The HOD Dichotomy

W. Hugh Woodin

Harvard University

January 13, 2017

Weak extender models and universality

Definition

Suppose λ is an uncountable cardinal.

- λ is a singular cardinal if there exists a cofinal set X ⊂ λ such that |X| < λ.</p>
- λ is a regular cardinal if there does not exist a cofinal set X ⊂ λ such that |X| < λ.</p>

Lemma (Axiom of Choice)

Every (infinite) successor cardinal is a regular cardinal.

Definition

Suppose λ is an uncountable cardinal. Then $cof(\lambda)$ is the minimum possible |X| where $X \subset \lambda$ is cofinal in λ .

- $cof(\lambda)$ is always a regular cardinal.
- If λ is regular then $cof(\lambda) = \lambda$.
- If λ is singular then $cof(\lambda) < \lambda$.

Supercompactness

Definition

Suppose that κ is an uncountable regular cardinal and that $\kappa < \lambda$.

1.
$$\mathcal{P}_{\kappa}(\lambda) = \{ \sigma \subset \lambda \mid |\sigma| < \kappa \}.$$

- 2. Suppose that $U \subseteq \mathcal{P}(\mathcal{P}_{\kappa}(\lambda))$ is an ultrafilter.
 - *U* is **fine** if for each $\alpha < \lambda$,

$$\{\sigma \in \mathcal{P}_{\kappa}(\lambda) \mid \alpha \in \sigma\} \in U.$$

• U is **normal** if for each function

$$f: \mathcal{P}_{\kappa}(\lambda) \to \lambda$$

such that

th

$$\{\sigma \in \mathcal{P}_{\kappa}(\lambda) \mid f(\sigma) \in \sigma\} \in U,$$

ere exists $\alpha < \lambda$ such that
$$\{\sigma \in \mathcal{P}_{\kappa}(\lambda) \mid f(\sigma) = \alpha\} \in U.$$

Definition

Suppose that κ is an uncountable regular cardinal. Then κ is a **supercompact cardinal** if for each $\lambda > \kappa$ there exists an ultrafilter U on $\mathcal{P}_{\kappa}(\lambda)$ such that:

- 1. U is κ -complete,
- 2. U is a normal fine ultrafilter.

Theorem (Solovay)

Suppose $\kappa < \lambda$ are uncountable regular cardinals and that U is a κ -complete normal fine ultrafilter on $\mathcal{P}_{\kappa}(\lambda)$.

• Then there exists $Z \in U$ such that the function

$$f(\sigma) = \sup(\sigma)$$

is 1-to-1 on Z.

The set Z does not depend on U.

Weak Extender Models

Definition

Suppose N is a transitive class, N contains the ordinals, and that N is a model of ZFC.

- ► Then N is a weak extender model for the supercompactness of δ iff for every γ > δ there exists a δ-complete normal fine ultrafilter U on P_δ(γ) such that
 - $N \cap \mathcal{P}_{\delta}(\gamma) \in U$,
 - $U \cap N \in N$.

The Basic Thesis

If there is a generalization of L at the level of a supercompact cardinal then it should exist in a version which is a weak extender model for the supercompactness of some δ .

Elementary embeddings and weak extender models

Theorem (Weak Universality Theorem)

Suppose that N is a weak extender model for the supercompactness of δ , $\alpha > \delta$ is an ordinal, and that

 $j: \mathsf{N} \cap \mathsf{V}_{\alpha+1} \to \mathsf{N} \cap \mathsf{V}_{j(\alpha)+1}$

is an elementary embedding such that $\delta \leq CRT(j)$.

- Then $j \in N$.
- A much stronger version holds, which is the Universality Theorem.

Kunen's Theorem

Theorem (Kunen)

Suppose that λ is a cardinal.

Then there is no non-trivial elementary embedding

$$j: V_{\lambda+2} \to V_{\lambda+2}.$$

Theorem

Let N be a weak extender model for the supercompactness of δ .

Then there is no nontrivial elementary embedding

$$j: N \to N$$

such that $\delta \leq \operatorname{CRT}(j)$.

- ▶ By the Weak Universality Theorem, for each cardinal λ , $j|(N \cap V_{\lambda+2}) \in N$.
- ▶ This implies there exists a cardinal $\lambda > CRT(j)$ such that $j(\lambda) = \lambda$ and $j|(N \cap V_{\lambda+2}) \in N$.
- ► This contradicts Kunen's Theorem in *N*.

Theorem

Suppose that δ is a supercompact cardinal.

- Then there is a weak extender model N for the supercompactness of δ, and a nontrivial elementary embedding j : N → N.
- ▶ By the Weak Universality Theorem, necessarily $CRT(j) < \delta$.
- This shows that restriction on CRT(j) is necessary in the Weak Universality Theorem.

The Jensen Dichotomy

The Jensen Dichotomy Theorem

Theorem (Jensen)

Exactly one of the following holds.

- (1) For all singular cardinals γ , γ is a singular cardinal in L and $\gamma^+ = (\gamma^+)^L$.
 - L is close to V.
- (2) Every uncountable cardinal is a regular limit cardinal in L.
 L is far from V.

A strong version of Scott's Theorem:

Theorem (Silver)

Assume that there is a measurable cardinal.

► Then L is far from V.

Weak extender models for supercompactness

Theorem

Suppose that N is a weak extender model for supercompactness of δ , and that $\gamma > \delta$ is a singular cardinal. Then

• γ is a singular cardinal in N,

•
$$(\gamma^+)^N = \gamma^+$$
.

- There can be no (nontrivial) generalization of the Jensen Dichotomy Theorem to any weak extender model for supercompactness.
 - Weak inner models for supercompactness cannot be far from V

The HOD Dichotomy

Gödel's transitive class HOD

Recall that a set M is transitive if every element of M is a subset of M.

Definition

HOD is the class of all sets X such that there exist $\alpha \in \text{Ord}$ and $M \subset V_{\alpha}$ such that

- 1. $X \in M$ and M is transitive.
- 2. Every element of M is definable in V_{α} from ordinal parameters.
- ▶ (ZF) The Axiom of Choice holds in HOD.
- ► $L \subseteq HOD$.

Lemma

Suppose $\alpha < \beta$ are ordinals and

 $X \subset \mathrm{HOD} \cap V_{\alpha}$

is definable in V_{β} from ordinal parameters. Then $X \in HOD$.

Stationary sets

Definition

Suppose λ is an uncountable regular cardinal.

- 1. A set $C \subset \lambda$ is **closed and unbounded** if C is cofinal in λ and contains all of its limit points below λ :
 - ▶ For all limit ordinals $\eta < \lambda$, if $C \cap \eta$ is cofinal in η then $\eta \in C$.
- 2. A set $S \subset \lambda$ is **stationary** if $S \cap C \neq \emptyset$ for all closed unbounded sets $C \subset \lambda$.

Example:

- Let $S \subset \omega_2$ be the set all ordinals α such that $cof(\alpha) = \omega$.
 - S is a stationary subset of ω_2 ,
 - $\omega_2 \setminus S$ is a stationary subset of ω_2 .

The Solovay Splitting Theorem

Theorem (Solovay)

Suppose that λ is an uncountable regular cardinal and that $S \subset \lambda$ is stationary.

Then there is a partition

 $\langle S_{\alpha} : \alpha < \lambda \rangle$

of S into λ -many pairwise disjoint stationary subsets of λ .

▶ But suppose $S \in HOD$. Can one require

 $S_{\alpha} \in \mathrm{HOD}$

for all $\alpha < \lambda$?

Definition

Let λ be an uncountable regular cardinal and let

$$S = \{ \alpha < \lambda \mid \operatorname{cof}(\alpha) = \omega \}.$$

Then λ is ω -strongly measurable in HOD iff there exists $\kappa < \lambda$ such that:

- 1. $(2^{\kappa})^{\mathrm{HOD}} < \lambda$,
- 2. there is no partition $\langle S_\alpha \mid \alpha < \kappa \rangle$ of S into stationary sets such that

 $S_{\alpha} \in \mathrm{HOD}$

for all $\alpha < \lambda$.

A simple lemma

Suppose $\mathbb B$ is a complete Boolean algebra and γ is a cardinal. \blacktriangleright $\mathbb B$ is $\gamma\text{-cc}$ if

 $|\mathcal{A}| < \gamma$

for all $\mathcal{A} \subset \mathbb{B}$ such that \mathcal{A} is an antichain:

• $a \wedge b = 0$ for all $a, b \in \mathcal{A}$ such that $a \neq b$.

Lemma

Suppose that λ is an uncountable regular cardinal and that \mathcal{F} is a λ -complete uniform filter on λ . Let

 $\mathbb{B} = \mathcal{P}(\lambda)/I$

where I is the ideal dual to \mathcal{F} . Suppose that \mathbb{B} is γ -cc for some γ such that $2^{\gamma} < \lambda$.

• Then $|\mathbb{B}| \leq 2^{\gamma}$ and \mathbb{B} is atomic.

Lemma

Assume λ is ω -strongly measurable in HOD. Then

HOD $\models \lambda$ is a measurable cardinal.

Proof.

Let
$$S = \{ \alpha < \lambda \mid (\operatorname{cof}(\alpha))^V = \omega \}$$
 and let

 $\mathcal{F} = \{A \in \mathcal{P}(\kappa) \cap \text{HOD} \mid S \setminus A \text{ is not a stationary subset of } \lambda \text{ in } V \}.$ Thus $\mathcal{F} \in \text{HOD}$ and in HOD, \mathcal{F} is a λ -complete uniform filter on λ .

- Since λ is ω-strongly measurable in HOD, there exists γ < λ such that in HOD:</p>
 - ▶ 2^γ < λ,</p>
 - $\mathcal{P}(\lambda)/I$ is γ -cc where I is the ideal dual to \mathcal{F} .

Therefore by the simple lemma (applied within $\operatorname{HOD}),$ the Boolean algebra

 $(\mathcal{P}(\lambda) \cap \mathrm{HOD})/I$

is atomic.

Extendible cardinals

Definition

Suppose that δ is a cardinal.

Then δ is an extendible cardinal if for each λ > δ there exists an elementary embedding

$$\pi: V_{\lambda+1} \to V_{\pi(\lambda)+1}$$

such that $CRT(\pi) = \delta$ and $\pi(\delta) > \lambda$.

Lemma

Suppose that δ is an extendible cardinal. Then

- (1) δ is a supercompact cardinal.
- (2) δ is a limit of supercompact cardinals.

Theorem

Suppose that δ is an extendible cardinal. Then the following are equivalent.

- (1) HOD is a weak extender model for the supercompactness of δ .
- (2) There exists a regular cardinal $\lambda > \delta$ which is not ω -strongly measurable in HOD.

Theorem (HOD Dichotomy Theorem)

Suppose that δ is an extendible cardinal. Then one of the following holds.

- (1) Every regular cardinal $\kappa \geq \delta$ is ω -strongly measurable in HOD. Further:
 - HOD is not a weak extender for the supercompactness of any λ.
 - There is no weak extender model N for the supercompactness of some λ such that N ⊆ HOD.
- (2) No regular cardinal $\kappa \geq \delta$ is ω -strongly measurable in HOD. Further:
 - HOD is a weak extender model for the supercompactness of δ .
 - Suppose γ is a singular cardinal and $\gamma > \delta$.
 - Then γ is singular cardinal in HOD and $\gamma^+ = (\gamma^+)^{\text{HOD}}$.

Theorem

Suppose that δ is an extendible cardinal.

• Then δ is a measurable cardinal in HOD.

Proof.

If δ is $\omega\text{-strong}$ measurable in HOD then δ is a measurable cardinal in HOD and so we can reduce to the case that

• δ is **not** ω -strongly measurable in HOD.

But then by HOD Dichotomy Theorem, HOD is a weak extender model for supercompactness of δ , and so δ is a supercompact cardinal in HOD.

The HOD Conjecture

Weak extender models for the measurability of δ

Definition

Suppose N is a transitive class, N contains the ordinals, and that N is a model of ZFC.

• Then *N* is a weak extender model for the measurability of δ iff there exists a δ -complete uniform ultrafilter *U* on δ such that

 $U \cap N \in N$.

Theorem (Kunen 1971)

Suppose that δ is a measurable cardinal. Then there is a weak extender model for the measurability of δ such that

 $N \subset HOD.$

Speculation

Assume there is a supercompact cardinal (or more).

- If there is an ultimate version of L and it can take the form of a weak extender model for δ is supercompact then the HOD-Dichotomy Theorem is **not** a genuine dichotomy theorem.
- The generalization of Kunen's theorem to weak extender models for supercompactness would verify this.
- By the HOD Dichotomy Theorem this is actually an equivalence.

The HOD Hypothesis

Definition (The HOD Hypothesis)

There exists a proper class of regular cardinals λ which are not $\omega\text{-strongly}$ measurable in HOD.

- 1. It is not known if there can exist 4 regular cardinals which are ω -strongly measurable in HOD.
- 2. Suppose γ is a singular cardinal of uncountable cofinality. It is not known if γ^+ can ever be ω -strongly measurable in HOD.

Theorem (HOD Hypothesis)

Suppose that δ is an extendible cardinal.

• Then HOD is a weak extender model for δ is supercompact.

The HOD Conjecture

Definition (HOD Conjecture)

The theory $\rm ZFC+$ "There is a supercompact cardinal" proves the HOD Hypothesis.

- ► The HOD Conjecture is a number theoretic conjecture.
- If the HOD Conjecture holds then the theory ZFC + "There is an extendible cardinal" proves:
 - \blacktriangleright "HOD is a weak extender model for the supercompactness of some $\delta^{\prime\prime}$

Applications of the HOD Conjecture in ZF

Theorem (ZF)

Assume the HOD Conjecture and that δ is an extendible cardinal.

• Then for every cardinal $\lambda > \delta$, λ^+ is a regular cardinal.

Theorem (ZF)

Assume the HOD Conjecture and that δ is an extendible cardinal.

► Then for every regular cardinal λ ≥ δ, the Solovay Splitting Theorem holds at λ.

Theorem (ZF)

Assume the HOD Conjecture and that δ is an extendible cardinal.

► Then for every cardinal λ > δ, there is no nontrivial elementary embedding j : V_{λ+2} → V_{λ+2}.

Assume the HOD Conjecture is true

Speculation on why the HOD Conjecture is true

If δ is an extendible cardinal then there must exist

 $N \subset V$

such that:

- N is a weak extender model for δ is supercompact.
- ▶ $N \subset HOD$.
- ► N is a generalization of L.

So:

• There should be an ultimate version of the axiom V = L.