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19th c.−→ Abstract mathematics

Increase in power, but also a loss of intuition

Increased demand for rigor

Cantor’s Paradise

Russell’s Paradox: Let S = {A : A /∈ A}. Is S ∈ S?

Crisis in foundations

Hilbert’s Program: prove the consistency of mathematics via
finitistic methods

Gödel’s Second Incompleteness Theorem
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Gödel’s Second Incompleteness Theorem



A Bit of Historical Context: Abstraction and the Loss of Certainty

Concrete, algorithmic mathematics 19th c.−→ Abstract mathematics

Increase in power, but also a loss of intuition

Increased demand for rigor

Cantor’s Paradise

Russell’s Paradox: Let S = {A : A /∈ A}. Is S ∈ S?

Crisis in foundations

Hilbert’s Program: prove the consistency of mathematics via
finitistic methods
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A Bit of Historical Context: Reverse Mathematics

Nada se edifica sobre la piedra, todo sobre la arena,
pero nuestro deber es edificar como si fuera piedra la
arena.

— Jorge Luis Borges

We can still try to understand how much axiomatic power given
theorems need.

Fix a weak base axiomatic system B.

Given a theorem T , we can find an axiomatic system S ⊇ B
sufficient to prove T .

If we can then also show that the axioms of S are provable from
B + T , then we know S is exactly what we need to prove T .

We can also compare theorems in terms of implication over B.
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Kleene in the 1930’s

Turing’s machine-based definition (1936)

All of these definitions are equivalent.

Church-Turing Thesis: This definition captures the intuitive notion
of “computable”.



A Bit of Historical Context: Computability Theory

Despite Hilbertian optimism, not all problems have algorithms.

Examples require a formal notion of computability.

Various proposed definitions by Church, Gödel, Herbrand,
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A Bit of Computability Theory

We look at countably infinite objects built out of finite ones, e.g.
sets of natural numbers, sets of finite strings, functions N→ N, etc.

Computability for such objects can be
thought of via an informal idea of algorithm;
defined formally using a model such as Turing machines.

We can list all Turing machines (with inputs and outputs in N), in
such a way that we can simulate the computation of the eth

machine on input n using a universal Turing machine.

A Turing machine may fail to halt on a given input, so this list
yields a list Φ0,Φ1, . . . of all partial computable functions.

We write Φe(n)↓ to mean that Φe is defined on n.
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A Bit of Computability Theory

The Halting Problem is ∅′ = {〈e,n〉 : Φe(n)↓}.

Thm (Turing). ∅′ is not computable.

Pf. By diagonalization: Suppose that ∅′ is computable.

Then so is f (e) =

{
Φe(e) + 1 if 〈e,e〉 ∈ ∅′

0 otherwise.

Thus Φe = f for some e.

Then Φe(e)↓ = f (e) = Φe(e) + 1. �

A similar proof shows that there is no effective list of all total
computable functions.
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∅′ is not computable, but it is computably enumerable (c.e.).

So are the sets in the Entscheidungsproblem and in Hilbert’s 10th

problem.

A is computable relative to B if there is an algorithm for
computing A if given access to B.

Can be formalized using Turing machines with oracle tapes.

We write A 6T B and say that A is Turing reducible to B.

If A 6T B and B 6T A then A and B are Turing equivalent.

The resulting equivalence classes are the Turing degrees.

The degree of the join A⊕ B = {2n : n ∈ A} ∪ {2n + 1 : n ∈ B} is the
least upper bound of the degrees of A and B.
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the same Turing degree as ∅′.
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incomplete c.e. sets.
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A Bit of Computability Theory

We can relativize other computability-theoretic concepts.

We can define the concept of being c.e. relative to X .

Let ΦX
0 ,Φ

X
1 , . . . be the functions that are partial computable

relative to X .

We can define the Halting Problem relative to X as
X ′ = {〈e,n〉 : ΦX

e(n)↓}.

We call this the (Turing) jump of X .

If X 6T Y then X ′ 6T Y ′, but not necessarily vice-versa.

Computability-theoretic results tend to relativize.

E.g., X ′ is not computable relative to X , and is complete for sets
c.e. relative to X .
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Part II: Computability-Theoretic Comparison



An Example: Versions of König’s Lemma



Trees and Paths

A tree is a subset T of N<ω closed under initial segments.

T is computable if there is an algorithm for determining whether
a given σ is in T .

T is finitely branching if for each σ ∈ T , |{n : σn ∈ T}| <∞.

T is binary if it is a subset of 2<ω.

A path on T is a P ∈ Nω s.t. every initial segment of P is in T .

Put a topology on Nω by taking {X : σ ≺ X} as basic open sets.

Then C is closed iff it is the set of paths on a tree.

Put a measure on 2ω by letting µ({X : σ ≺ X}) = 2−|σ|.
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Versions of König’s Lemma

König’s Lemma: Every infinite, finitely branching tree has a path.

Weak König’s Lemma: Every infinite binary tree has a path.

Weak Weak König’s Lemma: Every binary tree T s.t.

lim infn
|{σ∈T :|σ|=n}|

2n > 0

has a path.

Bounded König’s Lemma: Every infinite binary tree T s.t.

|{σ ∈ T : |σ| = n}| < c

for some c has a path.
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Versions of König’s Lemma

KL: Infinite, finitely branching trees have paths.

WKL: Infinite binary trees have paths.

WWKL: Fat binary trees have paths.

BKL: Skinny infinite binary trees have paths.

WKL says that 2ω is compact.

KL says that certain subspaces of Nω are compact, but these
subspaces are not as effectively presented.

WKL: Find an element of a closed set.

WWKL: Find an element of a closed of positive measure.

BKL: Find an element of a finite set.
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Bounded König’s Lemma and Computability

Let T be a computable infinite binary tree s.t.
|{σ ∈ T : |σ| = n}| < c for all n.

There is a σ ∈ T extended by a unique path P on T .

For each n > |σ|, there is a unique τn � σ of length n s.t. T is
infinite above τn.

We can find τn computably.

P = limn τn, so T has a computable path.

In fact, every path on T is computable.

More generally, even if T is not computable, the above
procedure is computable relative to T .

Thus BKL is computably true.
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König’s Lemma and Computability

Thm (Kreisel). There is a computable infinite binary tree with no
computable path.

Thus WKL is not computably true, and hence neither is KL.

Kreisel’s tree can be fat, so WWKL is also not computably true.

To build such a tree, we diagonalize against all potential
computable paths.

There is a computable infinite, finitely branching tree T s.t. every
path of T computes ∅′.

There is a computable infinite, finitely branching tree T with no
path computable relative to ∅′.
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Weak König’s Lemma and Computability

Let T be a computable infinite binary tree.

Thm (Kreisel). T has a path P 6T ∅′.

An example is the leftmost path of T .

Thm (Shoenfield). T has a path P <T ∅′.

Thus WKL is strictly weaker than KL in at least two senses.

But just how much weaker?

Low Basis Thm (Jockusch and Soare). T has a path P s.t. P ′ 6T ∅′.

Such a P is called low.

This theorem relativizes: If the binary tree T is computable
relative to X then T has a path P s.t. (P ⊕ X)′ 6T X ′.
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Computable Entailment



Second-Order Statements

Versions of KL are second-order statements, involving
quantification over first-order (finite) objects and second-order
(countably infinite) objects.

We can encode finite objects as natural numbers: e.g., strings,
rationals, finite sets, . . .

We can encode countably infinite objects as sets of natural
numbers: e.g., infinite sequences, trees, groups, reals, . . .

So we might encode a σ ∈ 2<ω of length n as
2σ(0) + 4σ(1) + · · ·+ 2nσ(n− 1).

Then a tree is just a particular kind of subset of N.

Thus we can work in second-order arithmetic.
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Π1
2 Statements

Statements involving only first-order quantification are called
arithmetic.

Version of KL are of the form

∀X [Θ(X) → ∃Y Ψ(X ,Y )],

where Θ and Ψ are arithmetic.

We can think of such a statement as a problem:
An instance is an X s.t. Θ(X) holds.
A solution to X is a Y s.t. Ψ(X ,Y ) holds.

Solving an instance of WKL takes less power than solving an
instance of KL.

But what about multiple instances?
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I the existence of algebraic closures of fields
I Gödel’s Completeness Theorem for theories
I the Intermediate Value Theorem
I the Tietze Extension Theorem for complete separable metric

spaces
...

Computably equivalent to WWKL:
I the Vitali Covering Theorem
I the monotone convergence theorem for Lebesgue measure

on [0, 1]

I the existence of (relatively) Martin-Löf random sequences
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Stephen G. Simpson, Subsystems of Second Order Arithmetic



Second-Order Arithmetic and RCA0



Second-Order Arithmetic

We work in a language with number variables, set variables, and
symbols 0, 1, S, <,+, ·,∈.

Again we encode finite objects as natural numbers and infinite
objects as sets of natural numbers.

Reverse Mathematics: fix a weak base system and calibrate the
strength of principles by considering implications over this system.

Often in terms of a few subsystems of second-order arithmetic.
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Full second-order arithmetic consists of

I axioms for a discrete ordered commutative semiring

I comprehension:

∃X ∀n [n ∈ X ↔ ϕ(n)]

for all formulas ϕ s.t. X is not free in ϕ

I induction:

(ϕ(0) ∧ ∀n [ϕ(n) → ϕ(n + 1)] → ∀n ϕ(n)

for all formulas ϕ

We obtain subsystems by limiting comprehension and induction.
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A Hierarchy of Arithmetic Formulas

A bounded quantifier is one of the form ∀x < t or ∃x < t .

A bounded-quantifier formula is an arithmetic formula in which
all quantifiers are bounded.

A Σ0
n formula is one of the form

∃x1 ∀x2 ∃x3 ∀x4 · · ·Qxn ϕ,

where ϕ is a bounded-quantifier formula and Q is ∃ if n is odd
and ∀ if n is even.

A Π0
n formula is one of the form

∀x1 ∃x2 ∀x3 ∃x4 · · ·Qxn ϕ,

where ϕ is a bounded-quantifier formula and Q is ∀ if n is odd
and ∃ if n is even.

These formulas can have free variables.
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The Weak Base System RCA0

RCA0 is obtained by restricting:

I comprehension to ∆0
1-comprehension:

∀n [ϕ(n) ↔ ψ(n)] → ∃X ∀n [n ∈ X ↔ ϕ(n)]

for all ϕ,ψ s.t. ϕ is Σ0
1 and ψ is Π0

1, and X is not free in ϕ

I induction to Σ0
1-induction:

(ϕ(0) ∧ ∀n [ϕ(n) → ϕ(n + 1)]) → ∀n ϕ(n)

for all Σ0
1 formulas ϕ

This choice of base system creates a tight connection between
this approach and computable entailment.
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The Arithmetic Hierarchy

A first-order formula is one with no set variables.

A ⊆ N is defined in N by a first-order formula ϕ(y) if: k ∈ A iff ϕ(k)
holds in N.

A set is Σ0
n if it is defined in N by some Σ0

n first-order formula.

A set is Π0
n if it is defined in N by some Π0

n first-order formula.

A set is ∆0
n if it is both Σ0

n and Π0
n.

A set is arithmetic if it is in one of these classes.
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Recall that Z ′ is the Halting Problem relative to Z .

Define X (n) as follows: X (0) = X and X (n+1) = (X (n))′.

Thm (Post). A set is Σ0
n+1 iff it is c.e. relative to ∅(n), and is ∆0

n+1 iff it
is computable relative to ∅(n).
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Relativizing the Arithmetic Hierarchy

All of this can be relativized to any S ⊆ N:

Consider formulas with one free set variable X .

A ⊆ N is defined in (N, S) by ϕ(y ,X) if: k ∈ A iff ϕ(k , S) holds in N.

A set is Σ0
n relative to S if it is defined in (N, S) by some Σ0

n formula.

A set is Π0
n relative to S if it is defined in (N, S) by some Π0

n formula.

A set is ∆0
n relative to S if it is both Σ0

n and Π0
n relative to S.

Post’s Theorem holds in relativized form.

In particular, A is ∆0
1 relative to S iff A is computable relative to S.
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Models of RCA0

A model in the language of second-order arithmetic consists of
a first-order part N = (N; 0N , 1N , SN , <N ,+N , ·N) and a
second-order part S ⊆ 2N .

If N is the standard natural numbers, we call this an ω-model
and identify it with S.

Thm (Friedman). S is an ω-model of RCA0 iff S is a Turing ideal.

Cor. If RCA0 + P ` Q then P �c Q.

The converse does not always hold because non-ω-models of
RCA0 exist, but it often does.
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Mathematics in RCA0

Several theorems can be proved in RCA0, e.g. many basic
properties of the natural numbers and the reals, as well as
I the existence of algebraic closures of fields
I Gödel’s Completeness Theorem for theories
I the Intermediate Value Theorem
I the Tietze Extension Theorem for complete separable metric

spaces
...

But the computable sets form an ω-model of RCA0, so theorems
that are not computably true cannot be proved in RCA0.

Limited induction also plays a role.

Thm (Yokoyama). BKL is not provable in RCA0.
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Other Subsystems of Second-Order Arithmetic

ACA0: RCA0 + arithmetic comprehension:

∃X ∀n [n ∈ X ↔ ϕ(n)]

for all arithmetic ϕ s.t. X is not free in ϕ

ACA0 implies arithmetic induction.

A Turing ideal is an ω-model of ACA0 iff it is closed under jumps.

RCA0 + Σ0
1-comprehension implies ACA0.

KL is equivalent to ACA0 over RCA0. So are

I the existence of maximal ideals for commutative rings
I the existence of bases for vector spaces
I the Bolzano-Weierstraß Theorem
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Other Subsystems of Second-Order Arithmetic

WWKL0: RCA0 + Weak Weak König’s Lemma

Equivalents of WWKL0:
I the Vitali Covering Theorem
I the monotone convergence theorem for Lebesgue measure

on [0, 1]

I the existence of (relatively) Martin-Löf random sequences
...
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Relationships between Subsystems of Second-Order Arithmetic

Π1
1-CA0

↓
ATR0

↓
ACA0

↓
WKL0

↓
WWKL0

↓
RCA0



Ramsey’s Theorem

[X ]n is the set of n-element subsets of X .

A k-coloring of [X ]n is a map c : [X ]n → k .

A set H ⊆ X is homogeneous for c if |c([H]n)| = 1.

Ramsey’s Theorem for n-tuples and k colors (RTn
k ): Every

k-coloring of [N]n has an infinite homogeneous set.

For j, k > 2, RTn
j and RTn

k are equivalent over RCA0.

RTn
<∞ is ∀k RTn

k and RT is ∀n ∀k RTn
k .
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The Reverse Mathematics of Ramsey’s Theorem

Thm (Jockusch/Simpson). For n > 3, RCA0 ` RTn
2 ↔ ACA0.

Thm (Seetapun). RCA0 + RT2
2 0 ACA0.

Thm (Hirst). WKL0 0 RT2
2.

Thm (Liu). RCA0 + RT2
2 0 WWKL0.

RCA0 ` RT1
k for any k ∈ N, but:

Thm (Hirst). RCA0 0 RT1
<∞.

Thm (Jockusch). ACA0 0 RT.
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Some consequences of RT2
2

Ascending / Descending Sequence Principle (ADS): Every infinite
linear order has an infinite ascending or descending sequence.

Chain / Antichain Principle (CAC): Every infinite partial order has
an infinite chain or antichain.

Atomic Model Theorem (AMT): Every complete atomic theory
has an atomic model.

Existence of Diagonally Nonrecursive Functions (DNR): For every
X , there is a function f s.t. f (e) 6= ΦX

e(e) for all e.
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A Small Part of the Universe Between RCA0 and ACA0

RT2
2

��

��

WKL

��
CAC

��

WWKL

��

ADS

��
AMT DNR

Combined results of Yu and Simpson; Giusto and Simpson;
Ambos-Spies, Kjos-Hanssen, Lempp, and Slaman; Hirschfeldt and
Shore; Hirschfeldt, Jockusch, Kjos-Hanssen, Lempp, and Slaman;
Hirschfeldt, Shore, and Slaman; Liu; and Lerman, Solomon, and
Towsner.



A Larger Part of the Universe Between RCA0 and ACA0
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