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This work is motivated by the results in the following papers:

© S. Asmussen, O. Nerman, & M. Olsson. (1996). Fitting phase-type
distributions via the EM algorithm. Scandinavian Journal of
Statistics, 23:419-441. (Google scholar # citations: 737)

@ H. Frydman & T. Schuermann. (2008). Credit rating dynamics and
Markov mixture models. Journal of Banking and Finance 32:
1062-1075.

© H. Frydman. (2005). Estimation in the mixture of Markov chains
moving with different speeds. Journal of the American Statistical
Association 100: 1046-1053.
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Markov Jump Processes in Practice
ce

Markov jump processes in practice

Since their introduction by Markov in 1906, the Markov processes have
been used in various fields, e.g.,

e Finance/Credit Risk: Jarrow & Turnbull [1] , Jarrow et.al. [12].

@ Actuarial science: (Albrecher & Asmussen [4], Lee & Lin [3], Lin &

Liu [4], and Rolski et al. [10]),

e Option pricing: (Asmussen et al. [5], Rolski et. al [10]),

@ Queueing theory: (Badila et al. [9], Chakravarthy & Neuts [4],
Buchholz et al. [3], Breuer & Baum [2], Asmussen [6]),
Reliability theory: (Assaf & Levikson [8], Okamura & Dohi [7]),
Survival analysis, Biostatistics: (Aalen [3], Aalen & Gjessing [2]).
Ecological modelling: Balzter [10], etc.
Marketing: Berger & Nasr [11], Pfeifer & Carraway [8].

Markov model allows some analytically tractable results in applications.
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Comparison Between the Markov and Markov Mixture Model
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Comparison between the Markov and mixture model

The reasons for the popularity of Markov jump (MJ) processes are
© They have a simple structure
@ Their properties have been well studied

© They serve as baseline models; the departure from an MJ model may
indicate the type of a needed extension.

But

@ In MJ process, each individual evolves according to the same constant
intensity matrix. Thus, it does not allow for population heterogeneity.

@ Because of the Markov property, the future evolution of an individual
depends only on their current state, but not on their past history.

The mixture of MJ processes, defined below, allows for both population
heterogeneity and for taking past history into account.
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Comparison Between the Markov and Markov Mixture Model
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Figure: Nelson-Aalen plots for cumulative hazard rate (credit rating for S& P
rated US firms, 1981-2002) under the Markov and mixture model. Source:
Frydman & Schuermann, Journal of Banking and Finance (2008)
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© The Finite Mixture of Markov Jump Processes
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The Finite Mixture of
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The finite mixture of Markov jump processes (MJPs)

Let {Xt(¢) c9p=1,...,M,t > 0} be finite-state right-continuous Markov
jump processes with intensity matrices Qg4 defined on state space
S = EUA. Conditionally on Xg = iy € E, the mixture is defined by

X, $=1
X =9 : (1)
XM =M.

There is a separate mixing probability for each initial state Xo = ip € E:
Sip,m = P{(b = m]Xo = fo}. (2)
Define Bernoulli r.v. 5, =174 Itis clear that SM &, =1 Thus,

M
Xe =3 0X™, fort>0. (3)
m=1
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The Finite Mixture of
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Parameters of underlying MJP X (™)

Let E = {1,...,n} (transient states) and the (absorbing state) A be the
(n+ 1)—state. The law of each underlying MJP X(m) is characterized by
initial distribution @ = (7", 7,11)", and a constant intensity matrix

Q= ( TO"’ ‘50"’ ) with 8= —Tpml > 0, (4)
and 1 =(1,...,1)". Assume that 7,1 = 0 and Snt+1,m = 0.

Let tjjm = [Tmlij. By (4), tim = —(0im + 271z tiim)-
Equivalently, the (i, j)—component of Q,, is defined for (i,j) € S by
limpyo P{Xn = j|®m =1, X0 = i}, for j # i
dim = {Iimhw L1 P{Xy = jlOm =1,X = i}), forj=i
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The Finite Mixture of
000@0000000

Parameters of underlying MJP X(™): cont'd

The transition matrix [P(t)];; := P{X; = j|Xo = i} of X is given by
M ~
P(t) = > Spet,
m=1

where S, = diag(Sm,0) with S,, = diag(s1,m, - --,Sn,m). See, Frydman
[10], Frydman & Schuermann [9] for the mixture on the speed of Markov
chains, and Frydman & Surya [8] for a general mixture of Markov chains.

Define the following i — j transition probability

tijm/tim, 1€E,j€ES
Tijm =1 0, j=i, withi,j€E (5)
1, Jj=1i, withi,j=A
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Parameters of underlying MJP X(™): cont'd

@ The matrix My, = (pjj,m)i,j forms the transition probability matrix of
the embedded Markov chain Z{™, Z{™, ...,z Z™ of X(m) with
N being the number of jumps until Xt(m) hits the state A.

@ The diagonal element t;; ,, determines the speed of the MJP x(m).
The sojourn time/length of stay W; of X(M) in a state i € E has
exponential distribution with intensity tj; . Note that, the larger
tii m, the smaller E{S;}, the faster X(™ moves on the state S.

Following (4) and (5), the two matrices Qp, and M, satisfy
Qm :wm(nm - I)?

where W, = diag(ti1,m, - - -, tan,m, 0) and | is an identity matrix.
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The Finite Mixture of
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Remarks

@ The model was first introduced by Blumen et al. [1] in 1955 as a
stochastic model (mover-stayer model) for jobs mobility dynamics. It
is a mixture of two discrete-time Markov chains with transition
probability matrices specified by My # 1 and My = 1.

e Frydman [10], extended the model to a mixture on the speed of
Markov chains, but with M, =N forall m=1, ..., M, and provided
EM algorithm for the estimation. Frydman & Schuermann [9] applied
the result for estimation of credit rating dynamics.

e Estimation for a general mixture of MJPs with different (W ,, My,) for
m=1,..., M is proposed in Frydman & Surya [8].

The above works were not specifically concerned with absorbing Markov
chains. We are in particular interested in the distribution of the exit time:

T=inf{t >0: X, = A}
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State diagram of the finite mixture of MJPs

Sj1,1 Sjp,M TS, Siesh=" Sjp,1
Sj. 5] S;
J1,m, t 17IJI<1’" Jn, M,

X o xm) o xM) o x@ o x(m) o x (M) x (@) x(m) - (M)

Figure: State diagram of X with M underlying processes {X(K)}.

Monte Carlo simulation: The process X chooses an initial state i € E to
start with at probability 7; and then selects underlying process X (™ with
probability s; , to make transition on S at the respective rate Tp,.

The law of the mixture process X is characterized by the parameters:

0 :=(7,Tm,Sm:m=1,...,M).
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Re-parameterization of the finite mixture of MJPs
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Re-parameterization of the finite mixture of MJPs: cont'd

Re-parameterization of the mixture process in the second state diagram:
(M —P{d,=1,X=i}=m x5
Pm X T = {m— s 0—’}—7Tl><51,m-

Monte Carlo simulation: The process X selects the regime X(™) with

pm = P{®, = 1} and chooses a state i € E to start with at probability

rtm = P{Xo = i|®, = 1} to make transition on S at the rate T,.

1

The law of the mixture process X is characterized by the parameters:
0 ::(pm,ﬂ'(m),Tm :m=1,...,M).

The mixture process X (3) reduces to the simple MJP when either
© intensity matrices {Q,} are all the same for all m=1,..., M,
@ or S,, =1, and identity matrix, for all m=1,..., M.

@ The transient state is given by E = UY_; E,, with Ex N E,,, = 0.
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Mixture process as a concatenation of MJPs
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Figure: Concatenation of {X(™}. In this case X("™) is the only MJP occupying
the state E,,.
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Figure: Mixture of two birth-death processes with £ = {1,...,6} and A = {7}
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e EM Estimation of the Exit Time Distribution
o Estimation based on the sample paths { X}
@ Estimation based on the exit times {74}
@ Estimation of the finite mixture of phase-type distributions
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Statistics of a sample path

Suppose that we observe {Xs : 0 < s < 7}. Statistics of the observation:
Pm =1 x_xmy

Bi =1xo=i)

Njj = # of times X makes an i — j transition, j # i

Ni= 3 N

=1y

(6)

Z; =the length of time X occupies state i € E.
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Likelihood contribution of observations {®, x, X« }

The likelihood contribution of all realizations { Xy} is given by

IogL—Z Zcbmk[zls i log (s;.m;)

k=1 m=1
N log ti; m — t; 5imZ "], 7
+ZZ iy 08 Ljj,m ZZ y,m Z im ( )
i=1j=1 i=1j=1
JFi J#i

subject to the constraints: §; , + ZJ,]:LJ'#" tim = —tii.m,

n M
Zﬂ'i:l, and Zs,-?mzl, foralli=1,...,n
i
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Maximum likelihood estimates under complete information

MLE of m;, tijm, tim, 0im, and s; m are given by

~ B~ Njm = Niam - B;
i = 7, btijm— i = ) i - 9
K ’ L iz ’ L iz ’ B;
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@ EM Estimation of the Exit Time Distribution
o Estimation based on the sample paths { X}
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EM estimation of the distribution parameters

© As parameters of the mixture process X uniquely characterize the
distribution of exit time 7, for given N independent observations
{Xx} of X, estimation of the exit time distribution is performed by
maximizing the log-likelihood function of {Xj} using EM algorithm.

@ If only independent observation of exit times {74} are available,
estimation of the distribution is performed by maximizing the
log-likelihood function of the observation using the EM algorithm.

© In both cases, stopping criterion for convergence after /—iteration is
[|[F — Fonll <€ with 0 <e<2,

where F is the empirical cdf of the exit times {7}, whereas Fy)
represents the theoretical cdf of exit time 7 under the estimate 108
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Estimation based on the sample paths { X}

(1) Step 1.Choose initial values of the distribution parameters m;, tjj m,
and s;, fori,j=1,...,n,and m=1,..., M, all denoted by 6.

(2) Step 2 (E-step)

N N
141 P 141 K
/V,S; )= ; Eé(/){q)m,kNi(j )’Xk}a Ni(Afm) = k; Eé(/){q)m,kNi(A)|Xk},

N N
Zi(,lr;:l) = kz_:l By {Cbm,kz,-(k) X}, B,(,I;;rl) - kz_:l Eq0) {q)m,kBi(k) X}

N
(1+1) (k)
B; —;Eyn{B; X}

Note: the results coincide with that of for MJP when &, , =1 as.
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Conditional expectations given the sample paths { X}

where the conditional expectation Eg{e|X} are specified by
Eo{@mi NS |Xe} =0m NS, Eg{®m N Xk} = Bk R,
Eo{®miZ Xk} =0miZl, Ep{®muB|Xi} = ®piBY.

The estimate a)m* = E{®p k| Xk} of &, is determined by

NG
H?Zl(ﬂisi,m) H,— etimZ” i Hn+11ﬁef (tijm) 7

q)m’k B M n 8% rn tii n+1 Ni(‘k) .
m=1 H;:l(ﬂ'isi,m) i i=1€" mZ =1 H =1,j#i (t"Lm) !

Note: this is a needed generalization of the MJP.
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(3) Step 3 (M-step)

A01) _ ﬂ, A’SI;l) _ Ni(j;j_nl)’ 571 _ I\W’
v e g e
(D)
S = ity = (Y + ).
i J?é'

(4) Step 4 Stop if the convergence criterion is achieved, for e.g.,

|F — Foun|| <€, with 0 <e<2.
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e EM Estimation of the Exit Time Distribution

@ Estimation based on the exit times {74}
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Estimation based on exit times {74}

For the estimation purposes, we use the following expressions

[t/e]-1

NU(t) = !IH Z l{Xkezivx(k+1)e:j}
k=1

t
Z,'(t) ::/ l{Xu:,-}du.
0

The estimation is performed by minimizing information divergence
(Kullback-Leibler information or relative entropy) I(f, h) of the probability
density f of complete observation of X with respect to the probability
density h of Y = u(X), when X is observed partially. The minimization is
completely analogous with the EM algorithm. The approach is an
adaptation of the one proposed by Asmussen et al. [7] for MJP.

Budhi Surya and Halina Frydman (Victoria U Mixture of Markov Jump Processes Wellington Workshop in Probability and Mat



Estimation based on the exit times {74}

(1) Step 1. Choose initial values of the distribution parameters 7, tjj m,
and sj, fori,j=1,...,n,and m=1,..., M, all denoted by 6.

(2) Step 2 (E-step)

N
Nyt =37 By {Pmu Ny | me}, N = ZEU {®mNiR) |7k},
k=1 =

z{IH = ZE,){¢mkz()|T BN = ZE { D m ik BO| 7},
k=1
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Conditional expectations given exit times 7

where the conditional expectation Eg{e|7} are specified by

_ Jg T SmeTee] eTm=U§ 1ty mdu

M TS ,eTmyd,,

Eo[®mx NS |7 = v]

WTSmeTmyeid,-,m
SM  wTS ety s,

Eg [¢m,kN;(7kA)|Tk =y]

I ﬂTSmeT’"“e,-e,-TeTm(y_”)dmdu
SM TS ety S,

Eo[®miZ™ |7 = y]

ﬂ;e,TSmeTmyém

SM  xTS,eTmYd,,

Eg [¢m,kB,€k)|7—k =y]=
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SM  wie/ SmeT™ 8,
M TS ey,

Eo[B|mk = y] =

(3) Step 3 (M-step)

vy BTy NiS'I,j_nl) ~(41) N;“Afi?
i - N ij,m Zi(/,:7r1)7 im Zi(/,;rl)a
S041) _ Bi(,/rj;l) S(141) _ I+1) (1+1)
5 ,m W tu m ( + Z I_[ m )
J#l

(4) Step 4 Stop if the convergence criterion is achieved, for e.g.,

I|F — Fouin|l <€, with 0 <e<2.
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e EM Estimation of the Exit Time Distribution

@ Estimation of the finite mixture of phase-type distributions
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Estimation of the finite mixture of phase-type distributions

By parameterization p,, X ﬂj(m) = Tj X §j,m, the prior distribution of the

exit time 7 can be rewritten as the mixture of phase-type distributions:
Z pmm e’ ™8, with 7] = (Fgm),...,ﬂ'(m)).

Note: the transient state E = Uf\n/lzl Em with E; N Ej =0, for i # j,

m =0, forid¢Epn.
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EM algorithm for p,, and 7, based on {X,}

Based on the observation on the sample paths {X}:
(2) Step 2 (E-step)

N
¢£T/1+1) = Z Eé(/){¢m,k|xk} with Eé(/){¢m,k|xk} = Ok
k=1

(2) Step 3 (M-step)

U+ gU+D)
A(l4+1) _ ¥m (m) _ Pim
p,(n )= and ] oD

Budhi Surya and Halina Frydman (Victoria U

Mixture of Markov Jump Processes
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EM algorithm for p,, and 7, based on {74}

Based on the observation on the exit times {7}:
(2) Step 2 (E-step)

N

O =D E 0 {Pmlmi = v},
k=1

with
fomﬂ';eTmyém

E;{¢ ,k|7'k} = - .
oL Z%:l pmﬂ'—n:e.rmy(sm

(2) Step 3 (M-step)

¢(/+1) B(IJrl)
A(l4+1) _ ¥m (m) _ Pim
pUF) = 2T and = oD
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© Some Numerical Examples
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Monte Carlo simulations

Consider two mixture of MJPs with the following set of parameter values:
© State space S={1,...,6} U {7} (with A = {7}).
@ Initial distribution 7" = (1,0,0,0,0,0,0).
© Phase-generator matrix T1 of X(1):

-2 2 0 0 0 0
0.05 —2.05 2 0 0 0
T, - 0 0.06 —2.05 2 0 0
0 0 0.05 —-2.05 2 0 ’
0 0 0 0.05 —2.05 2
0 0 0 0 0.06 —2.05
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Monte Carlo simulations: cont'd

@ Phase-generator matrix Ty of X():

—0.3889 0.3889 0 0 0 0
0.1 —0.4889 0.3889 0 0 0
T, — 0 0.1 —0.4889 0.3889 0 0
2 0 0 0.1 —0.4889 0.3889 0
0 0 0 0.1 —0.4889 0.3889
0 0 0 0 0.1 —0.4889

@ The respective mixing probability matrices for X(1) and X(?):

S; =diag(0.2,0.3,0.4,0.5,0.6,0.7)
S, =diag(0.8,0.7,0.6,0.5,0.4,0.3).

© Generate N = 20,000 independent sample paths of X.
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Sample paths { X} with the respective regimes ¢,

(a) sample paths Xi. (b) regime ®,,.

Figure: Sample paths of X with respective regimes ®,,.
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EM estimation based on the sample paths {Xj}

Empirical CDF
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(a) exit time pdf f(7). (b) exit time cdf F(7).

Figure: Histogram of exit times and fitted model.
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of sampled exit times and the distribution

quanties of exit time data

quantiles of exit time data
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EM estimation based on the exit times {74}

Empirical CDF
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(a) exit time pdf f(7). (b) exit time cdf F(7).

Figure: Histogram and EM fitted exit time distributions.
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QQ plot of sampled exit times and the distribution
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@ Ongoing/future works
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Ongoing/future works

@ Use BIC for model selection

@ Provide estimate of the variance for the estimators
© Inclusion of covariates for the estimation

@ Multi absorbing states for competing risks analysis
© Observation under censoring

@ Estimation under discrete observation of the sample paths
(Summer/Winter work at the University of Copenhagen)
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