Question One (2008 Q1)

(a) We are always looking for more efficient ways to store and stack things.
Cross sections tell us a lot about the stack and the space being filled. Figure 1 shows the cross section of a hexagonal stack.

Show that the area of a regular hexagon with edge length s millimetres is $\frac{3 \sqrt{3}}{2} s^{2}$ square millimetres.

Hence show that the total area of the hexagonal stack in Figure 1 is $24 \sqrt{3} s^{2}$ square millimetres.

Figure 1
(b) Although a single cell of a bee's honeycomb has a hexagonal base, it is not a hexagonal prism. The complete cell more commonly has the shape shown in Figure 2.

The surface area of this cell is given by

$$
A=6 h s+\frac{3}{2} s^{2}\left(\frac{-\cos \theta}{\sin \theta}+\frac{\sqrt{3}}{\sin \theta}\right)
$$

where h, s, θ are as shown in Figure 2.
Keeping h and s fixed, for what angle, θ, is the surface area a minimum?
You do not need to prove it is a minimum.
(c) Another cell, as described in part (b) above, has s not fixed, but

Figure 2 increasing at a rate proportional to $\sin \theta$, where $0<\theta<\frac{\pi}{2}$.

This rate is equal to $\sqrt{2}$ when $\theta=\frac{\pi}{4}$.

Keeping h fixed, at what rate is the surface area decreasing when θ is equal to the value found in part (b) above? Give your answer in surd form, in terms of h and s.

Question Two (2013 Q1)
Prince Rupert's drops are made by dripping molten glass into cold water. A typical drop is shown in Figure 1.

Figure 1: A seventeenth century drawing of a typical Prince Rupert's drop. Image from The Art of Glass p 354, translated and expanded from L'Arte Vetraria (1612) by Antonio Neri.

A mathematical model for a drop as a volume of revolution uses $y=\sqrt{\phi\left(\mathrm{e}^{-x}-\mathrm{e}^{-2 x}\right)}$ for $x \geq 0$, and is is shown in Figure 2, where ϕ is the golden ratio $\phi=\frac{1+\sqrt{5}}{2}$.

Figure 2: A mathematical model for a drop as a volume of revolution.
(a) Where is the modelled drop widest, and how wide is it there?
(b) The drop changes shape near B in Figure 1, where the concavity of the revolved function is zero.

$$
\text { Use } \frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=\sqrt{\phi} \frac{\left(\mathrm{e}^{2 x}-6 \mathrm{e}^{x}+4\right)}{y^{2} \mathrm{e}^{4 x}} \text { to find the exact } x \text { coordinate of } \mathrm{B} \text {. }
$$

Question Three (2013 Q2)

1 The inner product of two continuous functions f and g over the interval $a \leq x \leq b$ is $\langle f, g\rangle_{a}^{b}=\int_{a}^{b} f(x) g(x) \mathrm{d} x$

2 The norm of the continuous function f over the interval $a \leq x \leq b$ is $\|f\|_{a}^{b}=\sqrt{\langle f, f\rangle_{a}^{b}}$

3 The angle θ between two functions f and g over the interval $a \leq x \leq b$ is given by $\cos \theta=\frac{\langle f, g\rangle_{a}^{b}}{\|f\|_{a}^{b} \cdot\|g\|_{a}^{b}}$ where $\|f\|_{a}^{b} \neq 0,\|g\|_{a}^{b} \neq 0$

4 Two functions f and g are orthogonal over the interval $a \leq x \leq b$ if the angle between them is $\frac{\pi}{2}$
(a) Find the exact values of k for which $f(x)=k x+1$ and $g(x)=x+k$ are orthogonal over $0 \leq x \leq 1$.
(b) Consider the functions $p(x)=3 x-4$ and $q(x)=9 x-5$ over $0 \leq x \leq 1$.

Find the exact angle between the two functions.
(c) For what positive integers n and m are $\sin (n x)$ and $\sin (m x)$ orthogonal over $0 \leq x \leq 2 \pi$?

Question Four (2013 Q3)

(a) A function f is even if $f(-x)=f(x)$ for all x in its domain. A function f is odd if $f(-x)=-f(x)$ for all x in its domain.
(i) Recall that a polynomial is a function in the form $p(x)=a_{0} x^{0}+a_{1} x^{1}+\ldots+a_{n} x^{n}$.

Describe which polynomials are even, and which are odd, and which are neither.
(ii) Suppose that g is any even differentiable function defined for all real numbers (not necessarily a polynomial).

Use the limit definition of the derivative to prove that $\frac{\mathrm{d} g}{\mathrm{~d} x}$ is an odd function.
(b) Suppose $y=\mathrm{e}^{-x} \sin (k x)$, where k is a non-zero constant.

Find the values of k for which $\frac{\mathrm{d}^{3} y}{\mathrm{~d} x^{3}}=C y$, and hence find the value of C.

Question Five (2013 Q4)

(a) Find all the points which satisfy $z^{n}=z$, where z is a complex number, and n is a whole number where $2 \leq n \leq 9$.

How many different solutions are there altogether?
(b) (i) The relativistic rocket equation is below.
$\frac{m_{0}}{m_{1}}=\left(\frac{1+\frac{\Delta v}{\mathrm{c}}}{1-\frac{\Delta v}{\mathrm{c}}}\right)^{\frac{\mathrm{c}}{2 \mathrm{u}}}$

Show that this equation rearranges to $\Delta v=\mathrm{c} \cdot \tanh \left(\frac{\mathrm{u}}{\mathrm{c}} \ln \left(\frac{m_{0}}{m_{1}}\right)\right)$
where the hyperbolic tangent function is $\tanh (x)=\frac{\mathrm{e}^{2 x}-1}{\mathrm{e}^{2 x}+1}$.
(ii) The relativistic rocket equation is derived from the following differential equation, where u and c are constants.

$$
\frac{\mathrm{d} M}{\mathrm{~d} v}=\frac{-M}{\mathrm{u}\left(1-\frac{v^{2}}{\mathrm{c}^{2}}\right)}
$$

Show that $\ln M=\frac{-\mathrm{c}}{2 \mathrm{u}} \ln \left(\frac{1+\frac{v}{\mathrm{c}}}{1-\frac{v}{\mathrm{c}}}\right)$ is a solution of this differential equation.

Question Six (2012 Q3)

(a) (i) Find $\frac{\mathrm{d}}{\mathrm{d} x}(x \cos (x))$ and use this result to find $\int x \sin (x) \mathrm{d} x$.
(ii) Hence find the value of $\int_{0}^{n \pi} x \sin (x) \mathrm{d} x$ for positive integer values of n.
(b) Consider the points in the region R shown in the Argand diagram of Figure 2, consisting of all points in a right-angled sector of radius 1 , except for the point $z=0.8 \operatorname{cis} \frac{\pi}{6}$.

Sketch the region containing all points w^{3}, where w is a point within the region R.

Figure 2: The region R in an Argand diagram (note the point z is not a point in R).

Question Seven (2012 Q4)

(a) Consider the function $f(x)=\log _{m} x+\log _{x} m$ defined for $x>1$.

For a fixed value of $m>1$, find the minimum value of $f(x)$.
Clearly explain the steps of your working.
(b) The following equation relates two real variables x and y, where q is a fixed constant.

$$
y^{4}+\left(1-q^{2}\right) x^{2} y^{2}-q^{2} x^{4}+q^{2} x^{2}-y^{2}=0
$$

Sketch all points that satisfy the equation.
You might start by substituting $y^{2}=q^{2} x^{2}$ and interpreting the result.
(c) Prove the following trigonometric identity:

$$
2 \tan (2 x) \cdot(\tan (x)-1)^{2}(\tan (x)+1)^{2}=\tan (4 x) \cdot\left(\tan ^{2}(x)-2 \tan (x)-1\right)\left(\tan ^{2}(x)+2 \tan (x)-1\right)
$$

Note that you do not need to work in terms of $\sin (x)$ and $\cos (x)$ to prove this identity.

Question Eight (2011 Q2)

(a) A circular pond is 5 metres in radius. The volume (in cubic metres) of water in the pond when the water is x metres from the top is $V(x)=\frac{250 \pi}{3}-25 \pi x+\frac{\pi}{3} x^{3}$.

Rain falls at the rate of 15 millimetres per hour.

How fast is the depth of water in the pond rising when it is 3 metres from the top?
(b) Figure 1 below shows the function $g(x)=\sqrt{1-\sqrt{x}}$ as a solid line.

Figure 1: Graph of $y=g(x)$, and the curve rotated about the point $\left(\frac{1}{2}, \frac{1}{2}\right)$.
(i) Use differentiation to show that $\int g(x) \mathrm{d} x=A(1-\sqrt{x})^{1.5}(2+3 \sqrt{x})+C$,
and find the value of A.

