Question 3 solutions (2016 Q5)
(b) EITHER

	Question Type		
	Group 1 $\left(x_{1}\right)$	Group 2 $\left(x_{2}\right)$	Group 3 $\left(x_{3}\right)$
Marks	4	5	6
Time	2	3	4

$x_{1}+x_{2}+x_{3} \leq 100$	constraint 1
$2 x_{1}+3 x_{2}+4 x_{3} \leq 210$	constraint 2
$2 x_{1}+3 x_{2} \leq 150$	constraint 3
$x_{1} \geq 0$	constraint 4
$x_{2} \geq 0$	constraint 5
$x_{3} \geq 0$	constraint 6

Objective function: Grade $=4 x_{1}+5 x_{2}+6 x_{3}$
Feasible Solutions are found at vertices. $(0,0,0)$ is feasible but not helpful. Constraint (1) has vertices $(100,0,0),(0,100,0)$ and $(0,0,100)$. However, constraints 3 and 2 define the max values for the question groups as $x_{1} \leq 75, x_{2} \leq 50$ and $x_{3} \leq 52$.
Constraint 2 has vertices $(105,0,0),(0,70,0),(0,0,52.5)$. This plane lies mostly between the plane defined by constraint 1 and the origin. All intersections lie in a region where $x_{1}>75$. By constraint 3 , no feasible solutions in this region. Any feasible solutions now lie between plane 2 and the origin.
Only one vertex of plane 2 offers a feasible solution, being ($0,0,52.5$). After truncation, the objective function yields
Grade $=4 \times 0+5 \times 0+6 \times 52=312$.
The vertices of constraint 3 are $(75,0,0),(0,50,0)$ and $\left(0,0, x_{3}\right)$: a plane with one side fixed and the other two dependent on x_{3}.

This plane lies between the planes defined by constraints $1 \& 2$ and the origin, with no intersections.
Objective function applied to the vertices $(75,0,0)$ and $(0,50,0)$ gives us, respectively,
Grade $=4 \times 75=300$ and Grade $=5 \times 50=250$. We have no improvement on 312 .
The value of x_{3} in constraint 3 is "checked" by constraint 2 . Consider the boundary equations from constraints 2 \& 3 :
$2 x_{1}+3 x_{2}+4 x_{3} \leq 210$ eq 2
$2 x_{1}+3 x_{2}=150 \quad$ eq 3
Eq 2 - eq 3 gives $4 x_{3}=60$ or $x_{3}=15$.
So, fixing $x_{3}=15$ means the other two vertices of constraint 3 are $(75,0,15)$ and $(0,50,15)$.

Applying these vertices to the objective function gives:
$(0,0,15) \quad$ Grade $=6 \times 15=90$
$(75,0,15) \quad$ Grade $=75 \times 4+15 \times 6=390$
$(0,50,15) \quad$ Grade $=50 \times 5+15 \times 6=340$
The student should therefore complete 75 group 1 questions and 15 group 3 .

