Question 6 solutions (2015 Q2)
(a)

$$
\begin{aligned}
& \left(3^{2 x+y}\right)^{2}-3^{2 x+y}-6=0 \\
& 3^{2 x+y}=3, \quad 3^{2 x+y} \neq-2 \\
& 2 x+y=1 \Rightarrow y=1-2 x
\end{aligned}
$$

Substituting:
$\log _{x+1}(4-2 x)(5-x)=3$
$20+2 x^{2}-14 x=(x+1)^{3}$
$x^{3}+x^{2}+17 x-19=0$
$x=1$
$y=-1$
(b) The form of the parabola is $y=k x^{2}$.

$$
\text { At }(100,100)
$$

$$
100=100^{2} k \Rightarrow k=\frac{1}{100}
$$

$$
y=\frac{1}{100} x^{2}
$$

Gradient of the tangent at $\left(x_{0}, y_{0}\right)$:

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{x_{0}}{50}
$$

$y_{0}=\frac{1}{100} x_{0}^{2}$
Matching gradients: Gradient of tangent: $\frac{x_{0}}{50}=\frac{50-\frac{1}{100} x_{0}^{2}}{100-x_{0}}$ gradient of the line
$100 x_{0}-x_{0}^{2}=2500-\frac{1}{2} x_{0}^{2}$
$0=\frac{1}{2} x_{0}^{2}-100 x_{0}+2500$
$x_{0}=29.3$
Coordinates of the point (29.3,8.6); 29.3 m east, 8.6 m north.

