
Tutorial Series on Reverse Mathematics

Denis R. Hirschfeldt — University of Chicago

2017 NZMRI Summer School, Napier, New Zealand

Tutorial Series on Reverse Mathematics

Denis R. Hirschfeldt — University of Chicago

2017 NZMRI Summer School, Napier, New Zealand

Part I: Background

A Bit of Historical Context

A Bit of Historical Context: Abstraction and the Loss of Certainty

Concrete, algorithmic mathematics

19th c.−→ Abstract mathematics

Increase in power, but also a loss of intuition

Increased demand for rigor

Cantor’s Paradise

Russell’s Paradox: Let S = {A : A /∈ A}. Is S ∈ S?

Crisis in foundations

Hilbert’s Program: prove the consistency of mathematics via
finitistic methods

Gödel’s Second Incompleteness Theorem

A Bit of Historical Context: Abstraction and the Loss of Certainty

Concrete, algorithmic mathematics 19th c.−→ Abstract mathematics

Increase in power, but also a loss of intuition

Increased demand for rigor

Cantor’s Paradise

Russell’s Paradox: Let S = {A : A /∈ A}. Is S ∈ S?

Crisis in foundations

Hilbert’s Program: prove the consistency of mathematics via
finitistic methods

Gödel’s Second Incompleteness Theorem

A Bit of Historical Context: Abstraction and the Loss of Certainty

Concrete, algorithmic mathematics 19th c.−→ Abstract mathematics

Increase in power, but also a loss of intuition

Increased demand for rigor

Cantor’s Paradise

Russell’s Paradox: Let S = {A : A /∈ A}. Is S ∈ S?

Crisis in foundations

Hilbert’s Program: prove the consistency of mathematics via
finitistic methods

Gödel’s Second Incompleteness Theorem

A Bit of Historical Context: Abstraction and the Loss of Certainty

Concrete, algorithmic mathematics 19th c.−→ Abstract mathematics

Increase in power, but also a loss of intuition

Increased demand for rigor

Cantor’s Paradise

Russell’s Paradox: Let S = {A : A /∈ A}. Is S ∈ S?

Crisis in foundations

Hilbert’s Program: prove the consistency of mathematics via
finitistic methods

Gödel’s Second Incompleteness Theorem

A Bit of Historical Context: Abstraction and the Loss of Certainty

Concrete, algorithmic mathematics 19th c.−→ Abstract mathematics

Increase in power, but also a loss of intuition

Increased demand for rigor

Cantor’s Paradise

Russell’s Paradox: Let S = {A : A /∈ A}. Is S ∈ S?

Crisis in foundations

Hilbert’s Program: prove the consistency of mathematics via
finitistic methods

Gödel’s Second Incompleteness Theorem

A Bit of Historical Context: Abstraction and the Loss of Certainty

Concrete, algorithmic mathematics 19th c.−→ Abstract mathematics

Increase in power, but also a loss of intuition

Increased demand for rigor

Cantor’s Paradise

Russell’s Paradox

: Let S = {A : A /∈ A}. Is S ∈ S?

Crisis in foundations

Hilbert’s Program: prove the consistency of mathematics via
finitistic methods

Gödel’s Second Incompleteness Theorem

A Bit of Historical Context: Abstraction and the Loss of Certainty

Concrete, algorithmic mathematics 19th c.−→ Abstract mathematics

Increase in power, but also a loss of intuition

Increased demand for rigor

Cantor’s Paradise

Russell’s Paradox: Let S = {A : A /∈ A}. Is S ∈ S?

Crisis in foundations

Hilbert’s Program: prove the consistency of mathematics via
finitistic methods

Gödel’s Second Incompleteness Theorem

A Bit of Historical Context: Abstraction and the Loss of Certainty

Concrete, algorithmic mathematics 19th c.−→ Abstract mathematics

Increase in power, but also a loss of intuition

Increased demand for rigor

Cantor’s Paradise

Russell’s Paradox: Let S = {A : A /∈ A}. Is S ∈ S?

Crisis in foundations

Hilbert’s Program: prove the consistency of mathematics via
finitistic methods

Gödel’s Second Incompleteness Theorem

A Bit of Historical Context: Abstraction and the Loss of Certainty

Concrete, algorithmic mathematics 19th c.−→ Abstract mathematics

Increase in power, but also a loss of intuition

Increased demand for rigor

Cantor’s Paradise

Russell’s Paradox: Let S = {A : A /∈ A}. Is S ∈ S?

Crisis in foundations

Hilbert’s Program: prove the consistency of mathematics via
finitistic methods

Gödel’s Second Incompleteness Theorem

A Bit of Historical Context: Abstraction and the Loss of Certainty

Concrete, algorithmic mathematics 19th c.−→ Abstract mathematics

Increase in power, but also a loss of intuition

Increased demand for rigor

Cantor’s Paradise

Russell’s Paradox: Let S = {A : A /∈ A}. Is S ∈ S?

Crisis in foundations

Hilbert’s Program: prove the consistency of mathematics via
finitistic methods

Gödel’s Second Incompleteness Theorem

A Bit of Historical Context: Reverse Mathematics

Nada se edifica sobre la piedra, todo sobre la arena,
pero nuestro deber es edificar como si fuera piedra la
arena.

— Jorge Luis Borges

We can still try to understand how much axiomatic power given
theorems need.

Fix a weak base axiomatic system B.

Given a theorem T , we can find an axiomatic system S ⊇ B
sufficient to prove T .

If we can then also show that the axioms of S are provable from
B + T , then we know S is exactly what we need to prove T .

We can also compare theorems in terms of implication over B.

A Bit of Historical Context: Reverse Mathematics

Nada se edifica sobre la piedra, todo sobre la arena,
pero nuestro deber es edificar como si fuera piedra la
arena.

— Jorge Luis Borges

We can still try to understand how much axiomatic power given
theorems need.

Fix a weak base axiomatic system B.

Given a theorem T , we can find an axiomatic system S ⊇ B
sufficient to prove T .

If we can then also show that the axioms of S are provable from
B + T , then we know S is exactly what we need to prove T .

We can also compare theorems in terms of implication over B.

A Bit of Historical Context: Reverse Mathematics

Nada se edifica sobre la piedra, todo sobre la arena,
pero nuestro deber es edificar como si fuera piedra la
arena.

— Jorge Luis Borges

We can still try to understand how much axiomatic power given
theorems need.

Fix a weak base axiomatic system B.

Given a theorem T , we can find an axiomatic system S ⊇ B
sufficient to prove T .

If we can then also show that the axioms of S are provable from
B + T , then we know S is exactly what we need to prove T .

We can also compare theorems in terms of implication over B.

A Bit of Historical Context: Reverse Mathematics

Nada se edifica sobre la piedra, todo sobre la arena,
pero nuestro deber es edificar como si fuera piedra la
arena.

— Jorge Luis Borges

We can still try to understand how much axiomatic power given
theorems need.

Fix a weak base axiomatic system B.

Given a theorem T , we can find an axiomatic system S ⊇ B
sufficient to prove T .

If we can then also show that the axioms of S are provable from
B + T , then we know S is exactly what we need to prove T .

We can also compare theorems in terms of implication over B.

A Bit of Historical Context: Reverse Mathematics

Nada se edifica sobre la piedra, todo sobre la arena,
pero nuestro deber es edificar como si fuera piedra la
arena.

— Jorge Luis Borges

We can still try to understand how much axiomatic power given
theorems need.

Fix a weak base axiomatic system B.

Given a theorem T , we can find an axiomatic system S ⊇ B
sufficient to prove T .

If we can then also show that the axioms of S are provable from
B + T , then we know S is exactly what we need to prove T .

We can also compare theorems in terms of implication over B.

A Bit of Historical Context: Reverse Mathematics

Nada se edifica sobre la piedra, todo sobre la arena,
pero nuestro deber es edificar como si fuera piedra la
arena.

— Jorge Luis Borges

We can still try to understand how much axiomatic power given
theorems need.

Fix a weak base axiomatic system B.

Given a theorem T , we can find an axiomatic system S ⊇ B
sufficient to prove T .

If we can then also show that the axioms of S are provable from
B + T , then we know S is exactly what we need to prove T .

We can also compare theorems in terms of implication over B.

A Bit of Historical Context: Algorithms in Mathematics

Concrete, algorithmic mathematics 19th c.−→ Abstract mathematics

Loss of algorithmic content

Increased interest in the notion of computability

Hilbert’s Entscheidungsproblem: algorithm to decide, given a set
of axioms A and a statement σ, whether σ follows from A

Ramon Llull (c. 1232–1315), Gottfried Leibniz (1646–1716)

A Bit of Historical Context: Algorithms in Mathematics

Concrete, algorithmic mathematics 19th c.−→ Abstract mathematics

Loss of algorithmic content

Increased interest in the notion of computability

Hilbert’s Entscheidungsproblem: algorithm to decide, given a set
of axioms A and a statement σ, whether σ follows from A

Ramon Llull (c. 1232–1315), Gottfried Leibniz (1646–1716)

A Bit of Historical Context: Algorithms in Mathematics

Concrete, algorithmic mathematics 19th c.−→ Abstract mathematics

Loss of algorithmic content

Increased interest in the notion of computability

Hilbert’s Entscheidungsproblem: algorithm to decide, given a set
of axioms A and a statement σ, whether σ follows from A

Ramon Llull (c. 1232–1315), Gottfried Leibniz (1646–1716)

A Bit of Historical Context: Algorithms in Mathematics

Concrete, algorithmic mathematics 19th c.−→ Abstract mathematics

Loss of algorithmic content

Increased interest in the notion of computability

Hilbert’s Entscheidungsproblem: algorithm to decide, given a set
of axioms A and a statement σ, whether σ follows from A

Ramon Llull (c. 1232–1315), Gottfried Leibniz (1646–1716)

A Bit of Historical Context: Algorithms in Mathematics

Concrete, algorithmic mathematics 19th c.−→ Abstract mathematics

Loss of algorithmic content

Increased interest in the notion of computability

Hilbert’s Entscheidungsproblem: algorithm to decide, given a set
of axioms A and a statement σ, whether σ follows from A

Ramon Llull (c. 1232–1315), Gottfried Leibniz (1646–1716)

A Bit of Historical Context: Algorithms in Mathematics

The writing machine at the
A Llullian circle Grand Academy of Lagado

(Gulliver’s Travels, 1726)

A Bit of Historical Context: Algorithms in Mathematics

Concrete, algorithmic mathematics 19th c.−→ Abstract mathematics

Loss of algorithmic content

Increased interest in the notion of computability

Hilbert’s Entscheidungsproblem: algorithm to decide, given a set
of axioms A and a statement σ, whether σ follows from A

Ramon Llull (c. 1232–1315), Gottfried Leibniz (1646–1716)

Emil du Bois-Reymond’s ignoramus et ignorabimus (1880) and
Hilbert’s “Wir müssen wissen—wir werden wissen.” (1930)

A Bit of Historical Context: Algorithms in Mathematics

Concrete, algorithmic mathematics 19th c.−→ Abstract mathematics

Loss of algorithmic content

Increased interest in the notion of computability

Hilbert’s Entscheidungsproblem: algorithm to decide, given a set
of axioms A and a statement σ, whether σ follows from A

Ramon Llull (c. 1232–1315), Gottfried Leibniz (1646–1716)

Emil du Bois-Reymond’s ignoramus et ignorabimus (1880) and
Hilbert’s “Wir müssen wissen—wir werden wissen.” (1930)

A Bit of Historical Context: Algorithms in Mathematics

A Bit of Historical Context: Algorithms in Mathematics

Concrete, algorithmic mathematics 19th c.−→ Abstract mathematics

Loss of algorithmic content

Increased interest in the notion of computability

Hilbert’s Entscheidungsproblem: algorithm to decide, given a set
of axioms A and a statement σ, whether σ follows from A

Ramon Llull (c. 1232–1315), Gottfried Leibniz (1646–1716)

Emil du Bois-Reymond’s ignoramus et ignorabimus (1880) and
Hilbert’s “Wir müssen wissen—wir werden wissen.” (1930)

Hilbert’s 10th Problem: algorithm to decide whether a given
Diophantine equation has a solution

A Bit of Historical Context: Algorithms in Mathematics

Concrete, algorithmic mathematics 19th c.−→ Abstract mathematics

Loss of algorithmic content

Increased interest in the notion of computability

Hilbert’s Entscheidungsproblem: algorithm to decide, given a set
of axioms A and a statement σ, whether σ follows from A

Ramon Llull (c. 1232–1315), Gottfried Leibniz (1646–1716)

Emil du Bois-Reymond’s ignoramus et ignorabimus (1880) and
Hilbert’s “Wir müssen wissen—wir werden wissen.” (1930)

Hilbert’s 10th Problem: algorithm to decide whether a given
Diophantine equation has a solution

A Bit of Historical Context: Computability Theory

Despite Hilbertian optimism, not all problems have algorithms.

Examples require a formal notion of computability.

Various proposed definitions by Church, Gödel, Herbrand,
Kleene in the 1930’s

Turing’s machine-based definition (1936)

All of these definitions are equivalent.

Church-Turing Thesis: This definition captures the intuitive notion
of “computable”.

A Bit of Historical Context: Computability Theory

Despite Hilbertian optimism, not all problems have algorithms.

Examples require a formal notion of computability.

Various proposed definitions by Church, Gödel, Herbrand,
Kleene in the 1930’s

Turing’s machine-based definition (1936)

All of these definitions are equivalent.

Church-Turing Thesis: This definition captures the intuitive notion
of “computable”.

A Bit of Historical Context: Computability Theory

Despite Hilbertian optimism, not all problems have algorithms.

Examples require a formal notion of computability.

Various proposed definitions by Church, Gödel, Herbrand,
Kleene in the 1930’s

Turing’s machine-based definition (1936)

All of these definitions are equivalent.

Church-Turing Thesis: This definition captures the intuitive notion
of “computable”.

A Bit of Historical Context: Computability Theory

Despite Hilbertian optimism, not all problems have algorithms.

Examples require a formal notion of computability.

Various proposed definitions by Church, Gödel, Herbrand,
Kleene in the 1930’s

Turing’s machine-based definition (1936)

All of these definitions are equivalent.

Church-Turing Thesis: This definition captures the intuitive notion
of “computable”.

A Bit of Historical Context: Computability Theory

Despite Hilbertian optimism, not all problems have algorithms.

Examples require a formal notion of computability.

Various proposed definitions by Church, Gödel, Herbrand,
Kleene in the 1930’s

Turing’s machine-based definition (1936)

All of these definitions are equivalent.

Church-Turing Thesis: This definition captures the intuitive notion
of “computable”.

A Bit of Historical Context: Computability Theory

Despite Hilbertian optimism, not all problems have algorithms.

Examples require a formal notion of computability.

Various proposed definitions by Church, Gödel, Herbrand,
Kleene in the 1930’s

Turing’s machine-based definition (1936)

All of these definitions are equivalent.

Church-Turing Thesis: This definition captures the intuitive notion
of “computable”.

A Bit of Historical Context: Computability Theory

Hilbert’s Entscheidungsproblem: algorithm to decide, given a set
of axioms A and a statement σ, whether σ follows from A

Thm (Church; Turing). There is no such algorithm.

Hilbert’s 10th Problem: algorithm to decide whether a given
Diophantine equation has a solution

Thm (Davis; Putnam; Robinson; Matiyasevich). There is no such
algorithm.

Many other objects have been shown to be noncomputable.

Computability theory has tools to compare such objects.

A Bit of Historical Context: Computability Theory

Hilbert’s Entscheidungsproblem: algorithm to decide, given a set
of axioms A and a statement σ, whether σ follows from A

Thm (Church; Turing). There is no such algorithm.

Hilbert’s 10th Problem: algorithm to decide whether a given
Diophantine equation has a solution

Thm (Davis; Putnam; Robinson; Matiyasevich). There is no such
algorithm.

Many other objects have been shown to be noncomputable.

Computability theory has tools to compare such objects.

A Bit of Historical Context: Computability Theory

Hilbert’s Entscheidungsproblem: algorithm to decide, given a set
of axioms A and a statement σ, whether σ follows from A

Thm (Church; Turing). There is no such algorithm.

Hilbert’s 10th Problem: algorithm to decide whether a given
Diophantine equation has a solution

Thm (Davis; Putnam; Robinson; Matiyasevich). There is no such
algorithm.

Many other objects have been shown to be noncomputable.

Computability theory has tools to compare such objects.

A Bit of Historical Context: Computability Theory

Hilbert’s Entscheidungsproblem: algorithm to decide, given a set
of axioms A and a statement σ, whether σ follows from A

Thm (Church; Turing). There is no such algorithm.

Hilbert’s 10th Problem: algorithm to decide whether a given
Diophantine equation has a solution

Thm (Davis; Putnam; Robinson; Matiyasevich). There is no such
algorithm.

Many other objects have been shown to be noncomputable.

Computability theory has tools to compare such objects.

A Bit of Historical Context: Computability Theory

Hilbert’s Entscheidungsproblem: algorithm to decide, given a set
of axioms A and a statement σ, whether σ follows from A

Thm (Church; Turing). There is no such algorithm.

Hilbert’s 10th Problem: algorithm to decide whether a given
Diophantine equation has a solution

Thm (Davis; Putnam; Robinson; Matiyasevich). There is no such
algorithm.

Many other objects have been shown to be noncomputable.

Computability theory has tools to compare such objects.

A Bit of Computability Theory

A Bit of Computability Theory

We look at countably infinite objects built out of finite ones, e.g.
sets of natural numbers, sets of finite strings, functions N→ N, etc.

Computability for such objects can be
thought of via an informal idea of algorithm;
defined formally using a model such as Turing machines.

We can list all Turing machines (with inputs and outputs in N), in
such a way that we can simulate the computation of the eth

machine on input n using a universal Turing machine.

A Turing machine may fail to halt on a given input, so this list
yields a list Φ0,Φ1, . . . of all partial computable functions.

We write Φe(n)↓ to mean that Φe is defined on n.

A Bit of Computability Theory

We look at countably infinite objects built out of finite ones, e.g.
sets of natural numbers, sets of finite strings, functions N→ N, etc.

Computability for such objects can be
thought of via an informal idea of algorithm;
defined formally using a model such as Turing machines.

We can list all Turing machines (with inputs and outputs in N), in
such a way that we can simulate the computation of the eth

machine on input n using a universal Turing machine.

A Turing machine may fail to halt on a given input, so this list
yields a list Φ0,Φ1, . . . of all partial computable functions.

We write Φe(n)↓ to mean that Φe is defined on n.

A Bit of Computability Theory

We look at countably infinite objects built out of finite ones, e.g.
sets of natural numbers, sets of finite strings, functions N→ N, etc.

Computability for such objects can be
thought of via an informal idea of algorithm;
defined formally using a model such as Turing machines.

We can list all Turing machines (with inputs and outputs in N), in
such a way that we can simulate the computation of the eth

machine on input n using a universal Turing machine.

A Turing machine may fail to halt on a given input, so this list
yields a list Φ0,Φ1, . . . of all partial computable functions.

We write Φe(n)↓ to mean that Φe is defined on n.

A Bit of Computability Theory

We look at countably infinite objects built out of finite ones, e.g.
sets of natural numbers, sets of finite strings, functions N→ N, etc.

Computability for such objects can be
thought of via an informal idea of algorithm;
defined formally using a model such as Turing machines.

We can list all Turing machines (with inputs and outputs in N), in
such a way that we can simulate the computation of the eth

machine on input n using a universal Turing machine.

A Turing machine may fail to halt on a given input, so this list
yields a list Φ0,Φ1, . . . of all partial computable functions.

We write Φe(n)↓ to mean that Φe is defined on n.

A Bit of Computability Theory

We look at countably infinite objects built out of finite ones, e.g.
sets of natural numbers, sets of finite strings, functions N→ N, etc.

Computability for such objects can be
thought of via an informal idea of algorithm;
defined formally using a model such as Turing machines.

We can list all Turing machines (with inputs and outputs in N), in
such a way that we can simulate the computation of the eth

machine on input n using a universal Turing machine.

A Turing machine may fail to halt on a given input, so this list
yields a list Φ0,Φ1, . . . of all partial computable functions.

We write Φe(n)↓ to mean that Φe is defined on n.

A Bit of Computability Theory

The Halting Problem is ∅′ = {〈e,n〉 : Φe(n)↓}.

Thm (Turing). ∅′ is not computable.

Pf. By diagonalization: Suppose that ∅′ is computable.

Then so is f (e) =

{
Φe(e) + 1 if 〈e,e〉 ∈ ∅′

0 otherwise.

Thus Φe = f for some e.

Then Φe(e)↓ = f (e) = Φe(e) + 1. �

A similar proof shows that there is no effective list of all total
computable functions.

A Bit of Computability Theory

The Halting Problem is ∅′ = {〈e,n〉 : Φe(n)↓}.

Thm (Turing). ∅′ is not computable.

Pf. By diagonalization: Suppose that ∅′ is computable.

Then so is f (e) =

{
Φe(e) + 1 if 〈e,e〉 ∈ ∅′

0 otherwise.

Thus Φe = f for some e.

Then Φe(e)↓ = f (e) = Φe(e) + 1. �

A similar proof shows that there is no effective list of all total
computable functions.

A Bit of Computability Theory

The Halting Problem is ∅′ = {〈e,n〉 : Φe(n)↓}.

Thm (Turing). ∅′ is not computable.

Pf. By diagonalization: Suppose that ∅′ is computable.

Then so is f (e) =

{
Φe(e) + 1 if 〈e,e〉 ∈ ∅′

0 otherwise.

Thus Φe = f for some e.

Then Φe(e)↓ = f (e) = Φe(e) + 1. �

A similar proof shows that there is no effective list of all total
computable functions.

A Bit of Computability Theory

The Halting Problem is ∅′ = {〈e,n〉 : Φe(n)↓}.

Thm (Turing). ∅′ is not computable.

Pf. By diagonalization: Suppose that ∅′ is computable.

Then so is f (e) =

{
Φe(e) + 1 if 〈e,e〉 ∈ ∅′

0 otherwise.

Thus Φe = f for some e.

Then Φe(e)↓ = f (e) = Φe(e) + 1. �

A similar proof shows that there is no effective list of all total
computable functions.

A Bit of Computability Theory

∅′ is not computable, but it is computably enumerable (c.e.).

So are the sets in the Entscheidungsproblem and in Hilbert’s 10th

problem.

A is computable relative to B if there is an algorithm for
computing A if given access to B.

Can be formalized using Turing machines with oracle tapes.

We write A 6T B and say that A is Turing reducible to B.

If A 6T B and B 6T A then A and B are Turing equivalent.

The resulting equivalence classes are the Turing degrees.

The degree of the join A⊕ B = {2n : n ∈ A} ∪ {2n + 1 : n ∈ B} is the
least upper bound of the degrees of A and B.

A Bit of Computability Theory

∅′ is not computable, but it is computably enumerable (c.e.).

So are the sets in the Entscheidungsproblem and in Hilbert’s 10th

problem.

A is computable relative to B if there is an algorithm for
computing A if given access to B.

Can be formalized using Turing machines with oracle tapes.

We write A 6T B and say that A is Turing reducible to B.

If A 6T B and B 6T A then A and B are Turing equivalent.

The resulting equivalence classes are the Turing degrees.

The degree of the join A⊕ B = {2n : n ∈ A} ∪ {2n + 1 : n ∈ B} is the
least upper bound of the degrees of A and B.

A Bit of Computability Theory

∅′ is not computable, but it is computably enumerable (c.e.).

So are the sets in the Entscheidungsproblem and in Hilbert’s 10th

problem.

A is computable relative to B if there is an algorithm for
computing A if given access to B.

Can be formalized using Turing machines with oracle tapes.

We write A 6T B and say that A is Turing reducible to B.

If A 6T B and B 6T A then A and B are Turing equivalent.

The resulting equivalence classes are the Turing degrees.

The degree of the join A⊕ B = {2n : n ∈ A} ∪ {2n + 1 : n ∈ B} is the
least upper bound of the degrees of A and B.

A Bit of Computability Theory

∅′ is not computable, but it is computably enumerable (c.e.).

So are the sets in the Entscheidungsproblem and in Hilbert’s 10th

problem.

A is computable relative to B if there is an algorithm for
computing A if given access to B.

Can be formalized using Turing machines with oracle tapes.

We write A 6T B and say that A is Turing reducible to B.

If A 6T B and B 6T A then A and B are Turing equivalent.

The resulting equivalence classes are the Turing degrees.

The degree of the join A⊕ B = {2n : n ∈ A} ∪ {2n + 1 : n ∈ B} is the
least upper bound of the degrees of A and B.

A Bit of Computability Theory

∅′ is not computable, but it is computably enumerable (c.e.).

So are the sets in the Entscheidungsproblem and in Hilbert’s 10th

problem.

A is computable relative to B if there is an algorithm for
computing A if given access to B.

Can be formalized using Turing machines with oracle tapes.

We write A 6T B and say that A is Turing reducible to B.

If A 6T B and B 6T A then A and B are Turing equivalent.

The resulting equivalence classes are the Turing degrees.

The degree of the join A⊕ B = {2n : n ∈ A} ∪ {2n + 1 : n ∈ B} is the
least upper bound of the degrees of A and B.

A Bit of Computability Theory

∅′ is not computable, but it is computably enumerable (c.e.).

So are the sets in the Entscheidungsproblem and in Hilbert’s 10th

problem.

A is computable relative to B if there is an algorithm for
computing A if given access to B.

Can be formalized using Turing machines with oracle tapes.

We write A 6T B and say that A is Turing reducible to B.

If A 6T B and B 6T A then A and B are Turing equivalent.

The resulting equivalence classes are the Turing degrees.

The degree of the join A⊕ B = {2n : n ∈ A} ∪ {2n + 1 : n ∈ B} is the
least upper bound of the degrees of A and B.

A Bit of Computability Theory

For a c.e. A, define a partial computable f s.t. f (n)↓ iff n ∈ A.

∅′ can tell whether f (n)↓, so A is computable relative to ∅′.

We say that ∅′ is a complete c.e. set.

The undecidability of the Entscheidungsproblem and of Hilbert’s
10th problem are proved by encoding ∅′.

So the corresponding c.e. sets are also complete, i.e., they are in
the same Turing degree as ∅′.

Thm (Friedberg; Muchnik). There are noncomputable,
incomplete c.e. sets.

There are also non-c.e. sets that are computable relative to ∅′,
including co-c.e. sets but also many others.

A Bit of Computability Theory

For a c.e. A, define a partial computable f s.t. f (n)↓ iff n ∈ A.

∅′ can tell whether f (n)↓, so A is computable relative to ∅′.

We say that ∅′ is a complete c.e. set.

The undecidability of the Entscheidungsproblem and of Hilbert’s
10th problem are proved by encoding ∅′.

So the corresponding c.e. sets are also complete, i.e., they are in
the same Turing degree as ∅′.

Thm (Friedberg; Muchnik). There are noncomputable,
incomplete c.e. sets.

There are also non-c.e. sets that are computable relative to ∅′,
including co-c.e. sets but also many others.

A Bit of Computability Theory

For a c.e. A, define a partial computable f s.t. f (n)↓ iff n ∈ A.

∅′ can tell whether f (n)↓, so A is computable relative to ∅′.

We say that ∅′ is a complete c.e. set.

The undecidability of the Entscheidungsproblem and of Hilbert’s
10th problem are proved by encoding ∅′.

So the corresponding c.e. sets are also complete, i.e., they are in
the same Turing degree as ∅′.

Thm (Friedberg; Muchnik). There are noncomputable,
incomplete c.e. sets.

There are also non-c.e. sets that are computable relative to ∅′,
including co-c.e. sets but also many others.

A Bit of Computability Theory

For a c.e. A, define a partial computable f s.t. f (n)↓ iff n ∈ A.

∅′ can tell whether f (n)↓, so A is computable relative to ∅′.

We say that ∅′ is a complete c.e. set.

The undecidability of the Entscheidungsproblem and of Hilbert’s
10th problem are proved by encoding ∅′.

So the corresponding c.e. sets are also complete, i.e., they are in
the same Turing degree as ∅′.

Thm (Friedberg; Muchnik). There are noncomputable,
incomplete c.e. sets.

There are also non-c.e. sets that are computable relative to ∅′,
including co-c.e. sets but also many others.

A Bit of Computability Theory

We can relativize other computability-theoretic concepts.

We can define the concept of being c.e. relative to X .

Let ΦX
0 ,Φ

X
1 , . . . be the functions that are partial computable

relative to X .

We can define the Halting Problem relative to X as
X ′ = {〈e,n〉 : ΦX

e(n)↓}.

We call this the (Turing) jump of X .

If X 6T Y then X ′ 6T Y ′, but not necessarily vice-versa.

Computability-theoretic results tend to relativize.

E.g., X ′ is not computable relative to X , and is complete for sets
c.e. relative to X .

A Bit of Computability Theory

We can relativize other computability-theoretic concepts.

We can define the concept of being c.e. relative to X .

Let ΦX
0 ,Φ

X
1 , . . . be the functions that are partial computable

relative to X .

We can define the Halting Problem relative to X as
X ′ = {〈e,n〉 : ΦX

e(n)↓}.

We call this the (Turing) jump of X .

If X 6T Y then X ′ 6T Y ′, but not necessarily vice-versa.

Computability-theoretic results tend to relativize.

E.g., X ′ is not computable relative to X , and is complete for sets
c.e. relative to X .

A Bit of Computability Theory

We can relativize other computability-theoretic concepts.

We can define the concept of being c.e. relative to X .

Let ΦX
0 ,Φ

X
1 , . . . be the functions that are partial computable

relative to X .

We can define the Halting Problem relative to X as
X ′ = {〈e,n〉 : ΦX

e(n)↓}.

We call this the (Turing) jump of X .

If X 6T Y then X ′ 6T Y ′, but not necessarily vice-versa.

Computability-theoretic results tend to relativize.

E.g., X ′ is not computable relative to X , and is complete for sets
c.e. relative to X .

A Bit of Computability Theory

We can relativize other computability-theoretic concepts.

We can define the concept of being c.e. relative to X .

Let ΦX
0 ,Φ

X
1 , . . . be the functions that are partial computable

relative to X .

We can define the Halting Problem relative to X as
X ′ = {〈e,n〉 : ΦX

e(n)↓}.

We call this the (Turing) jump of X .

If X 6T Y then X ′ 6T Y ′, but not necessarily vice-versa.

Computability-theoretic results tend to relativize.

E.g., X ′ is not computable relative to X , and is complete for sets
c.e. relative to X .

A Bit of Computability Theory

We can relativize other computability-theoretic concepts.

We can define the concept of being c.e. relative to X .

Let ΦX
0 ,Φ

X
1 , . . . be the functions that are partial computable

relative to X .

We can define the Halting Problem relative to X as
X ′ = {〈e,n〉 : ΦX

e(n)↓}.

We call this the (Turing) jump of X .

If X 6T Y then X ′ 6T Y ′, but not necessarily vice-versa.

Computability-theoretic results tend to relativize.

E.g., X ′ is not computable relative to X , and is complete for sets
c.e. relative to X .

A Bit of Computability Theory

We can relativize other computability-theoretic concepts.

We can define the concept of being c.e. relative to X .

Let ΦX
0 ,Φ

X
1 , . . . be the functions that are partial computable

relative to X .

We can define the Halting Problem relative to X as
X ′ = {〈e,n〉 : ΦX

e(n)↓}.

We call this the (Turing) jump of X .

If X 6T Y then X ′ 6T Y ′, but not necessarily vice-versa.

Computability-theoretic results tend to relativize.

E.g., X ′ is not computable relative to X , and is complete for sets
c.e. relative to X .

Part II: Computability-Theoretic Comparison

An Example: Versions of König’s Lemma

Trees and Paths

A tree is a subset T of N<ω closed under initial segments.

T is computable if there is an algorithm for determining whether
a given σ is in T .

T is finitely branching if for each σ ∈ T , |{n : σn ∈ T}| <∞.

T is binary if it is a subset of 2<ω.

A path on T is a P ∈ Nω s.t. every initial segment of P is in T .

Put a topology on Nω by taking {X : σ ≺ X} as basic open sets.

Then C is closed iff it is the set of paths on a tree.

Put a measure on 2ω by letting µ({X : σ ≺ X}) = 2−|σ|.

Trees and Paths

A tree is a subset T of N<ω closed under initial segments.

T is computable if there is an algorithm for determining whether
a given σ is in T .

T is finitely branching if for each σ ∈ T , |{n : σn ∈ T}| <∞.

T is binary if it is a subset of 2<ω.

A path on T is a P ∈ Nω s.t. every initial segment of P is in T .

Put a topology on Nω by taking {X : σ ≺ X} as basic open sets.

Then C is closed iff it is the set of paths on a tree.

Put a measure on 2ω by letting µ({X : σ ≺ X}) = 2−|σ|.

Trees and Paths

A tree is a subset T of N<ω closed under initial segments.

T is computable if there is an algorithm for determining whether
a given σ is in T .

T is finitely branching if for each σ ∈ T , |{n : σn ∈ T}| <∞.

T is binary if it is a subset of 2<ω.

A path on T is a P ∈ Nω s.t. every initial segment of P is in T .

Put a topology on Nω by taking {X : σ ≺ X} as basic open sets.

Then C is closed iff it is the set of paths on a tree.

Put a measure on 2ω by letting µ({X : σ ≺ X}) = 2−|σ|.

Trees and Paths

A tree is a subset T of N<ω closed under initial segments.

T is computable if there is an algorithm for determining whether
a given σ is in T .

T is finitely branching if for each σ ∈ T , |{n : σn ∈ T}| <∞.

T is binary if it is a subset of 2<ω.

A path on T is a P ∈ Nω s.t. every initial segment of P is in T .

Put a topology on Nω by taking {X : σ ≺ X} as basic open sets.

Then C is closed iff it is the set of paths on a tree.

Put a measure on 2ω by letting µ({X : σ ≺ X}) = 2−|σ|.

Trees and Paths

A tree is a subset T of N<ω closed under initial segments.

T is computable if there is an algorithm for determining whether
a given σ is in T .

T is finitely branching if for each σ ∈ T , |{n : σn ∈ T}| <∞.

T is binary if it is a subset of 2<ω.

A path on T is a P ∈ Nω s.t. every initial segment of P is in T .

Put a topology on Nω by taking {X : σ ≺ X} as basic open sets.

Then C is closed iff it is the set of paths on a tree.

Put a measure on 2ω by letting µ({X : σ ≺ X}) = 2−|σ|.

Trees and Paths

A tree is a subset T of N<ω closed under initial segments.

T is computable if there is an algorithm for determining whether
a given σ is in T .

T is finitely branching if for each σ ∈ T , |{n : σn ∈ T}| <∞.

T is binary if it is a subset of 2<ω.

A path on T is a P ∈ Nω s.t. every initial segment of P is in T .

Put a topology on Nω by taking {X : σ ≺ X} as basic open sets.

Then C is closed iff it is the set of paths on a tree.

Put a measure on 2ω by letting µ({X : σ ≺ X}) = 2−|σ|.

Trees and Paths

A tree is a subset T of N<ω closed under initial segments.

T is computable if there is an algorithm for determining whether
a given σ is in T .

T is finitely branching if for each σ ∈ T , |{n : σn ∈ T}| <∞.

T is binary if it is a subset of 2<ω.

A path on T is a P ∈ Nω s.t. every initial segment of P is in T .

Put a topology on Nω by taking {X : σ ≺ X} as basic open sets.

Then C is closed iff it is the set of paths on a tree.

Put a measure on 2ω by letting µ({X : σ ≺ X}) = 2−|σ|.

Versions of König’s Lemma

König’s Lemma: Every infinite, finitely branching tree has a path.

Weak König’s Lemma: Every infinite binary tree has a path.

Weak Weak König’s Lemma: Every binary tree T s.t.

lim infn
|{σ∈T :|σ|=n}|

2n > 0

has a path.

Bounded König’s Lemma: Every infinite binary tree T s.t.

|{σ ∈ T : |σ| = n}| < c

for some c has a path.

Versions of König’s Lemma

König’s Lemma: Every infinite, finitely branching tree has a path.

Weak König’s Lemma: Every infinite binary tree has a path.

Weak Weak König’s Lemma: Every binary tree T s.t.

lim infn
|{σ∈T :|σ|=n}|

2n > 0

has a path.

Bounded König’s Lemma: Every infinite binary tree T s.t.

|{σ ∈ T : |σ| = n}| < c

for some c has a path.

Versions of König’s Lemma

König’s Lemma: Every infinite, finitely branching tree has a path.

Weak König’s Lemma: Every infinite binary tree has a path.

Weak Weak König’s Lemma: Every binary tree T s.t.

lim infn
|{σ∈T :|σ|=n}|

2n > 0

has a path.

Bounded König’s Lemma: Every infinite binary tree T s.t.

|{σ ∈ T : |σ| = n}| < c

for some c has a path.

Versions of König’s Lemma

König’s Lemma: Every infinite, finitely branching tree has a path.

Weak König’s Lemma: Every infinite binary tree has a path.

Weak Weak König’s Lemma: Every binary tree T s.t.

lim infn
|{σ∈T :|σ|=n}|

2n > 0

has a path.

Bounded König’s Lemma: Every infinite binary tree T s.t.

|{σ ∈ T : |σ| = n}| < c

for some c has a path.

Versions of König’s Lemma

KL: Infinite, finitely branching trees have paths.

WKL: Infinite binary trees have paths.

WWKL: Fat binary trees have paths.

BKL: Skinny infinite binary trees have paths.

WKL says that 2ω is compact.

KL says that certain subspaces of Nω are compact, but these
subspaces are not as effectively presented.

WKL: Find an element of a closed set.

WWKL: Find an element of a closed of positive measure.

BKL: Find an element of a finite set.

Versions of König’s Lemma

KL: Infinite, finitely branching trees have paths.

WKL: Infinite binary trees have paths.

WWKL: Fat binary trees have paths.

BKL: Skinny infinite binary trees have paths.

WKL says that 2ω is compact.

KL says that certain subspaces of Nω are compact, but these
subspaces are not as effectively presented.

WKL: Find an element of a closed set.

WWKL: Find an element of a closed of positive measure.

BKL: Find an element of a finite set.

Versions of König’s Lemma

KL: Infinite, finitely branching trees have paths.

WKL: Infinite binary trees have paths.

WWKL: Fat binary trees have paths.

BKL: Skinny infinite binary trees have paths.

WKL says that 2ω is compact.

KL says that certain subspaces of Nω are compact, but these
subspaces are not as effectively presented.

WKL: Find an element of a closed set.

WWKL: Find an element of a closed of positive measure.

BKL: Find an element of a finite set.

Versions of König’s Lemma

KL: Infinite, finitely branching trees have paths.

WKL: Infinite binary trees have paths.

WWKL: Fat binary trees have paths.

BKL: Skinny infinite binary trees have paths.

WKL says that 2ω is compact.

KL says that certain subspaces of Nω are compact, but these
subspaces are not as effectively presented.

WKL: Find an element of a closed set.

WWKL: Find an element of a closed of positive measure.

BKL: Find an element of a finite set.

Bounded König’s Lemma and Computability

Let T be a computable infinite binary tree s.t.
|{σ ∈ T : |σ| = n}| < c for all n.

There is a σ ∈ T extended by a unique path P on T .

For each n > |σ|, there is a unique τn � σ of length n s.t. T is
infinite above τn.

We can find τn computably.

P = limn τn, so T has a computable path.

In fact, every path on T is computable.

More generally, even if T is not computable, the above
procedure is computable relative to T .

Thus BKL is computably true.

Bounded König’s Lemma and Computability

Let T be a computable infinite binary tree s.t.
|{σ ∈ T : |σ| = n}| < c for all n.

There is a σ ∈ T extended by a unique path P on T .

For each n > |σ|, there is a unique τn � σ of length n s.t. T is
infinite above τn.

We can find τn computably.

P = limn τn, so T has a computable path.

In fact, every path on T is computable.

More generally, even if T is not computable, the above
procedure is computable relative to T .

Thus BKL is computably true.

Bounded König’s Lemma and Computability

Let T be a computable infinite binary tree s.t.
|{σ ∈ T : |σ| = n}| < c for all n.

There is a σ ∈ T extended by a unique path P on T .

For each n > |σ|, there is a unique τn � σ of length n s.t. T is
infinite above τn.

We can find τn computably.

P = limn τn, so T has a computable path.

In fact, every path on T is computable.

More generally, even if T is not computable, the above
procedure is computable relative to T .

Thus BKL is computably true.

Bounded König’s Lemma and Computability

Let T be a computable infinite binary tree s.t.
|{σ ∈ T : |σ| = n}| < c for all n.

There is a σ ∈ T extended by a unique path P on T .

For each n > |σ|, there is a unique τn � σ of length n s.t. T is
infinite above τn.

We can find τn computably.

P = limn τn, so T has a computable path.

In fact, every path on T is computable.

More generally, even if T is not computable, the above
procedure is computable relative to T .

Thus BKL is computably true.

Bounded König’s Lemma and Computability

Let T be a computable infinite binary tree s.t.
|{σ ∈ T : |σ| = n}| < c for all n.

There is a σ ∈ T extended by a unique path P on T .

For each n > |σ|, there is a unique τn � σ of length n s.t. T is
infinite above τn.

We can find τn computably.

P = limn τn, so T has a computable path.

In fact, every path on T is computable.

More generally, even if T is not computable, the above
procedure is computable relative to T .

Thus BKL is computably true.

Bounded König’s Lemma and Computability

Let T be a computable infinite binary tree s.t.
|{σ ∈ T : |σ| = n}| < c for all n.

There is a σ ∈ T extended by a unique path P on T .

For each n > |σ|, there is a unique τn � σ of length n s.t. T is
infinite above τn.

We can find τn computably.

P = limn τn, so T has a computable path.

In fact, every path on T is computable.

More generally, even if T is not computable, the above
procedure is computable relative to T .

Thus BKL is computably true.

Bounded König’s Lemma and Computability

Let T be a computable infinite binary tree s.t.
|{σ ∈ T : |σ| = n}| < c for all n.

There is a σ ∈ T extended by a unique path P on T .

For each n > |σ|, there is a unique τn � σ of length n s.t. T is
infinite above τn.

We can find τn computably.

P = limn τn, so T has a computable path.

In fact, every path on T is computable.

More generally, even if T is not computable, the above
procedure is computable relative to T .

Thus BKL is computably true.

Bounded König’s Lemma and Computability

Let T be a computable infinite binary tree s.t.
|{σ ∈ T : |σ| = n}| < c for all n.

There is a σ ∈ T extended by a unique path P on T .

For each n > |σ|, there is a unique τn � σ of length n s.t. T is
infinite above τn.

We can find τn computably.

P = limn τn, so T has a computable path.

In fact, every path on T is computable.

More generally, even if T is not computable, the above
procedure is computable relative to T .

Thus BKL is computably true.

König’s Lemma and Computability

Thm (Kreisel). There is a computable infinite binary tree with no
computable path.

Thus WKL is not computably true, and hence neither is KL.

Kreisel’s tree can be fat, so WWKL is also not computably true.

To build such a tree, we diagonalize against all potential
computable paths.

There is a computable infinite, finitely branching tree T s.t. every
path of T computes ∅′.

There is a computable infinite, finitely branching tree T with no
path computable relative to ∅′.

König’s Lemma and Computability

Thm (Kreisel). There is a computable infinite binary tree with no
computable path.

Thus WKL is not computably true, and hence neither is KL.

Kreisel’s tree can be fat, so WWKL is also not computably true.

To build such a tree, we diagonalize against all potential
computable paths.

There is a computable infinite, finitely branching tree T s.t. every
path of T computes ∅′.

There is a computable infinite, finitely branching tree T with no
path computable relative to ∅′.

König’s Lemma and Computability

Thm (Kreisel). There is a computable infinite binary tree with no
computable path.

Thus WKL is not computably true, and hence neither is KL.

Kreisel’s tree can be fat, so WWKL is also not computably true.

To build such a tree, we diagonalize against all potential
computable paths.

There is a computable infinite, finitely branching tree T s.t. every
path of T computes ∅′.

There is a computable infinite, finitely branching tree T with no
path computable relative to ∅′.

König’s Lemma and Computability

Thm (Kreisel). There is a computable infinite binary tree with no
computable path.

Thus WKL is not computably true, and hence neither is KL.

Kreisel’s tree can be fat, so WWKL is also not computably true.

To build such a tree, we diagonalize against all potential
computable paths.

There is a computable infinite, finitely branching tree T s.t. every
path of T computes ∅′.

There is a computable infinite, finitely branching tree T with no
path computable relative to ∅′.

Weak König’s Lemma and Computability

Let T be a computable infinite binary tree.

Thm (Kreisel). T has a path P 6T ∅′.

An example is the leftmost path of T .

Thm (Shoenfield). T has a path P <T ∅′.

Thus WKL is strictly weaker than KL in at least two senses.

But just how much weaker?

Low Basis Thm (Jockusch and Soare). T has a path P s.t. P ′ 6T ∅′.

Such a P is called low.

This theorem relativizes: If the binary tree T is computable
relative to X then T has a path P s.t. (P ⊕ X)′ 6T X ′.

Weak König’s Lemma and Computability

Let T be a computable infinite binary tree.

Thm (Kreisel). T has a path P 6T ∅′.

An example is the leftmost path of T .

Thm (Shoenfield). T has a path P <T ∅′.

Thus WKL is strictly weaker than KL in at least two senses.

But just how much weaker?

Low Basis Thm (Jockusch and Soare). T has a path P s.t. P ′ 6T ∅′.

Such a P is called low.

This theorem relativizes: If the binary tree T is computable
relative to X then T has a path P s.t. (P ⊕ X)′ 6T X ′.

Weak König’s Lemma and Computability

Let T be a computable infinite binary tree.

Thm (Kreisel). T has a path P 6T ∅′.

An example is the leftmost path of T .

Thm (Shoenfield). T has a path P <T ∅′.

Thus WKL is strictly weaker than KL in at least two senses.

But just how much weaker?

Low Basis Thm (Jockusch and Soare). T has a path P s.t. P ′ 6T ∅′.

Such a P is called low.

This theorem relativizes: If the binary tree T is computable
relative to X then T has a path P s.t. (P ⊕ X)′ 6T X ′.

Weak König’s Lemma and Computability

Let T be a computable infinite binary tree.

Thm (Kreisel). T has a path P 6T ∅′.

An example is the leftmost path of T .

Thm (Shoenfield). T has a path P <T ∅′.

Thus WKL is strictly weaker than KL in at least two senses.

But just how much weaker?

Low Basis Thm (Jockusch and Soare). T has a path P s.t. P ′ 6T ∅′.

Such a P is called low.

This theorem relativizes: If the binary tree T is computable
relative to X then T has a path P s.t. (P ⊕ X)′ 6T X ′.

Weak König’s Lemma and Computability

Let T be a computable infinite binary tree.

Thm (Kreisel). T has a path P 6T ∅′.

An example is the leftmost path of T .

Thm (Shoenfield). T has a path P <T ∅′.

Thus WKL is strictly weaker than KL in at least two senses.

But just how much weaker?

Low Basis Thm (Jockusch and Soare). T has a path P s.t. P ′ 6T ∅′.

Such a P is called low.

This theorem relativizes: If the binary tree T is computable
relative to X then T has a path P s.t. (P ⊕ X)′ 6T X ′.

Computable Entailment

Second-Order Statements

Versions of KL are second-order statements, involving
quantification over first-order (finite) objects and second-order
(countably infinite) objects.

We can encode finite objects as natural numbers: e.g., strings,
rationals, finite sets, . . .

We can encode countably infinite objects as sets of natural
numbers: e.g., infinite sequences, trees, groups, reals, . . .

So we might encode a σ ∈ 2<ω of length n as
2σ(0) + 4σ(1) + · · ·+ 2nσ(n− 1).

Then a tree is just a particular kind of subset of N.

Thus we can work in second-order arithmetic.

Second-Order Statements

Versions of KL are second-order statements, involving
quantification over first-order (finite) objects and second-order
(countably infinite) objects.

We can encode finite objects as natural numbers: e.g., strings,
rationals, finite sets, . . .

We can encode countably infinite objects as sets of natural
numbers: e.g., infinite sequences, trees, groups, reals, . . .

So we might encode a σ ∈ 2<ω of length n as
2σ(0) + 4σ(1) + · · ·+ 2nσ(n− 1).

Then a tree is just a particular kind of subset of N.

Thus we can work in second-order arithmetic.

Second-Order Statements

Versions of KL are second-order statements, involving
quantification over first-order (finite) objects and second-order
(countably infinite) objects.

We can encode finite objects as natural numbers: e.g., strings,
rationals, finite sets, . . .

We can encode countably infinite objects as sets of natural
numbers: e.g., infinite sequences, trees, groups, reals, . . .

So we might encode a σ ∈ 2<ω of length n as
2σ(0) + 4σ(1) + · · ·+ 2nσ(n− 1).

Then a tree is just a particular kind of subset of N.

Thus we can work in second-order arithmetic.

Π1
2 Statements

Statements involving only first-order quantification are called
arithmetic.

Version of KL are of the form

∀X [Θ(X) → ∃Y Ψ(X ,Y)],

where Θ and Ψ are arithmetic.

We can think of such a statement as a problem:
An instance is an X s.t. Θ(X) holds.
A solution to X is a Y s.t. Ψ(X ,Y) holds.

Solving an instance of WKL takes less power than solving an
instance of KL.

But what about multiple instances?

Π1
2 Statements

Statements involving only first-order quantification are called
arithmetic.

Version of KL are of the form

∀X [Θ(X) → ∃Y Ψ(X ,Y)],

where Θ and Ψ are arithmetic.

We can think of such a statement as a problem:
An instance is an X s.t. Θ(X) holds.
A solution to X is a Y s.t. Ψ(X ,Y) holds.

Solving an instance of WKL takes less power than solving an
instance of KL.

But what about multiple instances?

Π1
2 Statements

Statements involving only first-order quantification are called
arithmetic.

Version of KL are of the form

∀X [Θ(X) → ∃Y Ψ(X ,Y)],

where Θ and Ψ are arithmetic.

We can think of such a statement as a problem:
An instance is an X s.t. Θ(X) holds.
A solution to X is a Y s.t. Ψ(X ,Y) holds.

Solving an instance of WKL takes less power than solving an
instance of KL.

But what about multiple instances?

Π1
2 Statements

Statements involving only first-order quantification are called
arithmetic.

Version of KL are of the form

∀X [Θ(X) → ∃Y Ψ(X ,Y)],

where Θ and Ψ are arithmetic.

We can think of such a statement as a problem:
An instance is an X s.t. Θ(X) holds.
A solution to X is a Y s.t. Ψ(X ,Y) holds.

Solving an instance of WKL takes less power than solving an
instance of KL.

But what about multiple instances?

Π1
2 Statements

Statements involving only first-order quantification are called
arithmetic.

Version of KL are of the form

∀X [Θ(X) → ∃Y Ψ(X ,Y)],

where Θ and Ψ are arithmetic.

We can think of such a statement as a problem:
An instance is an X s.t. Θ(X) holds.
A solution to X is a Y s.t. Ψ(X ,Y) holds.

Solving an instance of WKL takes less power than solving an
instance of KL.

But what about multiple instances?

Turing Ideals

A Turing ideal is an I ⊆ 2N s.t. if B1, . . . ,Bn ∈ I and A is
computable relative to B1, . . . ,Bn then A ∈ I.

A problem P holds in I if for every instance X of P in I, there is a
solution Y to X in I.

P computably entails Q, written as P �c Q, if Q holds in every
Turing ideal in which P holds.

P and Q are computably equivalent if they hold in the same
Turing ideals.

A statement Φ of second-order arithmetic holds in I if Φ is true
when ∃X and ∀X are replaced by ∃X ∈ I and ∀X ∈ I.

Turing Ideals

A Turing ideal is an I ⊆ 2N s.t. if B1, . . . ,Bn ∈ I and A is
computable relative to B1, . . . ,Bn then A ∈ I.

A problem P holds in I if for every instance X of P in I, there is a
solution Y to X in I.

P computably entails Q, written as P �c Q, if Q holds in every
Turing ideal in which P holds.

P and Q are computably equivalent if they hold in the same
Turing ideals.

A statement Φ of second-order arithmetic holds in I if Φ is true
when ∃X and ∀X are replaced by ∃X ∈ I and ∀X ∈ I.

Turing Ideals

A Turing ideal is an I ⊆ 2N s.t. if B1, . . . ,Bn ∈ I and A is
computable relative to B1, . . . ,Bn then A ∈ I.

A problem P holds in I if for every instance X of P in I, there is a
solution Y to X in I.

P computably entails Q, written as P �c Q, if Q holds in every
Turing ideal in which P holds.

P and Q are computably equivalent if they hold in the same
Turing ideals.

A statement Φ of second-order arithmetic holds in I if Φ is true
when ∃X and ∀X are replaced by ∃X ∈ I and ∀X ∈ I.

Turing Ideals

A Turing ideal is an I ⊆ 2N s.t. if B1, . . . ,Bn ∈ I and A is
computable relative to B1, . . . ,Bn then A ∈ I.

A problem P holds in I if for every instance X of P in I, there is a
solution Y to X in I.

P computably entails Q, written as P �c Q, if Q holds in every
Turing ideal in which P holds.

P and Q are computably equivalent if they hold in the same
Turing ideals.

A statement Φ of second-order arithmetic holds in I if Φ is true
when ∃X and ∀X are replaced by ∃X ∈ I and ∀X ∈ I.

Building Turing Ideals

Clearly KL �c WKL and WKL �c WWKL.

BKL holds in every Turing ideal, so WWKL �c BKL.

The computable sets form a Turing ideal I, and WWKL does not
hold in I, so BKL 2c WWKL.

Thm (Scott/Jockusch and Soare/Friedman). WKL 2c KL.

The proof uses the relativized Low Basis Theorem: If the binary
tree T is computable relative to X then T has a path P s.t.
(P ⊕ X)′ 6T X ′.

Thm (Yu and Simpson). WWKL 2c WKL.

The proof uses the theory of algorithmic randomness.

Building Turing Ideals

Clearly KL �c WKL and WKL �c WWKL.

BKL holds in every Turing ideal, so WWKL �c BKL.

The computable sets form a Turing ideal I, and WWKL does not
hold in I, so BKL 2c WWKL.

Thm (Scott/Jockusch and Soare/Friedman). WKL 2c KL.

The proof uses the relativized Low Basis Theorem: If the binary
tree T is computable relative to X then T has a path P s.t.
(P ⊕ X)′ 6T X ′.

Thm (Yu and Simpson). WWKL 2c WKL.

The proof uses the theory of algorithmic randomness.

Building Turing Ideals

Clearly KL �c WKL and WKL �c WWKL.

BKL holds in every Turing ideal, so WWKL �c BKL.

The computable sets form a Turing ideal I, and WWKL does not
hold in I, so BKL 2c WWKL.

Thm (Scott/Jockusch and Soare/Friedman). WKL 2c KL.

The proof uses the relativized Low Basis Theorem: If the binary
tree T is computable relative to X then T has a path P s.t.
(P ⊕ X)′ 6T X ′.

Thm (Yu and Simpson). WWKL 2c WKL.

The proof uses the theory of algorithmic randomness.

Building Turing Ideals

Clearly KL �c WKL and WKL �c WWKL.

BKL holds in every Turing ideal, so WWKL �c BKL.

The computable sets form a Turing ideal I, and WWKL does not
hold in I, so BKL 2c WWKL.

Thm (Scott/Jockusch and Soare/Friedman). WKL 2c KL.

The proof uses the relativized Low Basis Theorem: If the binary
tree T is computable relative to X then T has a path P s.t.
(P ⊕ X)′ 6T X ′.

Thm (Yu and Simpson). WWKL 2c WKL.

The proof uses the theory of algorithmic randomness.

Computable equivalence

BKL, WWKL, WKL, and KL represent important complexity levels.

Computably equivalent to BKL (i.e., computably true):
I the existence of algebraic closures of fields
I Gödel’s Completeness Theorem for theories
I the Intermediate Value Theorem
I the Tietze Extension Theorem for complete separable metric

spaces
...

Computably equivalent to WWKL:
I the Vitali Covering Theorem
I the monotone convergence theorem for Lebesgue measure

on [0, 1]

I the existence of (relatively) Martin-Löf random sequences
...

Computable equivalence

BKL, WWKL, WKL, and KL represent important complexity levels.

Computably equivalent to BKL (i.e., computably true):
I the existence of algebraic closures of fields
I Gödel’s Completeness Theorem for theories
I the Intermediate Value Theorem
I the Tietze Extension Theorem for complete separable metric

spaces
...

Computably equivalent to WWKL:
I the Vitali Covering Theorem
I the monotone convergence theorem for Lebesgue measure

on [0, 1]

I the existence of (relatively) Martin-Löf random sequences
...

Computable equivalence

BKL, WWKL, WKL, and KL represent important complexity levels.

Computably equivalent to BKL (i.e., computably true):
I the existence of algebraic closures of fields
I Gödel’s Completeness Theorem for theories
I the Intermediate Value Theorem
I the Tietze Extension Theorem for complete separable metric

spaces
...

Computably equivalent to WWKL:
I the Vitali Covering Theorem
I the monotone convergence theorem for Lebesgue measure

on [0, 1]

I the existence of (relatively) Martin-Löf random sequences
...

Computable equivalence

Computably equivalent to WKL:
I the uniqueness of algebraic closures for fields
I the existence of prime ideals for commutative rings
I the Compactness Theorem for first-order logic
I the Extreme Value Theorem
I Brouwer’s Fixed Point Theorem

...

Computably equivalent to KL:
I the existence of maximal ideals for commutative rings
I the existence of bases for vector spaces
I the Bolzano-Weierstraß Theorem
I the existence of the Turing jump

...

Computable equivalence

Computably equivalent to WKL:
I the uniqueness of algebraic closures for fields
I the existence of prime ideals for commutative rings
I the Compactness Theorem for first-order logic
I the Extreme Value Theorem
I Brouwer’s Fixed Point Theorem

...

Computably equivalent to KL:
I the existence of maximal ideals for commutative rings
I the existence of bases for vector spaces
I the Bolzano-Weierstraß Theorem
I the existence of the Turing jump

...

Part III: Reverse Mathematics

Stephen G. Simpson, Subsystems of Second Order Arithmetic

Second-Order Arithmetic and RCA0

Second-Order Arithmetic

We work in a language with number variables, set variables, and
symbols 0, 1, S, <,+, ·,∈.

Again we encode finite objects as natural numbers and infinite
objects as sets of natural numbers.

Reverse Mathematics: fix a weak base system and calibrate the
strength of principles by considering implications over this system.

Often in terms of a few subsystems of second-order arithmetic.

Second-Order Arithmetic

We work in a language with number variables, set variables, and
symbols 0, 1, S, <,+, ·,∈.

Again we encode finite objects as natural numbers and infinite
objects as sets of natural numbers.

Reverse Mathematics: fix a weak base system and calibrate the
strength of principles by considering implications over this system.

Often in terms of a few subsystems of second-order arithmetic.

Second-Order Arithmetic

We work in a language with number variables, set variables, and
symbols 0, 1, S, <,+, ·,∈.

Again we encode finite objects as natural numbers and infinite
objects as sets of natural numbers.

Reverse Mathematics: fix a weak base system and calibrate the
strength of principles by considering implications over this system.

Often in terms of a few subsystems of second-order arithmetic.

Second-Order Arithmetic

Full second-order arithmetic consists of

I axioms for a discrete ordered commutative semiring

I comprehension:

∃X ∀n [n ∈ X ↔ ϕ(n)]

for all formulas ϕ s.t. X is not free in ϕ

I induction:

(ϕ(0) ∧ ∀n [ϕ(n) → ϕ(n + 1)] → ∀n ϕ(n)

for all formulas ϕ

We obtain subsystems by limiting comprehension and induction.

Second-Order Arithmetic

Full second-order arithmetic consists of

I axioms for a discrete ordered commutative semiring

I comprehension:

∃X ∀n [n ∈ X ↔ ϕ(n)]

for all formulas ϕ s.t. X is not free in ϕ

I induction:

(ϕ(0) ∧ ∀n [ϕ(n) → ϕ(n + 1)] → ∀n ϕ(n)

for all formulas ϕ

We obtain subsystems by limiting comprehension and induction.

A Hierarchy of Arithmetic Formulas

A bounded quantifier is one of the form ∀x < t or ∃x < t .

A bounded-quantifier formula is an arithmetic formula in which
all quantifiers are bounded.

A Σ0
n formula is one of the form

∃x1 ∀x2 ∃x3 ∀x4 · · ·Qxn ϕ,

where ϕ is a bounded-quantifier formula and Q is ∃ if n is odd
and ∀ if n is even.

A Π0
n formula is one of the form

∀x1 ∃x2 ∀x3 ∃x4 · · ·Qxn ϕ,

where ϕ is a bounded-quantifier formula and Q is ∀ if n is odd
and ∃ if n is even.

These formulas can have free variables.

A Hierarchy of Arithmetic Formulas

A bounded quantifier is one of the form ∀x < t or ∃x < t .

A bounded-quantifier formula is an arithmetic formula in which
all quantifiers are bounded.

A Σ0
n formula is one of the form

∃x1 ∀x2 ∃x3 ∀x4 · · ·Qxn ϕ,

where ϕ is a bounded-quantifier formula and Q is ∃ if n is odd
and ∀ if n is even.

A Π0
n formula is one of the form

∀x1 ∃x2 ∀x3 ∃x4 · · ·Qxn ϕ,

where ϕ is a bounded-quantifier formula and Q is ∀ if n is odd
and ∃ if n is even.

These formulas can have free variables.

A Hierarchy of Arithmetic Formulas

A bounded quantifier is one of the form ∀x < t or ∃x < t .

A bounded-quantifier formula is an arithmetic formula in which
all quantifiers are bounded.

A Σ0
n formula is one of the form

∃x1 ∀x2 ∃x3 ∀x4 · · ·Qxn ϕ,

where ϕ is a bounded-quantifier formula and Q is ∃ if n is odd
and ∀ if n is even.

A Π0
n formula is one of the form

∀x1 ∃x2 ∀x3 ∃x4 · · ·Qxn ϕ,

where ϕ is a bounded-quantifier formula and Q is ∀ if n is odd
and ∃ if n is even.

These formulas can have free variables.

A Hierarchy of Arithmetic Formulas

A bounded quantifier is one of the form ∀x < t or ∃x < t .

A bounded-quantifier formula is an arithmetic formula in which
all quantifiers are bounded.

A Σ0
n formula is one of the form

∃x1 ∀x2 ∃x3 ∀x4 · · ·Qxn ϕ,

where ϕ is a bounded-quantifier formula and Q is ∃ if n is odd
and ∀ if n is even.

A Π0
n formula is one of the form

∀x1 ∃x2 ∀x3 ∃x4 · · ·Qxn ϕ,

where ϕ is a bounded-quantifier formula and Q is ∀ if n is odd
and ∃ if n is even.

These formulas can have free variables.

The Weak Base System RCA0

RCA0 is obtained by restricting:

I comprehension to ∆0
1-comprehension:

∀n [ϕ(n) ↔ ψ(n)] → ∃X ∀n [n ∈ X ↔ ϕ(n)]

for all ϕ,ψ s.t. ϕ is Σ0
1 and ψ is Π0

1, and X is not free in ϕ

I induction to Σ0
1-induction:

(ϕ(0) ∧ ∀n [ϕ(n) → ϕ(n + 1)]) → ∀n ϕ(n)

for all Σ0
1 formulas ϕ

This choice of base system creates a tight connection between
this approach and computable entailment.

The Weak Base System RCA0

RCA0 is obtained by restricting:

I comprehension to ∆0
1-comprehension:

∀n [ϕ(n) ↔ ψ(n)] → ∃X ∀n [n ∈ X ↔ ϕ(n)]

for all ϕ,ψ s.t. ϕ is Σ0
1 and ψ is Π0

1, and X is not free in ϕ

I induction to Σ0
1-induction:

(ϕ(0) ∧ ∀n [ϕ(n) → ϕ(n + 1)]) → ∀n ϕ(n)

for all Σ0
1 formulas ϕ

This choice of base system creates a tight connection between
this approach and computable entailment.

Some Equivalences over RCA0

Provable in RCA0

I the existence of algebraic closures of fields
I Gödel’s Completeness Theorem for theories
I the Intermediate Value Theorem
I the Tietze Extension Theorem for complete separable metric

spaces
...

Provably equivalent to WWKL over RCA0:
I the Vitali Covering Theorem
I the monotone convergence theorem for Lebesgue measure

on [0, 1]

I the existence of (relatively) Martin-Löf random sequences
...

Some Equivalences over RCA0

Provable in RCA0

I the existence of algebraic closures of fields
I Gödel’s Completeness Theorem for theories
I the Intermediate Value Theorem
I the Tietze Extension Theorem for complete separable metric

spaces
...

Provably equivalent to WWKL over RCA0:
I the Vitali Covering Theorem
I the monotone convergence theorem for Lebesgue measure

on [0, 1]

I the existence of (relatively) Martin-Löf random sequences
...

Some Equivalences over RCA0

Provably equivalent to WKL over RCA0:
I the uniqueness of algebraic closures for fields
I the existence of prime ideals for commutative rings
I the Compactness Theorem for first-order logic
I the Extreme Value Theorem
I Brouwer’s Fixed Point Theorem

...

Provably equivalent to KL over RCA0:
I the existence of maximal ideals for commutative rings
I the existence of bases for vector spaces
I the Bolzano-Weierstraß Theorem
I the existence of the Turing jump

...

Computability and Definability

The Arithmetic Hierarchy

A first-order formula is one with no set variables.

A ⊆ N is defined in N by a first-order formula ϕ(y) if: k ∈ A iff ϕ(k)
holds in N.

A set is Σ0
n if it is defined in N by some Σ0

n first-order formula.

A set is Π0
n if it is defined in N by some Π0

n first-order formula.

A set is ∆0
n if it is both Σ0

n and Π0
n.

A set is arithmetic if it is in one of these classes.

The Arithmetic Hierarchy

A first-order formula is one with no set variables.

A ⊆ N is defined in N by a first-order formula ϕ(y) if: k ∈ A iff ϕ(k)
holds in N.

A set is Σ0
n if it is defined in N by some Σ0

n first-order formula.

A set is Π0
n if it is defined in N by some Π0

n first-order formula.

A set is ∆0
n if it is both Σ0

n and Π0
n.

A set is arithmetic if it is in one of these classes.

The Arithmetic Hierarchy

∆0
1 ∆0

2 ∆0
3 . . .

Σ0
1 Σ0

2

Π0
1 Π0

2

((
(((((

(((

Thm (Kleene). A is Σ0
1 iff A is c.e. Thus A is ∆0

1 iff A is computable.

Recall that Z ′ is the Halting Problem relative to Z .

Define X (n) as follows: X (0) = X and X (n+1) = (X (n))′.

Thm (Post). A set is Σ0
n+1 iff it is c.e. relative to ∅(n), and is ∆0

n+1 iff it
is computable relative to ∅(n).

The Arithmetic Hierarchy

∆0
1 ∆0

2 ∆0
3 . . .

Σ0
1 Σ0

2

Π0
1 Π0

2

((
(((((

(((

Thm (Kleene). A is Σ0
1 iff A is c.e. Thus A is ∆0

1 iff A is computable.

Recall that Z ′ is the Halting Problem relative to Z .

Define X (n) as follows: X (0) = X and X (n+1) = (X (n))′.

Thm (Post). A set is Σ0
n+1 iff it is c.e. relative to ∅(n), and is ∆0

n+1 iff it
is computable relative to ∅(n).

The Arithmetic Hierarchy

∆0
1 ∆0

2 ∆0
3 . . .

Σ0
1 Σ0

2

Π0
1 Π0

2

((
(((((

(((

Thm (Kleene). A is Σ0
1 iff A is c.e. Thus A is ∆0

1 iff A is computable.

Recall that Z ′ is the Halting Problem relative to Z .

Define X (n) as follows: X (0) = X and X (n+1) = (X (n))′.

Thm (Post). A set is Σ0
n+1 iff it is c.e. relative to ∅(n), and is ∆0

n+1 iff it
is computable relative to ∅(n).

The Arithmetic Hierarchy

∆0
1 ∆0

2 ∆0
3 . . .

Σ0
1 Σ0

2

Π0
1 Π0

2

((
(((((

(((

Thm (Kleene). A is Σ0
1 iff A is c.e. Thus A is ∆0

1 iff A is computable.

Recall that Z ′ is the Halting Problem relative to Z .

Define X (n) as follows: X (0) = X and X (n+1) = (X (n))′.

Thm (Post). A set is Σ0
n+1 iff it is c.e. relative to ∅(n), and is ∆0

n+1 iff it
is computable relative to ∅(n).

Relativizing the Arithmetic Hierarchy

All of this can be relativized to any S ⊆ N:

Consider formulas with one free set variable X .

A ⊆ N is defined in (N, S) by ϕ(y ,X) if: k ∈ A iff ϕ(k , S) holds in N.

A set is Σ0
n relative to S if it is defined in (N, S) by some Σ0

n formula.

A set is Π0
n relative to S if it is defined in (N, S) by some Π0

n formula.

A set is ∆0
n relative to S if it is both Σ0

n and Π0
n relative to S.

Post’s Theorem holds in relativized form.

In particular, A is ∆0
1 relative to S iff A is computable relative to S.

Relativizing the Arithmetic Hierarchy

All of this can be relativized to any S ⊆ N:

Consider formulas with one free set variable X .

A ⊆ N is defined in (N, S) by ϕ(y ,X) if: k ∈ A iff ϕ(k , S) holds in N.

A set is Σ0
n relative to S if it is defined in (N, S) by some Σ0

n formula.

A set is Π0
n relative to S if it is defined in (N, S) by some Π0

n formula.

A set is ∆0
n relative to S if it is both Σ0

n and Π0
n relative to S.

Post’s Theorem holds in relativized form.

In particular, A is ∆0
1 relative to S iff A is computable relative to S.

Relativizing the Arithmetic Hierarchy

All of this can be relativized to any S ⊆ N:

Consider formulas with one free set variable X .

A ⊆ N is defined in (N, S) by ϕ(y ,X) if: k ∈ A iff ϕ(k , S) holds in N.

A set is Σ0
n relative to S if it is defined in (N, S) by some Σ0

n formula.

A set is Π0
n relative to S if it is defined in (N, S) by some Π0

n formula.

A set is ∆0
n relative to S if it is both Σ0

n and Π0
n relative to S.

Post’s Theorem holds in relativized form.

In particular, A is ∆0
1 relative to S iff A is computable relative to S.

Relativizing the Arithmetic Hierarchy

All of this can be relativized to any S ⊆ N:

Consider formulas with one free set variable X .

A ⊆ N is defined in (N, S) by ϕ(y ,X) if: k ∈ A iff ϕ(k , S) holds in N.

A set is Σ0
n relative to S if it is defined in (N, S) by some Σ0

n formula.

A set is Π0
n relative to S if it is defined in (N, S) by some Π0

n formula.

A set is ∆0
n relative to S if it is both Σ0

n and Π0
n relative to S.

Post’s Theorem holds in relativized form.

In particular, A is ∆0
1 relative to S iff A is computable relative to S.

RCA0 and Computability

Recall that RCA0 is obtained by restricting:

I comprehension to ∆0
1-comprehension:

∀n [ϕ(n) ↔ ψ(n)] → ∃X ∀n [n ∈ X ↔ ϕ(n)]

for all ϕ,ψ s.t. ϕ is Σ0
1 and ψ is Π0

1, and X is not free in ϕ

I induction to Σ0
1-induction:

(ϕ(0) ∧ ∀n [ϕ(n) → ϕ(n + 1)]) → ∀n ϕ(n)

for all Σ0
1 formulas ϕ

∆0
1-comprehension is (relative) computable comprehension.

Indeed, RCA stands for Recursive Comprehension Axiom.

RCA0 and Computability

Recall that RCA0 is obtained by restricting:

I comprehension to ∆0
1-comprehension:

∀n [ϕ(n) ↔ ψ(n)] → ∃X ∀n [n ∈ X ↔ ϕ(n)]

for all ϕ,ψ s.t. ϕ is Σ0
1 and ψ is Π0

1, and X is not free in ϕ

I induction to Σ0
1-induction:

(ϕ(0) ∧ ∀n [ϕ(n) → ϕ(n + 1)]) → ∀n ϕ(n)

for all Σ0
1 formulas ϕ

∆0
1-comprehension is (relative) computable comprehension.

Indeed, RCA stands for Recursive Comprehension Axiom.

Models of RCA0

A model in the language of second-order arithmetic consists of
a first-order part N = (N; 0N , 1N , SN , <N ,+N , ·N) and a
second-order part S ⊆ 2N .

If N is the standard natural numbers, we call this an ω-model
and identify it with S.

Thm (Friedman). S is an ω-model of RCA0 iff S is a Turing ideal.

Cor. If RCA0 + P ` Q then P �c Q.

The converse does not always hold because non-ω-models of
RCA0 exist, but it often does.

Models of RCA0

A model in the language of second-order arithmetic consists of
a first-order part N = (N; 0N , 1N , SN , <N ,+N , ·N) and a
second-order part S ⊆ 2N .

If N is the standard natural numbers, we call this an ω-model
and identify it with S.

Thm (Friedman). S is an ω-model of RCA0 iff S is a Turing ideal.

Cor. If RCA0 + P ` Q then P �c Q.

The converse does not always hold because non-ω-models of
RCA0 exist, but it often does.

Models of RCA0

A model in the language of second-order arithmetic consists of
a first-order part N = (N; 0N , 1N , SN , <N ,+N , ·N) and a
second-order part S ⊆ 2N .

If N is the standard natural numbers, we call this an ω-model
and identify it with S.

Thm (Friedman). S is an ω-model of RCA0 iff S is a Turing ideal.

Cor. If RCA0 + P ` Q then P �c Q.

The converse does not always hold because non-ω-models of
RCA0 exist, but it often does.

Models of RCA0

A model in the language of second-order arithmetic consists of
a first-order part N = (N; 0N , 1N , SN , <N ,+N , ·N) and a
second-order part S ⊆ 2N .

If N is the standard natural numbers, we call this an ω-model
and identify it with S.

Thm (Friedman). S is an ω-model of RCA0 iff S is a Turing ideal.

Cor. If RCA0 + P ` Q then P �c Q.

The converse does not always hold because non-ω-models of
RCA0 exist, but it often does.

The Reverse-Mathematical Universe

Mathematics in RCA0

Several theorems can be proved in RCA0, e.g. many basic
properties of the natural numbers and the reals, as well as
I the existence of algebraic closures of fields
I Gödel’s Completeness Theorem for theories
I the Intermediate Value Theorem
I the Tietze Extension Theorem for complete separable metric

spaces
...

But the computable sets form an ω-model of RCA0, so theorems
that are not computably true cannot be proved in RCA0.

Limited induction also plays a role.

Thm (Yokoyama). BKL is not provable in RCA0.

Mathematics in RCA0

Several theorems can be proved in RCA0, e.g. many basic
properties of the natural numbers and the reals, as well as
I the existence of algebraic closures of fields
I Gödel’s Completeness Theorem for theories
I the Intermediate Value Theorem
I the Tietze Extension Theorem for complete separable metric

spaces
...

But the computable sets form an ω-model of RCA0, so theorems
that are not computably true cannot be proved in RCA0.

Limited induction also plays a role.

Thm (Yokoyama). BKL is not provable in RCA0.

Mathematics in RCA0

Several theorems can be proved in RCA0, e.g. many basic
properties of the natural numbers and the reals, as well as
I the existence of algebraic closures of fields
I Gödel’s Completeness Theorem for theories
I the Intermediate Value Theorem
I the Tietze Extension Theorem for complete separable metric

spaces
...

But the computable sets form an ω-model of RCA0, so theorems
that are not computably true cannot be proved in RCA0.

Limited induction also plays a role.

Thm (Yokoyama). BKL is not provable in RCA0.

Mathematics in RCA0

Several theorems can be proved in RCA0, e.g. many basic
properties of the natural numbers and the reals, as well as
I the existence of algebraic closures of fields
I Gödel’s Completeness Theorem for theories
I the Intermediate Value Theorem
I the Tietze Extension Theorem for complete separable metric

spaces
...

But the computable sets form an ω-model of RCA0, so theorems
that are not computably true cannot be proved in RCA0.

Limited induction also plays a role.

Thm (Yokoyama). BKL is not provable in RCA0.

Other Subsystems of Second-Order Arithmetic

ACA0: RCA0 + arithmetic comprehension:

∃X ∀n [n ∈ X ↔ ϕ(n)]

for all arithmetic ϕ s.t. X is not free in ϕ

ACA0 implies arithmetic induction.

A Turing ideal is an ω-model of ACA0 iff it is closed under jumps.

RCA0 + Σ0
1-comprehension implies ACA0.

KL is equivalent to ACA0 over RCA0. So are

I the existence of maximal ideals for commutative rings
I the existence of bases for vector spaces
I the Bolzano-Weierstraß Theorem
I the existence of the Turing jump

...

Other Subsystems of Second-Order Arithmetic

ACA0: RCA0 + arithmetic comprehension:

∃X ∀n [n ∈ X ↔ ϕ(n)]

for all arithmetic ϕ s.t. X is not free in ϕ

ACA0 implies arithmetic induction.

A Turing ideal is an ω-model of ACA0 iff it is closed under jumps.

RCA0 + Σ0
1-comprehension implies ACA0.

KL is equivalent to ACA0 over RCA0. So are

I the existence of maximal ideals for commutative rings
I the existence of bases for vector spaces
I the Bolzano-Weierstraß Theorem
I the existence of the Turing jump

...

Other Subsystems of Second-Order Arithmetic

ACA0: RCA0 + arithmetic comprehension:

∃X ∀n [n ∈ X ↔ ϕ(n)]

for all arithmetic ϕ s.t. X is not free in ϕ

ACA0 implies arithmetic induction.

A Turing ideal is an ω-model of ACA0 iff it is closed under jumps.

RCA0 + Σ0
1-comprehension implies ACA0.

KL is equivalent to ACA0 over RCA0. So are

I the existence of maximal ideals for commutative rings
I the existence of bases for vector spaces
I the Bolzano-Weierstraß Theorem
I the existence of the Turing jump

...

Other Subsystems of Second-Order Arithmetic

ACA0: RCA0 + arithmetic comprehension:

∃X ∀n [n ∈ X ↔ ϕ(n)]

for all arithmetic ϕ s.t. X is not free in ϕ

ACA0 implies arithmetic induction.

A Turing ideal is an ω-model of ACA0 iff it is closed under jumps.

RCA0 + Σ0
1-comprehension implies ACA0.

KL is equivalent to ACA0 over RCA0. So are

I the existence of maximal ideals for commutative rings
I the existence of bases for vector spaces
I the Bolzano-Weierstraß Theorem
I the existence of the Turing jump

...

Other Subsystems of Second-Order Arithmetic

ACA0: RCA0 + arithmetic comprehension:

∃X ∀n [n ∈ X ↔ ϕ(n)]

for all arithmetic ϕ s.t. X is not free in ϕ

ACA0 implies arithmetic induction.

A Turing ideal is an ω-model of ACA0 iff it is closed under jumps.

RCA0 + Σ0
1-comprehension implies ACA0.

KL is equivalent to ACA0 over RCA0.

So are

I the existence of maximal ideals for commutative rings
I the existence of bases for vector spaces
I the Bolzano-Weierstraß Theorem
I the existence of the Turing jump

...

Other Subsystems of Second-Order Arithmetic

ACA0: RCA0 + arithmetic comprehension:

∃X ∀n [n ∈ X ↔ ϕ(n)]

for all arithmetic ϕ s.t. X is not free in ϕ

ACA0 implies arithmetic induction.

A Turing ideal is an ω-model of ACA0 iff it is closed under jumps.

RCA0 + Σ0
1-comprehension implies ACA0.

KL is equivalent to ACA0 over RCA0. So are

I the existence of maximal ideals for commutative rings
I the existence of bases for vector spaces
I the Bolzano-Weierstraß Theorem
I the existence of the Turing jump

...

Other Subsystems of Second-Order Arithmetic

WKL0: RCA0 + Weak König’s Lemma

WKL0 is arithmetically conservative over RCA0, i.e., if WKL0 proves
an arithmetic statement, then so does RCA0.

So WKL0 has the same amount of induction as RCA0.

ω-models of WKL0 are also known as Scott sets.

Equivalents of WKL0

I the uniqueness of algebraic closures for fields
I the existence of prime ideals for commutative rings
I the Compactness Theorem for first-order logic
I the Extreme Value Theorem
I Brouwer’s Fixed Point Theorem

...

Other Subsystems of Second-Order Arithmetic

WKL0: RCA0 + Weak König’s Lemma

WKL0 is arithmetically conservative over RCA0, i.e., if WKL0 proves
an arithmetic statement, then so does RCA0.

So WKL0 has the same amount of induction as RCA0.

ω-models of WKL0 are also known as Scott sets.

Equivalents of WKL0

I the uniqueness of algebraic closures for fields
I the existence of prime ideals for commutative rings
I the Compactness Theorem for first-order logic
I the Extreme Value Theorem
I Brouwer’s Fixed Point Theorem

...

Other Subsystems of Second-Order Arithmetic

WKL0: RCA0 + Weak König’s Lemma

WKL0 is arithmetically conservative over RCA0, i.e., if WKL0 proves
an arithmetic statement, then so does RCA0.

So WKL0 has the same amount of induction as RCA0.

ω-models of WKL0 are also known as Scott sets.

Equivalents of WKL0

I the uniqueness of algebraic closures for fields
I the existence of prime ideals for commutative rings
I the Compactness Theorem for first-order logic
I the Extreme Value Theorem
I Brouwer’s Fixed Point Theorem

...

Other Subsystems of Second-Order Arithmetic

WKL0: RCA0 + Weak König’s Lemma

WKL0 is arithmetically conservative over RCA0, i.e., if WKL0 proves
an arithmetic statement, then so does RCA0.

So WKL0 has the same amount of induction as RCA0.

ω-models of WKL0 are also known as Scott sets.

Equivalents of WKL0

I the uniqueness of algebraic closures for fields
I the existence of prime ideals for commutative rings
I the Compactness Theorem for first-order logic
I the Extreme Value Theorem
I Brouwer’s Fixed Point Theorem

...

Other Subsystems of Second-Order Arithmetic

WWKL0: RCA0 + Weak Weak König’s Lemma

Equivalents of WWKL0:
I the Vitali Covering Theorem
I the monotone convergence theorem for Lebesgue measure

on [0, 1]

I the existence of (relatively) Martin-Löf random sequences
...

Other Subsystems of Second-Order Arithmetic

ATR0: RCA0 + arithmetic transfinite recursion

Equivalents of ATR0

I comparability of well-orderings
I Ulm’s Theorem on Abelian p-groups
I the Perfect Set Theorem...

Π1
1-CA0: RCA0 + Π1

1-comprehension

A Π1
1 formula is one of the form ∀X ϕ, where ϕ is arithmetic.

Equivalents of Π1
1-CA0

I every countable Abelian group is the direct sum of a
divisible group and a reduced group

I the Cantor-Bendixson Theorem...

Other Subsystems of Second-Order Arithmetic

ATR0: RCA0 + arithmetic transfinite recursion

Equivalents of ATR0

I comparability of well-orderings
I Ulm’s Theorem on Abelian p-groups
I the Perfect Set Theorem...

Π1
1-CA0: RCA0 + Π1

1-comprehension

A Π1
1 formula is one of the form ∀X ϕ, where ϕ is arithmetic.

Equivalents of Π1
1-CA0

I every countable Abelian group is the direct sum of a
divisible group and a reduced group

I the Cantor-Bendixson Theorem...

Other Subsystems of Second-Order Arithmetic

ATR0: RCA0 + arithmetic transfinite recursion

Equivalents of ATR0

I comparability of well-orderings
I Ulm’s Theorem on Abelian p-groups
I the Perfect Set Theorem...

Π1
1-CA0: RCA0 + Π1

1-comprehension

A Π1
1 formula is one of the form ∀X ϕ, where ϕ is arithmetic.

Equivalents of Π1
1-CA0

I every countable Abelian group is the direct sum of a
divisible group and a reduced group

I the Cantor-Bendixson Theorem...

Other Subsystems of Second-Order Arithmetic

ATR0: RCA0 + arithmetic transfinite recursion

Equivalents of ATR0

I comparability of well-orderings
I Ulm’s Theorem on Abelian p-groups
I the Perfect Set Theorem...

Π1
1-CA0: RCA0 + Π1

1-comprehension

A Π1
1 formula is one of the form ∀X ϕ, where ϕ is arithmetic.

Equivalents of Π1
1-CA0

I every countable Abelian group is the direct sum of a
divisible group and a reduced group

I the Cantor-Bendixson Theorem...

Relationships between Subsystems of Second-Order Arithmetic

Π1
1-CA0

↓
ATR0

↓
ACA0

↓
WKL0

↓
WWKL0

↓
RCA0

Ramsey’s Theorem

[X]n is the set of n-element subsets of X .

A k-coloring of [X]n is a map c : [X]n → k .

A set H ⊆ X is homogeneous for c if |c([H]n)| = 1.

Ramsey’s Theorem for n-tuples and k colors (RTn
k): Every

k-coloring of [N]n has an infinite homogeneous set.

For j, k > 2, RTn
j and RTn

k are equivalent over RCA0.

RTn
<∞ is ∀k RTn

k and RT is ∀n ∀k RTn
k .

Ramsey’s Theorem

[X]n is the set of n-element subsets of X .

A k-coloring of [X]n is a map c : [X]n → k .

A set H ⊆ X is homogeneous for c if |c([H]n)| = 1.

Ramsey’s Theorem for n-tuples and k colors (RTn
k): Every

k-coloring of [N]n has an infinite homogeneous set.

For j, k > 2, RTn
j and RTn

k are equivalent over RCA0.

RTn
<∞ is ∀k RTn

k and RT is ∀n ∀k RTn
k .

Ramsey’s Theorem

[X]n is the set of n-element subsets of X .

A k-coloring of [X]n is a map c : [X]n → k .

A set H ⊆ X is homogeneous for c if |c([H]n)| = 1.

Ramsey’s Theorem for n-tuples and k colors (RTn
k): Every

k-coloring of [N]n has an infinite homogeneous set.

For j, k > 2, RTn
j and RTn

k are equivalent over RCA0.

RTn
<∞ is ∀k RTn

k and RT is ∀n ∀k RTn
k .

The Reverse Mathematics of Ramsey’s Theorem

Thm (Jockusch/Simpson). For n > 3, RCA0 ` RTn
2 ↔ ACA0.

Thm (Seetapun). RCA0 + RT2
2 0 ACA0.

Thm (Hirst). WKL0 0 RT2
2.

Thm (Liu). RCA0 + RT2
2 0 WWKL0.

RCA0 ` RT1
k for any k ∈ N, but:

Thm (Hirst). RCA0 0 RT1
<∞.

Thm (Jockusch). ACA0 0 RT.

The Reverse Mathematics of Ramsey’s Theorem

Thm (Jockusch/Simpson). For n > 3, RCA0 ` RTn
2 ↔ ACA0.

Thm (Seetapun). RCA0 + RT2
2 0 ACA0.

Thm (Hirst). WKL0 0 RT2
2.

Thm (Liu). RCA0 + RT2
2 0 WWKL0.

RCA0 ` RT1
k for any k ∈ N, but:

Thm (Hirst). RCA0 0 RT1
<∞.

Thm (Jockusch). ACA0 0 RT.

The Reverse Mathematics of Ramsey’s Theorem

Thm (Jockusch/Simpson). For n > 3, RCA0 ` RTn
2 ↔ ACA0.

Thm (Seetapun). RCA0 + RT2
2 0 ACA0.

Thm (Hirst). WKL0 0 RT2
2.

Thm (Liu). RCA0 + RT2
2 0 WWKL0.

RCA0 ` RT1
k for any k ∈ N, but:

Thm (Hirst). RCA0 0 RT1
<∞.

Thm (Jockusch). ACA0 0 RT.

The Reverse Mathematics of Ramsey’s Theorem

Thm (Jockusch/Simpson). For n > 3, RCA0 ` RTn
2 ↔ ACA0.

Thm (Seetapun). RCA0 + RT2
2 0 ACA0.

Thm (Hirst). WKL0 0 RT2
2.

Thm (Liu). RCA0 + RT2
2 0 WWKL0.

RCA0 ` RT1
k for any k ∈ N, but:

Thm (Hirst). RCA0 0 RT1
<∞.

Thm (Jockusch). ACA0 0 RT.

The Reverse Mathematics of Ramsey’s Theorem

Thm (Jockusch/Simpson). For n > 3, RCA0 ` RTn
2 ↔ ACA0.

Thm (Seetapun). RCA0 + RT2
2 0 ACA0.

Thm (Hirst). WKL0 0 RT2
2.

Thm (Liu). RCA0 + RT2
2 0 WWKL0.

RCA0 ` RT1
k for any k ∈ N, but:

Thm (Hirst). RCA0 0 RT1
<∞.

Thm (Jockusch). ACA0 0 RT.

The Reverse Mathematics of Ramsey’s Theorem

Thm (Jockusch/Simpson). For n > 3, RCA0 ` RTn
2 ↔ ACA0.

Thm (Seetapun). RCA0 + RT2
2 0 ACA0.

Thm (Hirst). WKL0 0 RT2
2.

Thm (Liu). RCA0 + RT2
2 0 WWKL0.

RCA0 ` RT1
k for any k ∈ N, but:

Thm (Hirst). RCA0 0 RT1
<∞.

Thm (Jockusch). ACA0 0 RT.

Some consequences of RT2
2

Ascending / Descending Sequence Principle (ADS): Every infinite
linear order has an infinite ascending or descending sequence.

Chain / Antichain Principle (CAC): Every infinite partial order has
an infinite chain or antichain.

Atomic Model Theorem (AMT): Every complete atomic theory
has an atomic model.

Existence of Diagonally Nonrecursive Functions (DNR): For every
X , there is a function f s.t. f (e) 6= ΦX

e(e) for all e.

Some consequences of RT2
2

Ascending / Descending Sequence Principle (ADS): Every infinite
linear order has an infinite ascending or descending sequence.

Chain / Antichain Principle (CAC): Every infinite partial order has
an infinite chain or antichain.

Atomic Model Theorem (AMT): Every complete atomic theory
has an atomic model.

Existence of Diagonally Nonrecursive Functions (DNR): For every
X , there is a function f s.t. f (e) 6= ΦX

e(e) for all e.

Some consequences of RT2
2

Ascending / Descending Sequence Principle (ADS): Every infinite
linear order has an infinite ascending or descending sequence.

Chain / Antichain Principle (CAC): Every infinite partial order has
an infinite chain or antichain.

Atomic Model Theorem (AMT): Every complete atomic theory
has an atomic model.

Existence of Diagonally Nonrecursive Functions (DNR): For every
X , there is a function f s.t. f (e) 6= ΦX

e(e) for all e.

Some consequences of RT2
2

Ascending / Descending Sequence Principle (ADS): Every infinite
linear order has an infinite ascending or descending sequence.

Chain / Antichain Principle (CAC): Every infinite partial order has
an infinite chain or antichain.

Atomic Model Theorem (AMT): Every complete atomic theory
has an atomic model.

Existence of Diagonally Nonrecursive Functions (DNR): For every
X , there is a function f s.t. f (e) 6= ΦX

e(e) for all e.

A Small Part of the Universe Between RCA0 and ACA0

RT2
2

��

��

WKL

��
CAC

��

WWKL

��

ADS

��
AMT DNR

Combined results of Yu and Simpson; Giusto and Simpson;
Ambos-Spies, Kjos-Hanssen, Lempp, and Slaman; Hirschfeldt and
Shore; Hirschfeldt, Jockusch, Kjos-Hanssen, Lempp, and Slaman;
Hirschfeldt, Shore, and Slaman; Liu; and Lerman, Solomon, and
Towsner.

A Larger Part of the Universe Between RCA0 and ACA0

 CRT22

 CADS

 AST

 ACA

 SRAM

 BSig2+Pi01G

 POS+WWKL

 FS3 RT22+WKL+RRT32

 SRT22 ASRAM

 Pi01G

 ISig2

 ISig2+AMT

 WWKL2

 POS

 RRT32

 FS2

 RT22

 CAC+WKL

 RCA

 BSig2+RRT22 POS1 RAN2 DTCp POS2 BSig2+RAN2

 BSig2

 DNR0

 RWWKL

 RAN1 WWKL

 PHPM

 SCAC

 SEM

 RWKL ASRT22 SPT22 SEM+SADS D22 SIPT22

 SADS

 AMT

 FIP

 nD2IP

 OPT

 CAC

 ADS SCAC+CCAC

 StCOH SADS+CADS CCAC

 PART RT12

 COH

 RCOLOR2

 BSig2+COH+RRT22

 StCRT22 StCADS BSig2+COH CRT22+BSig2 BSig2+CADS

 COH+WKL

 WKL

 RWWKL1 RRT22

 DNR

 EM

 IPT22

 RWKL1 EM+ADS SRT22+COH PT22

 EM+BSig2

 P22

 TS2

 STS2 RCOLOR3

Tutorial Series on Reverse Mathematics

Denis R. Hirschfeldt — University of Chicago

2017 NZMRI Summer School, Napier, New Zealand

