Algorithmic Fractal Dimensions

Jack H. Lutz
lowa State University

NZMRI Lectures
Napier, NZ
January, 2017

Lectures

1. Information and Dimensions, Classical and Algorithmic
2. Algorithmic Dimensions in Fractal Geometry
3. Mutual Dimensions and Finite-State Dimensions

Lecture 3. Mutual Dimensions and Finite-State Dimensions
Today's topics
Mutual dimensions
Data processing inequalities
Borel Normality
Finite-state dimension
Zeta-dimension
Copeland-Erdős sequences
Preserving finite-state dimension

Mutual Dimensions
 (Case and J. Lutz 2015)

In both Shannon and algorithmic information theories, applications to communications and computation typically involve the mutual (shared) information between data objects. The following definition, which goes back to Kolmogorov, is analogous to that of Shannon mutual information.

Mutual Dimensions

Definition

The mutual information between $p \in \mathbb{Q}^{m}$ and $q \in \mathbb{Q}^{n}$ is

$$
I(p: q)=K(p)-K(p \mid q) .
$$

Mutual Dimensions

Definition

The mutual information between $p \in \mathbb{Q}^{m}$ and $q \in \mathbb{Q}^{n}$ is

$$
I(p: q)=K(p)-K(p \mid q) .
$$

Symmetry of information:

$$
\begin{aligned}
I(p: q) & =K(p)+K(q)-K(p, q)+O(1) \\
& =I(q: p)+O(1)
\end{aligned}
$$

Mutual Dimensions

Definition

The mutual information between sets $E \subseteq \mathbb{R}^{m}$ and $F \subseteq \mathbb{R}^{n}$ is

$$
I(E: F)=\min \left\{I(p: q) \mid p \in \mathbb{Q}^{m} \cap E \text { and } q \in \mathbb{Q}^{n} \cap F\right\} .
$$

Mutual Dimensions

Definition

The mutual information between sets $E \subseteq \mathbb{R}^{m}$ and $F \subseteq \mathbb{R}^{n}$ is

$$
I(E: F)=\min \left\{I(p: q) \mid p \in \mathbb{Q}^{m} \cap E \text { and } q \in \mathbb{Q}^{n} \cap F\right\} .
$$

Definition

The mutual information between $x \in \mathbb{R}^{m}$ and $y \in \mathbb{R}^{n}$ at precision $r \in \mathbb{N}$ is

$$
I_{r}(x: y)=I\left(B_{2^{-r}}(x): B_{2^{-r}}(y)\right) .
$$

Mutual Dimensions

Definition

The mutual information between sets $E \subseteq \mathbb{R}^{m}$ and $F \subseteq \mathbb{R}^{n}$ is

$$
I(E: F)=\min \left\{I(p: q) \mid p \in \mathbb{Q}^{m} \cap E \text { and } q \in \mathbb{Q}^{n} \cap F\right\} .
$$

Definition

The mutual information between $x \in \mathbb{R}^{m}$ and $y \in \mathbb{R}^{n}$ at precision $r \in \mathbb{N}$ is

$$
I_{r}(x: y)=I\left(B_{2^{-r}}(x): B_{2^{-r}}(y)\right) .
$$

Definition

The mutual dimension between $x \in \mathbb{R}^{m}$ and $y \in \mathbb{R}^{n}$ is

$$
\operatorname{mdim}(x: y)=\liminf _{r \rightarrow \infty} \frac{I_{r}(x: y)}{r}
$$

Data Processing Inequalities

- In Shannon information theory: If X, Y, and Z are ensembles and $f: X \rightarrow Y$, then

$$
I(f(X) ; Z) \leq I(X ; Z)
$$

Data Processing Inequalities

- In Shannon information theory: If X, Y, and Z are ensembles and $f: X \rightarrow Y$, then

$$
I(f(X) ; Z) \leq I(X ; Z)
$$

- In algorithmic information theory: If $f:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ is computable, then there is a constant $c_{f} \in \mathbb{N}$ such that, for all $x, z \in\{0,1\}^{*}$,

$$
I(f(x): z) \leq I(x: z)+c_{f} .
$$

Data Processing Inequalities

- In Shannon information theory: If X, Y, and Z are ensembles and $f: X \rightarrow Y$, then

$$
I(f(X) ; Z) \leq I(X ; Z)
$$

- In algorithmic information theory: If $f:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ is computable, then there is a constant $c_{f} \in \mathbb{N}$ such that, for all $x, z \in\{0,1\}^{*}$,

$$
I(f(x): z) \leq I(x: z)+c_{f} .
$$

- Today: If $f: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ is computable and Lipschitz, then, for all $x \in \mathbb{R}^{m}$ and $z \in \mathbb{R}^{t}$,

$$
\operatorname{mdim}(f(x): z) \leq \operatorname{mdim}(x: z)
$$

Data Processing Inequalities

Why/what Lipschitz??

Data Processing Inequalities

Why/what Lipschitz??

Example

Let $f: \mathbb{R} \rightarrow \mathbb{R}^{2}$ be computable and space-filling, in the sense that $[0,1]^{2} \subseteq$ range (f). (Examples are well known.) Choose $x \in \mathbb{R}$ such that $\operatorname{dim}(f(x))=2$, and let $z=f(x)$. Then

$$
\begin{aligned}
\operatorname{mdim}(f(x): z) & =\operatorname{mdim}(f(x): f(x)) \\
& =\operatorname{dim}(f(x)) \\
& =2 \\
& >\operatorname{dim}(x) \\
& \geq \operatorname{mdim}(x: z)
\end{aligned}
$$

Data Processing Inequalities

Definition

$f: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ is Lipschitz if there is a real number $c>0$ such that, for all $x, x^{\prime} \in \mathbb{R}^{m}$,

$$
\left|f(x)-f\left(x^{\prime}\right)\right| \leq c\left|x-x^{\prime}\right|
$$

Intuition: f is not so sensitive to its input that it can compress a great deal of "sparse" high-precision information about its input into "dense" lower-precision information about its output $f(x)$.

Data Processing Inequalities

Definition

$f: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ is Lipschitz if there is a real number $c>0$ such that, for all $x, x^{\prime} \in \mathbb{R}^{m}$,

$$
\left|f(x)-f\left(x^{\prime}\right)\right| \leq c\left|x-x^{\prime}\right|
$$

Intuition: f is not so sensitive to its input that it can compress a great deal of "sparse" high-precision information about its input into "dense" lower-precision information about its output $f(x)$.

To repeat, the data-processing inequality

$$
\operatorname{mdim}(f(x): z) \leq \operatorname{mdim}(x: z)
$$

holds for all computable, Lipschitz $f: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$.

Finite-State Dimension

Dai, Lathrop, J. Lutz, Mayordomo 2004

- A finite-state version of classical Hausdorff (fractal) dimension.
- For a sequence $S \in \Sigma^{\infty}$ (where $\Sigma=\{0,1, \ldots, k-1\}$), $\operatorname{dim}_{\mathrm{FS}}(S)=$ "asymptotic density of finite-state information in $S^{\prime \prime} \in[0,1]$.
- First defined using finite-state gamblers.

Finite-State Dimension

Dai, Lathrop, J. Lutz, Mayordomo 2004

- A finite-state version of classical Hausdorff (fractal) dimension.
- For a sequence $S \in \Sigma^{\infty}$ (where $\Sigma=\{0,1, \ldots, k-1\}$), $\operatorname{dim}_{\mathrm{FS}}(S)=$ "asymptotic density of finite-state information in $S^{\prime \prime} \in[0,1]$.
- First defined using finite-state gamblers.
- Equivalent definitions:

Information-lossless finite-state compressors (DLMM 2004) Block-entropy rates (Bourke, Hitchcock, Vinodchandran 2006)
Finite-state log-loss predictors (Hitchcock 2003)

Finite-State Dimension

Dai, Lathrop, J. Lutz, Mayordomo 2004

- A finite-state version of classical Hausdorff (fractal) dimension.
- For a sequence $S \in \Sigma^{\infty}$ (where $\Sigma=\{0,1, \ldots, k-1\}$), $\operatorname{dim}_{\mathrm{FS}}(S)=$ "asymptotic density of finite-state information in $S^{\prime \prime} \in[0,1]$.
- First defined using finite-state gamblers.
- Equivalent definitions:

Information-lossless finite-state compressors (DLMM 2004) Block-entropy rates (Bourke, Hitchcock, Vinodchandran 2006) Finite-state log-loss predictors (Hitchcock 2003)

Robust!

Normal Sequences

$\Sigma=\{0,1, \ldots, k-1\}$
For $S \in \Sigma^{\infty}, w \in \Sigma^{+}, n \in \mathbb{Z}^{+}$,

$$
\begin{aligned}
\operatorname{freq}_{n}(w, S) & =\frac{|\{i<n \mid S[i . . i+|w|-1]=w\}|}{n} \\
& =n^{\text {th }} \text { frequency of } w \text { in } S .
\end{aligned}
$$

Normal Sequences

$\Sigma=\{0,1, \ldots, k-1\}$
For $S \in \Sigma^{\infty}, w \in \Sigma^{+}, n \in \mathbb{Z}^{+}$,

$$
\begin{aligned}
\operatorname{freq}_{n}(w, S) & =\frac{|\{i<n \mid S[i . . i+|w|-1]=w\}|}{n} \\
& =n^{\text {th }} \text { frequency of } w \text { in } S .
\end{aligned}
$$

Definition (Borel 1909)

A sequence $S \in \Sigma^{\infty}$ is normal if

$$
\left(\forall w \in \Sigma^{+}\right) \lim _{n \rightarrow \infty} \operatorname{freq}_{n}(w, S)=k^{-|w|}
$$

Normal Sequences

$\Sigma=\{0,1, \ldots, k-1\}$
For $S \in \Sigma^{\infty}, w \in \Sigma^{+}, n \in \mathbb{Z}^{+}$,

$$
\begin{aligned}
\operatorname{freq}_{n}(w, S) & =\frac{|\{i<n \mid S[i . . i+|w|-1]=w\}|}{n} \\
& =n^{\text {th }} \text { frequency of } w \text { in } S .
\end{aligned}
$$

Definition (Borel 1909)

A sequence $S \in \Sigma^{\infty}$ is normal if

$$
\left(\forall w \in \Sigma^{+}\right) \lim _{n \rightarrow \infty} \operatorname{freq}_{n}(w, S)=k^{-|w|}
$$

Fact (Schnorr, Stimm 1972; BHV 2006) S is normal $\Leftrightarrow \operatorname{dim}_{\mathrm{FS}}(S)=1$.

Copeland-Erdős Sequences

For $n \in \mathbb{Z}^{+}, \sigma_{k}(n)=k$-ary expansion of n.

Definition

The k-ary Copeland-Erdős sequence of an infinite set

$$
A=\left\{a_{1}<a_{2}<\ldots\right\} \subseteq \mathbb{Z}^{+}
$$

is the sequence $\mathrm{CE}_{k}(A)=\sigma_{k}\left(a_{1}\right) \sigma_{k}\left(a_{2}\right) \sigma_{k}\left(a_{3}\right) \ldots$.

Copeland-Erdős Sequences

For $n \in \mathbb{Z}^{+}, \sigma_{k}(n)=k$-ary expansion of n.

Definition

The k-ary Copeland-Erdős sequence of an infinite set

$$
A=\left\{a_{1}<a_{2}<\ldots\right\} \subseteq \mathbb{Z}^{+}
$$

is the sequence $\operatorname{CE}_{k}(A)=\sigma_{k}\left(a_{1}\right) \sigma_{k}\left(a_{2}\right) \sigma_{k}\left(a_{3}\right) \ldots$

Theorem (Champernowne 1933)

The decimal Champernowne sequence

$$
\mathrm{CE}_{10}\left(\mathbb{Z}^{+}\right)=12345678910111213 \ldots
$$

is normal.

Copeland-Erdős Sequences

For $n \in \mathbb{Z}^{+}, \sigma_{k}(n)=k$-ary expansion of n.

Definition

The k-ary Copeland-Erdős sequence of an infinite set

$$
A=\left\{a_{1}<a_{2}<\ldots\right\} \subseteq \mathbb{Z}^{+}
$$

is the sequence $\mathrm{CE}_{k}(A)=\sigma_{k}\left(a_{1}\right) \sigma_{k}\left(a_{2}\right) \sigma_{k}\left(a_{3}\right) \ldots$.

Theorem (Champernowne 1933)

The decimal Champernowne sequence

$$
\mathrm{CE}_{10}\left(\mathbb{Z}^{+}\right)=12345678910111213 \ldots
$$

is normal.

Theorem (Champernowne 1933)

The sequcence $\mathrm{CE}_{10}($ PRIMES $)=23571113171923 \ldots$ is also normal.

Copeland-Erdős Sequences

Theorem (Copeland \& Erdős 1946)
 For all $k \geq 2, \mathrm{CE}_{k}$ (PRIMES) is normal.

Copeland-Erdős Sequences

Theorem (Copeland \& Erdős 1946)
 For all $k \geq 2, \mathrm{CE}_{k}$ (PRIMES) is normal.

Outline of proof

Copeland-Erdős Sequences

Theorem (Copeland \& Erdős 1946)
 For all $k \geq 2, \mathrm{CE}_{k}$ (PRIMES) is normal.

Outline of proof

1. For all sufficiently dense $A \subseteq \mathbb{Z}^{+}, \mathrm{CE}_{k}(A)$ is normal.
2. PRIMES is sufficiently dense.

Copeland-Erdős Sequences

Theorem (Copeland \& Erdős 1946)

For all $k \geq 2, \mathrm{CE}_{k}$ (PRIMES) is normal.
Outline of proof

1. For all sufficiently dense $A \subseteq \mathbb{Z}^{+}, \mathrm{CE}_{k}(A)$ is normal.
2. PRIMES is sufficiently dense.

OBJECTIVE

Extend this to a quantitative lower-bound criterion for the finite-state dimensions of Copeland-Erdős sequences.

The Four Dimensions

The Four Dimensions

1. Finite-state dimension

The Four Dimensions

1. Finite-state dimension
2. Finite-state strong dimension

The Four Dimensions

1. Finite-state dimension
2. Finite-state strong dimension
3. Zeta-dimension
4. Finite-state dimension
5. Finite-state strong dimension
6. Zeta-dimension
7. Lower zeta-dimension

Finite-State Dimension

Dai, Lathrop, J. Lutz, Mayordomo 2004

Example

A 2-state gambler on the alphablet $\Sigma=\{0,1\}$:

Finite-State Dimension

Dai, Lathrop, J. Lutz, Mayordomo 2004

Example

A 2-state gambler on the alphablet $\Sigma=\{0,1\}$:

$$
\begin{array}{ll}
\beta(A)(0)=0.3 & \beta(B)(0)=0.7 \\
\beta(A)(1)=0.7 & \beta(B)(1)=0.3
\end{array}
$$

$d_{G}(w)=$ capital G has after w if payoffs are fair.

Finite-State Dimension

Dai, Lathrop, J. Lutz, Mayordomo 2004

Example

A 2-state gambler on the alphablet $\Sigma=\{0,1\}$:

$$
\begin{array}{ll}
\beta(A)(0)=0.3 & \beta(B)(0)=0.7 \\
\beta(A)(1)=0.7 & \beta(B)(1)=0.3
\end{array}
$$

$d_{G}(w)=$ capital G has after w if payoffs are fair.

$$
d_{G}(\lambda)=1 \text { always }
$$

Finite-State Dimension

Dai, Lathrop, J. Lutz, Mayordomo 2004

Example

A 2-state gambler on the alphablet $\Sigma=\{0,1\}$:

$$
\begin{array}{ll}
\beta(A)(0)=0.3 & \beta(B)(0)=0.7 \\
\beta(A)(1)=0.7 & \beta(B)(1)=0.3
\end{array}
$$

$d_{G}(w)=$ capital G has after w if payoffs are fair.

$$
\begin{aligned}
d_{G}(\lambda) & =1 \text { always } \\
d_{G}(1) & =2(0.7) d_{G}(\lambda)=1.4
\end{aligned}
$$

Finite-State Dimension

Dai, Lathrop, J. Lutz, Mayordomo 2004

Example

A 2-state gambler on the alphablet $\Sigma=\{0,1\}$:

$$
\begin{array}{ll}
\beta(A)(0)=0.3 & \beta(B)(0)=0.7 \\
\beta(A)(1)=0.7 & \beta(B)(1)=0.3
\end{array}
$$

$d_{G}(w)=$ capital G has after w if payoffs are fair.

$$
\begin{aligned}
& d_{G}(\lambda)=1 \text { always } \\
& d_{G}(1)=2(0.7) d_{G}(\lambda)=1.4 \\
& d_{G}(11)=2(0.3) d_{G}(1)=0.84
\end{aligned}
$$

Finite-State Dimension

Dai, Lathrop, J. Lutz, Mayordomo 2004

Example

A 2-state gambler on the alphablet $\Sigma=\{0,1\}$:

$$
\begin{array}{ll}
\beta(A)(0)=0.3 & \beta(B)(0)=0.7 \\
\beta(A)(1)=0.7 & \beta(B)(1)=0.3
\end{array}
$$

$d_{G}(w)=$ capital G has after w if payoffs are fair.

$$
\begin{aligned}
& d_{G}(\lambda)=1 \text { always } \\
& d_{G}(1)=2(0.7) d_{G}(\lambda)=1.4 \\
& d_{G}(11)=2(0.3) d_{G}(1)=0.84 \\
& d_{G}(110)=2(0.7) d_{G}(11)=1.176
\end{aligned}
$$

Finite-State Dimension

Definition

Let G be a finite-state gambler (FSG) over $\Sigma=\{0,1, \ldots, k-1\}$, and let $s \in[0, \infty)$ be a "fairness parameter." The s-gale of G is the function $d_{G}^{(s)}: \Sigma^{*} \rightarrow[0, \infty)$ given by

$$
d_{G}^{(s)}(\lambda)=1
$$

$$
d_{G}^{(s)}(w a)=k^{s} d_{G}^{(s)}(w) \beta(\delta(w))(a)
$$

Finite-State Dimension

Definition

Let G be a finite-state gambler (FSG) over $\Sigma=\{0,1, \ldots, k-1\}$, and let $s \in[0, \infty)$ be a "fairness parameter." The s-gale of G is the function $d_{G}^{(s)}: \Sigma^{*} \rightarrow[0, \infty)$ given by

$$
\begin{gathered}
d_{G}^{(s)}(\lambda)=1 \\
d_{G}^{(s)}(w a)=k^{s} d_{G}^{(s)}(w) \underbrace{\beta(\delta(w))(a)}
\end{gathered}
$$

the fraction bet on a, after w

Finite-State Dimension

Definition

Let G be a finite-state gambler (FSG) over $\Sigma=\{0,1, \ldots, k-1\}$, and let $s \in[0, \infty)$ be a "fairness parameter." The s-gale of G is the function $d_{G}^{(s)}: \Sigma^{*} \rightarrow[0, \infty)$ given by

$$
\begin{gathered}
d_{G}^{(s)}(\lambda)=1 \\
d_{G}^{(s)}(w a)=k^{s} d_{G}^{(s)}(w) \underbrace{\beta(\delta(w))(a)}
\end{gathered}
$$

the fraction bet on a, after w

Definition

1. $G s$-succeeds on $S \in \Sigma^{\infty}$ if $\limsup _{n \rightarrow \infty} d_{G}^{(s)}(S \upharpoonright n)=\infty$.

$$
n \rightarrow \infty
$$

2. G strongly s-succeeds on $S \in \Sigma^{\infty}$ if $\liminf _{n \rightarrow \infty} d_{G}^{(s)}(S \upharpoonright n)=\infty$.

Finite-State Dimension

Definition

The finite-state dimension of a sequence $S \in \Sigma^{\infty}$ is

$$
\operatorname{dim}_{\mathrm{FS}}(S)=\inf \{s \mid \exists \text { an FSG that } s \text {-succeeds on } S\} .
$$

Finite-State Strong Dimension

Athreya, Hitchcock, J. Lutz, Mayordomo 2007

Definition

The finite-state strong dimension of a sequence $S \in \Sigma^{\infty}$ is
$\operatorname{Dim}_{\text {FS }}(S)=\inf \{s \mid \exists$ an FSG that strongly s-succeeds on $S\}$.

Finite-State Strong Dimension

Athreya, Hitchcock, J. Lutz, Mayordomo 2007

Definition

The finite-state strong dimension of a sequence $S \in \Sigma^{\infty}$ is
$\operatorname{Dim}_{\text {FS }}(S)=\inf \{s \mid \exists$ an FSG that strongly s-succeeds on $S\}$.
In general, $0 \leq \operatorname{dim}_{\mathrm{FS}}(S) \leq \operatorname{Dim}_{\mathrm{FS}}(S) \leq 1$.

Zeta-Dimension

Invented many times! "Discrete fractal dimension"

Definition

Let $A \subseteq \mathbb{Z}^{+}$.

- The A-zeta function $\zeta_{A}:[0, \infty) \rightarrow[0, \infty]$ is defined by

$$
\zeta_{A}(s)=\sum_{n \in A} n^{-s}
$$

Zeta-Dimension

Invented many times! "Discrete fractal dimension"

Definition

Let $A \subseteq \mathbb{Z}^{+}$.

- The A-zeta function $\zeta_{A}:[0, \infty) \rightarrow[0, \infty]$ is defined by

$$
\zeta_{A}(s)=\sum_{n \in A} n^{-s}
$$

- The zeta-dimension of A is $\operatorname{Dim}_{\zeta}(A)=\inf \left\{s \mid \zeta_{A}(s)<\infty\right\}$.

Zeta-Dimension

Invented many times! "Discrete fractal dimension"

Definition

Let $A \subseteq \mathbb{Z}^{+}$.

- The A-zeta function $\zeta_{A}:[0, \infty) \rightarrow[0, \infty]$ is defined by

$$
\zeta_{A}(s)=\sum_{n \in A} n^{-s}
$$

- The zeta-dimension of A is $\operatorname{Dim}_{\zeta}(A)=\inf \left\{s \mid \zeta_{A}(s)<\infty\right\}$.

Entropy characterization (Cahen 1894)

$$
\operatorname{Dim}_{\zeta}(A)=\limsup _{n \rightarrow \infty} \frac{\log |A \cap\{1, \ldots, n\}|}{\log n}
$$

Zeta-Dimension

Entropy characterization (Cahen 1894)

$$
\operatorname{Dim}_{\zeta}(A)=\limsup _{n \rightarrow \infty} \frac{\log |A \cap\{1, \ldots, n\}|}{\log n}
$$

Definition

The lower zeta-dimension of $A \subseteq \mathbb{Z}^{+}$is

$$
\operatorname{dim}_{\zeta}(A)=\liminf _{n \rightarrow \infty} \frac{\log |A \cap\{1, \ldots, n\}|}{\log n}
$$

Zeta-Dimension

Entropy characterization (Cahen 1894)

$$
\operatorname{Dim}_{\zeta}(A)=\limsup _{n \rightarrow \infty} \frac{\log |A \cap\{1, \ldots, n\}|}{\log n}
$$

Definition

The lower zeta-dimension of $A \subseteq \mathbb{Z}^{+}$is

$$
\operatorname{dim}_{\zeta}(A)=\liminf _{n \rightarrow \infty} \frac{\log |A \cap\{1, \ldots, n\}|}{\log n}
$$

Clearly, $0 \leq \operatorname{dim}_{\zeta}(A) \leq \operatorname{Dim}_{\zeta}(A) \leq 1$.

Extending Copeland \& Erdős

Theorem (Gu, J. Lutz, and Moser 2007)

- For every infinite $A \subseteq \mathbb{Z}^{+}$, $\operatorname{dim}_{\mathrm{FS}}\left(\mathrm{CE}_{k}(A)\right) \geq \operatorname{dim}_{\zeta}(A)$ and $\operatorname{Dim}_{\mathrm{FS}}\left(\mathrm{CE}_{k}(A)\right) \geq \operatorname{Dim}_{\zeta}(A)$.

Extending Copeland \& Erdős

Theorem (Gu, J. Lutz, and Moser 2007)

- For every infinite $A \subseteq \mathbb{Z}^{+}$,
$\operatorname{dim}_{\mathrm{FS}}\left(\operatorname{CE}_{k}(A)\right) \geq \operatorname{dim}_{\zeta}(A)$ and
$\operatorname{Dim}_{\mathrm{FS}}\left(\operatorname{CE}_{k}(A)\right) \geq \operatorname{Dim}_{\zeta}(A)$.
- For any four real numbers

\[

\]

there exists an infinite $A \subseteq \mathbb{Z}^{+}$with

$$
\begin{array}{cc}
\operatorname{dim}_{\zeta}(A)=\alpha & \operatorname{Dim}_{\zeta}(A)=\beta \\
\operatorname{dim}_{\mathrm{FS}}\left(\operatorname{CE}_{k}(A)\right)=\gamma & \operatorname{Dim}_{\mathrm{FS}}\left(\mathrm{CE}_{k}(A)\right)=\delta .
\end{array}
$$

Extending Copeland \& Erdős

Theorem (Gu, J. Lutz, and Moser 2007)

- For every infinite $A \subseteq \mathbb{Z}^{+}$,
$\operatorname{dim}_{\mathrm{FS}}\left(\mathrm{CE}_{k}(A)\right) \geq \operatorname{dim}_{\zeta}(A)$ and
$\operatorname{Dim}_{\mathrm{FS}}\left(\operatorname{CE}_{k}(A)\right) \geq \operatorname{Dim}_{\zeta}(A)$.
- For any four real numbers

$$
\begin{aligned}
0 \leq \alpha & \leq \beta \\
\mid \wedge & \wedge \wedge \\
\gamma & \leq \delta \leq 1,
\end{aligned}
$$

there exists an infinite $A \subseteq \mathbb{Z}^{+}$with

$$
\begin{array}{cc}
\operatorname{dim}_{\zeta}(A)=\alpha & \operatorname{Dim}_{\zeta}(A)=\beta \\
\operatorname{dim}_{\mathrm{FS}}\left(\operatorname{CE}_{k}(A)\right)=\gamma & \operatorname{Dim}_{\mathrm{FS}}\left(\mathrm{CE}_{k}(A)\right)=\delta .
\end{array}
$$

(*) implies the Copeland-Erdős theorem.

Finite-State Dimension and Real Arithmetic

QUESTION

Which operations on sequences preserve normality?

Preserving Normality I: Subsequence Selection

Theorem (Wall 1949)
If S is normal and S^{\prime} is a subsequence chosen by taking symbols at positions in an arithmetic progression, then S^{\prime} is normal.

Theorem (Wall 1949)

If S is normal and S^{\prime} is a subsequence chosen by taking symbols at positions in an arithmetic progression, then S^{\prime} is normal.

Theorem (Agafonov 1968)

If S is normal and S^{\prime} is a subsequence chosen using a regular language, then S^{\prime} is normal.

Preserving Normality I: Subsequence Selection

Theorem (Wall 1949)

If S is normal and S^{\prime} is a subsequence chosen by taking symbols at positions in an arithmetic progression, then $S^{\prime \prime}$ is normal.

Theorem (Agafonov 1968)

If S is normal and S^{\prime} is a subsequence chosen using a regular language, then S^{\prime} is normal.

Theorem (Merkle, Reimann 2003)

Subsequence selection using a context-free language - even a one-counter language - does not preserve normality.

Preserving Normality II: Real Arithmetic

Definition (Borel 1909)

A real number α is normal in base k if its base- k expansion is a normal sequence.

Definition (Borel 1909)

A real number α is normal in base k if its base- k expansion is a normal sequence.

Theorem (Cassels 1959, Schmidt 1960)

A real number may be normal in one base, but not in another.

Preserving Normality II: Real Arithmetic

Definition (Borel 1909)

A real number α is normal in base k if its base- k expansion is a normal sequence.

Theorem (Cassels 1959, Schmidt 1960)

A real number may be normal in one base, but not in another.

Theorem (Wall 1949)

If q is a non-zero rational, then, for every real number α, α is normal in base $k \Rightarrow q+\alpha$ and $q \alpha$ are normal base k.

Finite-State Dimension and Real Arithmetic

QUESTION

Which operations on sequences preserve finite-state dimension?

Finite-State Dimension and Real Arithmetic

QUESTION

Which operations on sequences preserve finite-state dimension?
Observation: Every operation that preserves finite-state dimension preserves normality.

Preserving FSD I: Subsequence Selection

Observation: Let

$$
S=b_{0} 0 b_{1} 0 b_{2} 0 b_{3} \ldots,
$$

where $b_{0} b_{1} b_{2} b_{3} \ldots \in\{0,1\}^{\infty}$ is normal, and consider

$$
\begin{aligned}
S^{\prime} & =b_{0} b_{1} b_{2} b_{3} \ldots, \\
S^{\prime \prime} & =0000 \ldots
\end{aligned}
$$

Preserving FSD I: Subsequence Selection

Observation: Let

$$
S=b_{0} 0 b_{1} 0 b_{2} 0 b_{3} \ldots,
$$

where $b_{0} b_{1} b_{2} b_{3} \ldots \in\{0,1\}^{\infty}$ is normal, and consider

$$
\begin{aligned}
S^{\prime} & =b_{0} b_{1} b_{2} b_{3} \ldots, \\
S^{\prime \prime} & =0000 \ldots
\end{aligned}
$$

Then

$$
\begin{aligned}
\operatorname{dim}_{\mathrm{FS}}(S) & =\operatorname{Dim}_{\mathrm{FS}}(S)=1 / 2 \\
\operatorname{dim}_{\mathrm{FS}}\left(S^{\prime}\right) & =\operatorname{Dim}_{\mathrm{FS}}\left(S^{\prime}\right)=1 \\
\operatorname{dim}_{\mathrm{FS}}\left(S^{\prime \prime}\right) & =\operatorname{Dim}_{\mathrm{FS}}\left(S^{\prime \prime}\right)=0
\end{aligned}
$$

Preserving FSD I: Subsequence Selection

Observation: Let

$$
S=b_{0} 0 b_{1} 0 b_{2} 0 b_{3} \ldots,
$$

where $b_{0} b_{1} b_{2} b_{3} \ldots \in\{0,1\}^{\infty}$ is normal, and consider

$$
\begin{aligned}
S^{\prime} & =b_{0} b_{1} b_{2} b_{3} \ldots, \\
S^{\prime \prime} & =0000 \ldots
\end{aligned}
$$

Then

$$
\begin{aligned}
\operatorname{dim}_{\mathrm{FS}}(S) & =\operatorname{Dim}_{\mathrm{FS}}(S)=1 / 2 \\
\operatorname{dim}_{\mathrm{FS}}\left(S^{\prime}\right) & =\operatorname{Dim}_{\mathrm{FS}}\left(S^{\prime}\right)=1 \\
\operatorname{dim}_{\mathrm{FS}}\left(S^{\prime \prime}\right) & =\operatorname{Dim}_{\mathrm{FS}}\left(S^{\prime \prime}\right)=0
\end{aligned}
$$

Finite state dimension is not preserved by even the simplest subsequence selections.

Preserving FSD II: Real Arithmetic

Theorem (Doty, Lutz, and Nandakumar 2007)

For every base $k \geq 2$, every nonzero rational q, and every real number α, the base- k expansions of $\alpha, q+\alpha$, and $q \alpha$ all have the same finite dimension and the same finite-state strong dimension.

Preserving FSD II: Real Arithmetic

Theorem (Doty, Lutz, and Nandakumar 2007)

For every base $k \geq 2$, every nonzero rational q, and every real number α, the base- k expansions of $\alpha, q+\alpha$, and $q \alpha$ all have the same finite dimension and the same finite-state strong dimension.

Extends Wall's 1949 theorem.

Theorem (Doty, Lutz, and Nandakumar 2007)

For every base $k \geq 2$, every nonzero rational q, and every real number α, the base- k expansions of $\alpha, q+\alpha$, and $q \alpha$ all have the same finite dimension and the same finite-state strong dimension.

Extends Wall's 1949 theorem.
Gives a new proof of Wall's 1949 theorem.

Ingredients of Proof: Block-Entropy Rates

Notation:

- For $w, x \in \Sigma^{+}$,

$$
\#(w, x)=\text { number of block occurrences of } w \text { in } x
$$

Ingredients of Proof: Block-Entropy Rates

Notation:

- For $w, x \in \Sigma^{+}$,

$$
\#(w, x)=\text { number of block occurrences of } w \text { in } x
$$

- For $S \in \Sigma^{\infty}, n \in \mathbb{Z}^{+}, w \in \Sigma^{<n}$,

$$
\begin{aligned}
\pi_{S, n}(w) & =n^{\text {th }} \text { block frequency of } w \text { in } S \\
& =\frac{\#(w, S \upharpoonright n \cdot|w|)}{n}
\end{aligned}
$$

Ingredients of Proof: Block-Entropy Rates

Notation:

- For $w, x \in \Sigma^{+}$,

$$
\#(w, x)=\text { number of block occurrences of } w \text { in } x
$$

- For $S \in \Sigma^{\infty}, n \in \mathbb{Z}^{+}, w \in \Sigma^{<n}$,

$$
\begin{aligned}
\pi_{S, n}(w) & =n^{\text {th }} \text { block frequency of } w \text { in } S \\
& =\frac{\#(w, S \upharpoonright n \cdot|w|)}{n}
\end{aligned}
$$

- For $S \in \Sigma^{\infty}, n \in \mathbb{Z}^{+}, 0<\ell<n$,

$$
\pi_{S, n}^{(\ell)}=\text { restriction of } \pi_{S, n} \text { to } \Sigma^{\ell}
$$

Ingredients of Proof: Block-Entropy Rates

Notation:

- For $w, x \in \Sigma^{+}$,

$$
\#(w, x)=\text { number of block occurrences of } w \text { in } x
$$

- For $S \in \Sigma^{\infty}, n \in \mathbb{Z}^{+}, w \in \Sigma^{<n}$,

$$
\begin{aligned}
\pi_{S, n}(w) & =n^{\text {th }} \text { block frequency of } w \text { in } S \\
& =\frac{\#(w, S \upharpoonright n \cdot|w|)}{n}
\end{aligned}
$$

- For $S \in \Sigma^{\infty}, n \in \mathbb{Z}^{+}, 0<\ell<n$,

$$
\pi_{S, n}^{(\ell)}=\text { restriction of } \pi_{S, n} \text { to } \Sigma^{\ell} \in \Delta\left(\Sigma^{\ell}\right)
$$

Ingredients of Proof: Block-Entropy Rates

- For $S \in \Sigma^{\infty}$ and $\ell \in \mathbb{Z}^{+}$, the $\ell^{\text {th }}$ normalized lower and upper block entropy rates of S are

$$
\begin{aligned}
& H_{\ell}^{-}(S)=\frac{1}{\ell \log k} \liminf _{n \rightarrow \infty} H\left(\pi_{S, n}^{(\ell)}\right), \\
& H_{\ell}^{+}(S)=\frac{1}{\ell \log k} \limsup _{n \rightarrow \infty} H\left(\pi_{S, n}^{(\ell)}\right),
\end{aligned}
$$

where

$$
\begin{aligned}
H(\pi) & =\text { Shannon entropy of } \pi \\
& =\sum_{w} \pi(w) \log \frac{1}{\pi(w)}
\end{aligned}
$$

Ingredients of Proof: Block-Entropy Rates

Theorem (Bourke, Hitchcock, Vinodchandran 2005)
For all $S \in \Sigma^{\infty}$,

$$
\begin{aligned}
& \operatorname{dim}_{\mathrm{FS}}(S)=\inf _{\ell \in \mathbb{Z}^{+}} H_{\ell}^{-}(S) \\
& \operatorname{Dim}_{\mathrm{FS}}(S)=\inf _{\ell \in \mathbb{Z}^{+}} H_{\ell}^{+}(S),
\end{aligned}
$$

Ingredients of Proof: Logarithmic Dispersion

Notation:
$\Delta_{n}=\Delta(\{1,2, \ldots, n\})=\{$ probability measures on $\{1,2, \ldots, n\}\}$.

Ingredients of Proof: Logarithmic Dispersion

Notation:
$\Delta_{n}=\Delta(\{1,2, \ldots, n\})=\{$ probability measures on $\{1,2, \ldots, n\}\}$. The log-dispersion between $\mu, \pi \in \Delta_{n}$ is

$$
\delta(\pi, \mu)=\log m
$$

where m is the least positive integer for which there is an $n \times n$ non-negative real matrix $A=\left(a_{i j}\right)$ satisfying:

Ingredients of Proof: Logarithmic Dispersion

Notation:
$\Delta_{n}=\Delta(\{1,2, \ldots, n\})=\{$ probability measures on $\{1,2, \ldots, n\}\}$. The log-dispersion between $\mu, \pi \in \Delta_{n}$ is

$$
\delta(\pi, \mu)=\log m
$$

where m is the least positive integer for which there is an $n \times n$ non-negative real matrix $A=\left(a_{i j}\right)$ satisfying:

- A is stochastic, i.e., each column sums to 1 .

Ingredients of Proof: Logarithmic Dispersion

Notation:
$\Delta_{n}=\Delta(\{1,2, \ldots, n\})=\{$ probability measures on $\{1,2, \ldots, n\}\}$. The log-dispersion between $\mu, \pi \in \Delta_{n}$ is

$$
\delta(\pi, \mu)=\log m
$$

where m is the least positive integer for which there is an $n \times n$ non-negative real matrix $A=\left(a_{i j}\right)$ satisfying:

- A is stochastic, i.e., each column sums to 1 .
- $A \pi=\mu$, i.e., $\sum_{j=1}^{n} a_{i j} \pi(j)=\mu(i)$ for all $1 \leq i \leq n$.

Ingredients of Proof: Logarithmic Dispersion

Notation:
$\Delta_{n}=\Delta(\{1,2, \ldots, n\})=\{$ probability measures on $\{1,2, \ldots, n\}\}$. The log-dispersion between $\mu, \pi \in \Delta_{n}$ is

$$
\delta(\pi, \mu)=\log m
$$

where m is the least positive integer for which there is an $n \times n$ non-negative real matrix $A=\left(a_{i j}\right)$ satisfying:

- A is stochastic, i.e., each column sums to 1 .
- $A \pi=\mu$, i.e., $\sum_{j=1}^{n} a_{i j} \pi(j)=\mu(i)$ for all $1 \leq i \leq n$.
- No row or column of A contains more than m nonn-zero entries. ("Dispersion is limited by m.")

Ingredients of Proof: Logarithmic Dispersion

Definition

The normalized upper log-dispersion between sequences
$S, T \in \Sigma^{\infty}$ is

$$
\delta^{+}(S, T)=\limsup _{\ell \rightarrow \infty} \frac{1}{\ell \log k} \limsup _{n \rightarrow \infty} \delta\left(\pi_{S, n}^{(\ell)}, \pi_{T, n}^{(\ell)}\right)
$$

Ingredients of Proof: Logarithmic Dispersion

Definition

The normalized upper log-dispersion between sequences
$S, T \in \Sigma^{\infty}$ is

$$
\delta^{+}(S, T)=\limsup _{\ell \rightarrow \infty} \frac{1}{\ell \log k} \limsup _{n \rightarrow \infty} \delta\left(\pi_{S, n}^{(\ell)}, \pi_{T, n}^{(\ell)}\right) .
$$

Lemma

δ^{+}is a pseudometric on Σ^{∞}.

Ingredients of Proof: Logarithmic Dispersion

Definition

The normalized upper log-dispersion between sequences
$S, T \in \Sigma^{\infty}$ is

$$
\delta^{+}(S, T)=\limsup _{\ell \rightarrow \infty} \frac{1}{\ell \log k} \limsup _{n \rightarrow \infty} \delta\left(\pi_{S, n}^{(\ell)}, \pi_{T, n}^{(\ell)}\right) .
$$

Lemma

δ^{+}is a pseudometric on Σ^{∞}.

1. $\delta^{+}(S, T) \geq 0$, with equality if (not iff)) $S=T$.
2. $\delta^{+}(S, T)=\delta^{+}(T, S)$.
3. $\delta^{+}(S, U) \leq \delta^{+}(S, T)+\delta^{+}(T, U)$.

Ingredients of Proof: Logarithmic Dispersion

Definition

The normalized upper log-dispersion between sequences $S, T \in \Sigma^{\infty}$ is

$$
\delta^{+}(S, T)=\limsup _{\ell \rightarrow \infty} \frac{1}{\ell \log k} \limsup _{n \rightarrow \infty} \delta\left(\pi_{S, n}^{(\ell)}, \pi_{T, n}^{(\ell)}\right)
$$

Lemma

δ^{+}is a pseudometric on Σ^{∞}.
Main Technical Theorem:

Theorem (Doty, Lutz, and Nandadumar 2007)

$\operatorname{dim}_{\mathrm{FS}}$ and $\mathrm{Dim}_{\mathrm{FS}}$ are δ^{+}-contractive:

$$
\left|\operatorname{dim}_{\mathrm{FS}}(S)-\operatorname{dim}_{\mathrm{FS}}(T)\right| \leq \delta^{+}(S, T)
$$

$\left|\operatorname{Dim}_{\mathrm{FS}}(S)-\operatorname{Dim}_{\mathrm{FS}}(T)\right| \leq \delta^{+}(S, T)$.

Ingredients of Proof: Logarithmic Dispersion

Definition

The normalized upper log-dispersion between sequences
$S, T \in \Sigma^{\infty}$ is

$$
\delta^{+}(S, T)=\limsup _{\ell \rightarrow \infty} \frac{1}{\ell \log k} \limsup _{n \rightarrow \infty} \delta\left(\pi_{S, n}^{(\ell)}, \pi_{T, n}^{(\ell)}\right) .
$$

Main Technical Theorem:

Theorem (Doty, Lutz, and Nandadumar 2007)

$\operatorname{dim}_{\mathrm{FS}}$ and $\mathrm{Dim}_{\mathrm{FS}}$ are δ^{+}-contractive:

$$
\begin{aligned}
& \left|\operatorname{dim}_{\mathrm{FS}}(S)-\operatorname{dim}_{\mathrm{FS}}(T)\right| \leq \delta^{+}(S, T) \\
& \left|\operatorname{Dim}_{\mathrm{FS}}(S)-\operatorname{Dim}_{\mathrm{FS}}(T)\right| \leq \delta^{+}(S, T)
\end{aligned}
$$

Ingredients of Proof: Logarithmic Dispersion

Definition

The normalized upper log-dispersion between sequences
$S, T \in \Sigma^{\infty}$ is

$$
\delta^{+}(S, T)=\limsup _{\ell \rightarrow \infty} \frac{1}{\ell \log k} \limsup _{n \rightarrow \infty} \delta\left(\pi_{S, n}^{(\ell)}, \pi_{T, n}^{(\ell)}\right) .
$$

Main Technical Theorem:

Theorem (Doty, Lutz, and Nandadumar 2007)

$\operatorname{dim}_{\mathrm{FS}}$ and $\mathrm{Dim}_{\mathrm{FS}}$ are δ^{+}-contractive:

$$
\begin{aligned}
& \left|\operatorname{dim}_{\mathrm{FS}}(S)-\operatorname{dim}_{\mathrm{FS}}(T)\right| \leq \delta^{+}(S, T) \\
& \left|\operatorname{Dim}_{\mathrm{FS}}(S)-\operatorname{Dim}_{\mathrm{FS}}(T)\right| \leq \delta^{+}(S, T)
\end{aligned}
$$

- Used to prove that " q." preserves dimension.

Ingredients of Proof: Logarithmic Dispersion

Definition

The normalized upper log-dispersion between sequences
$S, T \in \Sigma^{\infty}$ is

$$
\delta^{+}(S, T)=\limsup _{\ell \rightarrow \infty} \frac{1}{\ell \log k} \limsup _{n \rightarrow \infty} \delta\left(\pi_{S, n}^{(\ell)}, \pi_{T, n}^{(\ell)}\right) .
$$

Main Technical Theorem:

Theorem (Doty, Lutz, and Nandadumar 2007)

$\operatorname{dim}_{\mathrm{FS}}$ and $\mathrm{Dim}_{\mathrm{FS}}$ are δ^{+}-contractive:

$$
\begin{aligned}
& \left|\operatorname{dim}_{\mathrm{FS}}(S)-\operatorname{dim}_{\mathrm{FS}}(T)\right| \leq \delta^{+}(S, T) \\
& \left|\operatorname{Dim}_{\mathrm{FS}}(S)-\operatorname{Dim}_{\mathrm{FS}}(T)\right| \leq \delta^{+}(S, T)
\end{aligned}
$$

- Used to prove that " q." preserves dimension.
- May be more generally useful.

Ingredients of Proof: Logarithmic Dispersion

Definition

The normalized upper log-dispersion between sequences
$S, T \in \Sigma^{\infty}$ is

$$
\delta^{+}(S, T)=\limsup _{\ell \rightarrow \infty} \frac{1}{\ell \log k} \limsup _{n \rightarrow \infty} \delta\left(\pi_{S, n}^{(\ell)}, \pi_{T, n}^{(\ell)}\right) .
$$

Main Technical Theorem:

Theorem (Doty, Lutz, and Nandadumar 2007)

$\operatorname{dim}_{\mathrm{FS}}$ and $\mathrm{Dim}_{\mathrm{FS}}$ are δ^{+}-contractive:

$$
\begin{aligned}
& \left|\operatorname{dim}_{\mathrm{FS}}(S)-\operatorname{dim}_{\mathrm{FS}}(T)\right| \leq \delta^{+}(S, T) \\
& \left|\operatorname{Dim}_{\mathrm{FS}}(S)-\operatorname{Dim}_{\mathrm{FS}}(T)\right| \leq \delta^{+}(S, T)
\end{aligned}
$$

- Used to prove that " q." preserves dimension.
- May be more generally useful.
- Proof uses Schur concavity of Shannon entropy

There is a rich literature of results on Borel normality.

Conjecture 1

Many of these are the dimension-1 special case of yet-to-be-proven theorems about finite-state dimension.

There is a rich literature of results on Borel normality.
Conjecture 1
Many of these are the dimension- 1 special case of yet-to-be-proven theorems about finite-state dimension.

Conjecture 2

Many of these more general theorems will drive the development of useful new methods.

Thank you!

