## Question 3 solutions (2016 Q5)

## (b) EITHER

|       | Question Type   |                           |                 |
|-------|-----------------|---------------------------|-----------------|
|       | Group 1 $(x_1)$ | Group 2 (x <sub>2</sub> ) | Group 3 $(x_3)$ |
| Marks | 4               | 5                         | 6               |
| Time  | 2               | 3                         | 4               |

| $x_1 + x_2 + x_3 \le 100$    | constraint 1 |
|------------------------------|--------------|
| $2x_1 + 3x_2 + 4x_3 \le 210$ | constraint 2 |
| $2x_1 + 3x_2 \le 150$        | constraint 3 |
| $x_1 \ge 0$                  | constraint 4 |
| $x_2 \ge 0$                  | constraint 5 |
| $x_3 \ge 0$                  | constraint 6 |

Objective function: Grade =  $4x_1 + 5x_2 + 6x_3$ 

Feasible Solutions are found at vertices. (0,0,0) is feasible but not helpful. Constraint (1) has vertices (100,0,0), (0,100,0) and (0,0,100). However, constraints 3 and 2 define the max values for the question groups as  $x_1 \le 75$ ,  $x_2 \le 50$  and  $x_3 \le 52$ . Constraint 2 has vertices (105,0,0), (0,70,0), (0,0,52.5). This plane lies mostly between the plane defined by constraint 1 and the origin. All intersections lie in a region where  $x_1 > 75$ . By constraint 3, no feasible solutions in this region. Any feasible solutions now lie between plane 2 and the origin.

Only one vertex of plane 2 offers a feasible solution, being (0,0,52.5). After truncation, the objective function yields Grade =  $4 \times 0 + 5 \times 0 + 6 \times 52 = 312$ .

The vertices of constraint 3 are (75,0,0), (0,50,0) and (0,0, $x_3$ ): a plane with one side fixed and the other two dependent on  $x_3$ .



This plane lies between the planes defined by constraints 1 & 2 and the origin, with no intersections.

Objective function applied to the vertices (75,0,0) and (0,50,0) gives us, respectively,

Grade =  $4 \times 75 = 300$  and Grade =  $5 \times 50 = 250$ . We have no improvement on 312.

The value of  $x_3$  in constraint 3 is "checked" by constraint 2. Consider the boundary equations from constraints 2 & 3:

$$2x_1 + 3x_2 + 4x_3 \le 210 \quad \text{eq } 2$$

$$2x_1 + 3x_2 = 150$$
 eq 3

Eq 2 – eq 3 gives 
$$4x_3 = 60$$
 or  $x_3 = 15$ .

So, fixing  $x_3 = 15$  means the other two vertices of constraint 3 are (75,0,15) and (0,50,15).

