = 1, . . . ,n} =

{1
n Xk : k is unthinned

}
Proof: The coupling is to define

Ei =
1
n
min {Xk : Mk = i} .

By the Poisson splitting property, {Xk : Mk = i} is a Poisson point
process of rate 1/n, independently for each i , so its first point is
Exponential(rate 1/n). Thus the Ei ’s have the correct distribution.
No extra work is needed to handle the order statistics because the Xk ’s
are already naturally ordered.
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Exponential random variables – example
Theorem
We can couple E1, . . . ,En and (Xk )

∞
k=1 such that

(E(i))
n
i=1 = (1

n Xk )k∈N is unthinned

Example
Let 0 < β < 1. How big is

N = min
{

k ≥ 2 : E(k) − E(k−1) < n−1−β
}
?

Now we can put the previous heuristic into effect:
N ′ = min

{
k ≥ 2 : Xk − Xk−1 < n−β

}
is of order nβ

k = N ′ and k = N ′ − 1 are unthinned with high probability
because the average number of smaller k ′ with the same marks
will be O(nβ/n) = o(1)
N ′ − N will be the number of k ≤ N ′ that are thinned. This number
will be o(N ′) by the same reasoning.
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General random variables

For a general random variable Y , we can always write

Y = g(E)

for E ∼ Exponential(1) and g non-decreasing. Then

Theorem
We can couple Y1, . . . ,Yn and (Xk )

∞
k=1 such that

(Y(i))
n
i=1 = (g(1

n Xk ))k∈N is unthinned.

We are applying an n-dependent function

fn(x) = g(x/n)

to the randomness in (Xk )
∞
k=1 which does not depend on n. This gives

a non-standard way to couple samples for different values of n.
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The Extreme Value Theorem via this mapping
From the above,

Y(1) = min {Y1, . . . ,Yn} = g(1
n X1).

Extreme Value Theorem
If there are affine rescalings such that anY(1) + bn converges in
distribution to a non-trivial limit, then, after a further affine rescaling,
the limit distribution is either Gumbel, Weibull or Fréchet.

Extreme Value Theorem in terms of g
If g is such that ang(x/n) + bn converges to a non-constant limit h(x),
then, after a further affine rescaling, the limit function is either

h(x) = xα, h(x) = −x−α or h(x) = log x .
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Poisson-weighted infinite tree

The natural analogue to the Poisson point process for graphs is the
Poisson-weighted infinite tree.

Definition
The Poisson-weighted infinite tree is the rooted tree such that every
vertex v has infinitely many (ordered) children v1, v2, . . . , equipped
with edge weights Xvk (joining vk to its parent v ) such that

(Xv1,Xv2, . . . ) forms a Poisson point process of rate 1 on (0,∞),

independently for each v .
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Coupling the complete graph to the PWIT

Theorem, loosely paraphrased from EGvdHN
An exploration process on the complete graph with n vertices and
edge weights Ye = g(Ee) can be coupled to an exploration process on
the PWIT with edge weights Yv = g(1

n Xv ).

This theorem is based on an explicit construction involving marks Mv
and thinning for vertices v of the PWIT.
Under moderate additional assumptions, the coupling has the property
that the complete graph exploration process is the image of the
unthinned part of the PWIT exploration process under the mapping
v 7→ Mv .
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Example – first passage percolation

Theorem (EGvdHN)
First passage percolation on the complete graph with edge weights
Ye = g(Ee) is the image of a unthinned part of a continuous-time
branching process in which each individual v has children at ages
g(1

n Xv1),g(1
n Xv2), . . . .

Special case:

g(x) =

{
1 if x ≤ c,
∞ if x > c,

gives the Erdős-Rényi random graph G(n,p) with p = 1− e−c/n.
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Thank you.
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