Generalizing L

W. Hugh Woodin

Harvard University

January 11, 2017

Generalizing the projective sets

Recall: the projective sets

Definition

A set $A \subseteq \mathbb{R}^n$ is **projective** if it can be generated from the open subsets of \mathbb{R}^n in finitely many steps of taking complements and images by continuous functions,

 $f: \mathbb{R}^n \to \mathbb{R}^n$.

Definition

Suppose that $A \subseteq \mathbb{R} \times \mathbb{R}$. A function f uniformizes A if for all $x \in \mathbb{R}$:

▶ if there exists $y \in \mathbb{R}$ such that $(x, y) \in A$ then $(x, f(x)) \in A$.

Two questions of Luzin

Two questions of Luzin

- 1. Suppose $A \subseteq \mathbb{R} \times \mathbb{R}$ is projective. Can A be uniformized by a projective function?
- 2. Suppose $A \subseteq \mathbb{R}$ is projective. Is A Lebesgue measurable and does A have the property of Baire?

Both questions are unsolvable on the basis of the ZFC axioms

Projective Determinacy (PD) and the Luzin's questions

Definition

Projective Determinacy (PD): Every projective set $A \subseteq \mathbb{R}$ is determined.

Theorem

Assume every projective set is determined.

- (1) (Mycielski-Steinhaus) Every projective set has the property of Baire.
- (2) (Mycielski-Swierczkowski) Every projective set is Lebesgue measurable.
- (3) (Moschovakis) Every projective set A ⊆ ℝ × ℝ can be uniformized by a projective function.

The axiom V = L and the projective sets

Theorem

Assume V = L.

- (1) (Gödel) Every projective set $A \subseteq \mathbb{R} \times \mathbb{R}$ can be uniformized by a projective function.
- (2) (Gödel) There is a projective set which is not Lebesgue measurable:
 - there is a projective wellordering of the reals.

So again we see:

A transfinite extension of the projective sets

Relativizing L to $\mathbb R$

Define $L_{\alpha}(\mathbb{R})$ by induction on α by:

- 1. $L_0(\mathbb{R}) = \mathbb{R}$ (more precisely $L_0(\mathbb{R}) = V_{\omega+1}$),
- 2. (Successor case) $L_{\alpha+1}(\mathbb{R}) = \mathcal{P}_{\mathrm{Def}}(L_{\alpha}(\mathbb{R}))$,
- 3. (Limit case) $L_{\alpha}(\mathbb{R}) = \cup \{L_{\beta}(\mathbb{R}) \mid \beta < \alpha\}.$

 $L(\mathbb{R})$ is the class of all sets X such that $X \in L_{\alpha}(\mathbb{R})$ for some ordinal α .

- $L_1(\mathbb{R}) \cap \mathcal{P}(\mathbb{R})$ is exactly the projective sets.
- L_{ω1}(ℝ) ∩ P(ℝ) is the smallest σ-algebra containing the projective sets and closed under images by continuous functions, f : ℝ → ℝ.

A transfinite extension of projective determinacy

The axiom $L(\mathbb{R}) \models AD$

Suppose $A \subseteq \mathbb{R}$ and $A \in L(\mathbb{R})$. Then A is determined.

Theorem (Martin-Steel, Woodin)

Assume there are infinitely many Woodin cardinals with a measurable cardinal above. Then $L(\mathbb{R}) \models AD$.

Theorem

The following theories are equiconsistent.

(1)
$$\operatorname{ZFC} + ``L(\mathbb{R}) \models \operatorname{AD}"$$
.

(2) ZFC + "There are infinitely many Woodin cardinals".

Luzin's questions beyond the projective sets

Luzin's questions at stage $L_{\alpha}(\mathbb{R})$

- 1. Suppose $A \subseteq \mathbb{R} \times \mathbb{R}$ and $A \in L_{\alpha}(\mathbb{R})$. Can A be uniformized by a function $f \in L_{\alpha}(\mathbb{R})$?
- 2. Suppose $A \subseteq \mathbb{R}$ and $A \in L_{\alpha}(\mathbb{R})$. Is A Lebesgue measurable and does A have the property of Baire?

Assume $L(\mathbb{R}) \models AD$.

- 1. The answer to Luzin's measure question is yes at every ordinal stage $L_{\alpha}(\mathbb{R})$.
- 2. The answer to Luzin's uniformization question is yes at many ordinal stages $L_{\alpha}(\mathbb{R})$,
 - but not for all α.

Uniformization in $L(\mathbb{R})$

Lemma

The following are equivalent.

- (1) Uniformization holds for $L(\mathbb{R})$.
- (2) For all sufficiently large ordinals α, uniformization holds for L_α(ℝ).
- (3) The Axiom of Choice holds in $L(\mathbb{R})$.

Uniformization in $L(\mathbb{R})$ and the necessity of determinacy

Question

Can positive answers to Luzin's questions be obtained by a different method not involving determinacy?

Theorem

Suppose that uniformization holds in $L_{\alpha}(\mathbb{R})$ and that $\alpha = \omega_1 \cdot \beta$ for some limit ordinal β . Then the following are equivalent.

- (1) Every set $A \in L_{\alpha}(\mathbb{R}) \cap \mathcal{P}(\mathbb{R})$ is Lebesgue measurable and has the property of Baire.
- (2) Every set $A \in L_{\alpha}(\mathbb{R}) \cap \mathcal{P}(\mathbb{R})$ is determined.

• The restriction on α is necessary:

• the theorem is **false** with $\alpha = \omega_1$.

The ultimate generalization of the projective sets

Universally Baire sets

Speculation

The enlargements of L we seek will also yield enlargements of $L(\mathbb{R})$.

In seeking the ultimate enlargement of L perhaps we should first seek the ultimate enlargement of P(ℝ) ∩ L(ℝ).

Definition (Feng-Magidor-Woodin)

A set $A \subseteq \mathbb{R}^n$ is **universally** Baire if for all topological spaces Ω and for all continuous functions $\pi : \Omega \to \mathbb{R}^n$, the preimage of A by π has the property of Baire in the space Ω .

 Universally Baire sets are necessarily Lebesgue measurable and have the property of Baire.

$L(A,\mathbb{R})$ where $A\subseteq\mathbb{R}$

Relativizing *L* to $A \subseteq \mathbb{R}$

Suppose $A \subseteq \mathbb{R}$. Define $L_{\alpha}(A, \mathbb{R})$ by induction on α by:

- 1. $L_0(A, \mathbb{R}) = \mathbb{R} \cup \{A\}$ (more precisely $L_0(A, \mathbb{R}) = V_{\omega+1} \cup \{A\}$),
- 2. (Successor case) $L_{\alpha+1}(A,\mathbb{R}) = \mathcal{P}_{\mathrm{Def}}(L_{\alpha}(A,\mathbb{R}))$,
- 3. (Limit case) $L_{\alpha}(A, \mathbb{R}) = \cup \{L_{\beta}(A, \mathbb{R}) \mid \beta < \alpha\}.$
- L(A, ℝ) is the class of all sets X such that X ∈ L_α(A, ℝ) for some ordinal α.
- P(ℝ) ∩ L_{ω1}(A, ℝ) is the smallest σ-algebra containing A and closed under images by continuous functions f : ℝ → ℝ.
- If $A \in L(\mathbb{R})$ then $L(A, \mathbb{R}) = L(\mathbb{R})$.

An abstract generalization of the projective sets

Theorem

Suppose that there is a proper class of Woodin cardinals. Then every projective set is universally Baire.

Theorem

Suppose that there is a proper class of Woodin cardinals.

- (1) (Martin-Steel) Suppose $A \subseteq \mathbb{R}$ is universally Baire. Then A is determined.
- (2) Suppose $A \subseteq \mathbb{R}$ is universally Baire. Then every set $B \in L(A, \mathbb{R}) \cap \mathcal{P}(\mathbb{R})$ is universally Baire.
- (3) (Steel) Suppose $A \subseteq \mathbb{R} \times \mathbb{R}$ is universally Baire. Then A can be uniformized by a universally Baire function.
 - The answers to Luzin's questions are both yes for the universally Baire sets.

Determinacy and the universally Baire sets

Theorem (Martin-Steel, Woodin)

Assume there are infinitely many Woodin cardinals with a measurable cardinal above. Then

►
$$L(\mathbb{R}) \models AD.$$

Theorem

Suppose that there is a proper class of Woodin cardinals and that $A \subset \mathbb{R}$ is universally Baire. Then

►
$$L(A, \mathbb{R}) \models AD.$$

Measuring the complexity of universally Baire sets

Definition

Suppose A and B are subsets of \mathbb{R} .

- 1. A is **borel reducible** to B, $A \leq_{\text{borel}} B$, if there is a borel function $\pi : \mathbb{R} \to \mathbb{R}$ such that
 - either $A = \pi^{-1}[B]$ or $A = \mathbb{R} \setminus \pi^{-1}[B]$.
- 2. A and B are borel bi-reducible if

• $A \leq_{\text{borel}} B$ and $B \leq_{\text{borel}} A$.

3. The **borel degree** of *A* is the equivalence class of all sets which are borel bi-reducible with *A*.

Theorem (Martin-Steel, Martin, Wadge)

Assume there is a proper class of Woodin cardinals.

Then the borel degrees of the universally Baire sets are linearly ordered by borel reducibility and moreover this is a wellorder.

Speculation

Perhaps this ultimate generalization of the projective sets can lead us to the ultimate generalization of L.

But how?

Weak extender models and universality

Definition

Suppose λ is an uncountable cardinal.

- λ is a singular cardinal if there exists a cofinal set X ⊂ λ such that |X| < λ.</p>
- λ is a regular cardinal if there does not exist a cofinal set X ⊂ λ such that |X| < λ.</p>

Lemma (Axiom of Choice)

Every (infinite) successor cardinal is a regular cardinal.

Definition

Suppose λ is an uncountable cardinal. Then $cof(\lambda)$ is the minimum possible |X| where $X \subset \lambda$ is cofinal in λ .

- $cof(\lambda)$ is always a regular cardinal.
- If λ is regular then $cof(\lambda) = \lambda$.
- If λ is singular then $cof(\lambda) < \lambda$.

Supercompactness

Definition

Suppose that κ is an uncountable regular cardinal and that $\kappa < \lambda$.

1.
$$\mathcal{P}_{\kappa}(\lambda) = \{ \sigma \subset \lambda \mid |\sigma| < \kappa \}.$$

- 2. Suppose that $U \subseteq \mathcal{P}(\mathcal{P}_{\kappa}(\lambda))$ is an ultrafilter.
 - *U* is **fine** if for each $\alpha < \lambda$,

$$\{\sigma \in \mathcal{P}_{\kappa}(\lambda) \mid \alpha \in \sigma\} \in U.$$

• U is **normal** if for each function

$$f: \mathcal{P}_{\kappa}(\lambda) \to \lambda$$

such that

th

$$\{\sigma \in \mathcal{P}_{\kappa}(\lambda) \mid f(\sigma) \in \sigma\} \in U,$$

where exists $\alpha < \lambda$ such that
 $\{\sigma \in \mathcal{P}_{\kappa}(\lambda) \mid f(\sigma) = \alpha\} \in U.$

Definition

Suppose that κ is an uncountable regular cardinal. Then κ is a **supercompact cardinal** if for each $\lambda > \kappa$ there exists an ultrafilter U on $\mathcal{P}_{\kappa}(\lambda)$ such that:

- 1. U is κ -complete,
- 2. U is a normal fine ultrafilter.

Lemma

Suppose κ is an uncountable regular cardinal. Then the following are equivalent.

- (1) κ is a supercompact cardinal.
- (2) For each $\lambda > \kappa$, there exists an elementary embedding

 $j: V \to M$

such that $\operatorname{CRT}(j) = \kappa$, $j(\kappa) > \lambda$, and such that $M^{\lambda} \subset M$.

One can require that the transitive class M and the embedding j each be Σ₂-definable in V from parameters.

Weak Extender Models

Definition

A transitive class N model of ZFC is a **weak extender model for** δ **is supercompact** iff for every $\gamma > \delta$ there exists a δ -complete normal fine measure U on $\mathcal{P}_{\delta}(\gamma)$ such that

- 1. $N \cap \mathcal{P}_{\delta}(\gamma) \in U$,
- 2. $U \cap N \in N$.

The Basic Thesis

If there is a generalization of L at the level of a supercompact cardinal then it should exist in a version which is a weak extender model for the supercompactness of some δ .