
Algorithmic Fractal Dimensions

Jack H. Lutz
Iowa State University

NZMRI Lectures
Napier, NZ

January, 2017



Lectures
1. Information and Dimensions, Classical and Algorithmic
2. Algorithmic Dimensions in Fractal Geometry
3. Mutual Dimensions and Finite-State Dimensions



Lecture 3. Mutual Dimensions and Finite-State Dimensions

Today’s topics
Mutual dimensions
Data processing inequalities
Borel Normality
Finite-state dimension
Zeta-dimension
Copeland-Erdős sequences
Preserving finite-state dimension



Mutual Dimensions
(Case and J. Lutz 2015)

In both Shannon and algorithmic information theories, applications
to communications and computation typically involve the mutual
(shared) information between data objects. The following
definition, which goes back to Kolmogorov, is analogous to that of
Shannon mutual information.



Mutual Dimensions

Definition
The mutual information between p ∈ Qm and q ∈ Qn is

I (p : q) = K (p)−K (p|q) .

Symmetry of information:

I (p : q) = K (p) + K (q)−K (p, q) + O(1)
= I (q : p) + O(1) .
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Mutual Dimensions

Definition
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Definition
The mutual information between x ∈ Rm and y ∈ Rn at precision
r ∈ N is

Ir(x : y) = I (B2−r (x) : B2−r (y)) .

Definition
The mutual dimension between x ∈ Rm and y ∈ Rn is

mdim(x : y) = lim inf
r→∞

Ir(x : y)
r .
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Data Processing Inequalities

In Shannon information theory: If X , Y , and Z are ensembles
and f : X → Y , then

I (f (X); Z ) ≤ I (X ; Z ) .

In algorithmic information theory: If f : {0, 1}∗ → {0, 1}∗ is
computable, then there is a constant cf ∈ N such that, for all
x, z ∈ {0, 1}∗,

I (f (x) : z) ≤ I (x : z) + cf .

Today: If f : Rm → Rn is computable and Lipschitz, then, for
all x ∈ Rm and z ∈ Rt ,

mdim(f (x) : z) ≤ mdim(x : z) .



Data Processing Inequalities

In Shannon information theory: If X , Y , and Z are ensembles
and f : X → Y , then

I (f (X); Z ) ≤ I (X ; Z ) .

In algorithmic information theory: If f : {0, 1}∗ → {0, 1}∗ is
computable, then there is a constant cf ∈ N such that, for all
x, z ∈ {0, 1}∗,

I (f (x) : z) ≤ I (x : z) + cf .

Today: If f : Rm → Rn is computable and Lipschitz, then, for
all x ∈ Rm and z ∈ Rt ,

mdim(f (x) : z) ≤ mdim(x : z) .



Data Processing Inequalities

In Shannon information theory: If X , Y , and Z are ensembles
and f : X → Y , then

I (f (X); Z ) ≤ I (X ; Z ) .

In algorithmic information theory: If f : {0, 1}∗ → {0, 1}∗ is
computable, then there is a constant cf ∈ N such that, for all
x, z ∈ {0, 1}∗,

I (f (x) : z) ≤ I (x : z) + cf .

Today: If f : Rm → Rn is computable and Lipschitz, then, for
all x ∈ Rm and z ∈ Rt ,

mdim(f (x) : z) ≤ mdim(x : z) .



Data Processing Inequalities

Why/what Lipschitz??

Example
Let f : R→ R2 be computable and space-filling, in the sense that
[0, 1]2 ⊆ range(f ). (Examples are well known.) Choose x ∈ R such
that dim(f (x)) = 2, and let z = f (x). Then

mdim(f (x) : z) = mdim(f (x) : f (x))
= dim(f (x))
= 2
> dim(x)
≥ mdim(x : z) .
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Data Processing Inequalities

Definition
f : Rm → Rn is Lipschitz if there is a real number c > 0 such that,
for all x, x ′ ∈ Rm ,

|f (x)− f (x ′)| ≤ c|x − x ′| .

Intuition: f is not so sensitive to its input that it can compress a
great deal of “sparse” high-precision information about its input
into “dense” lower-precision information about its output f (x).

To repeat, the data-processing inequality

mdim(f (x) : z) ≤ mdim(x : z)

holds for all computable, Lipschitz f : Rm → Rn .
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Finite-State Dimension

Dai, Lathrop, J. Lutz, Mayordomo 2004
A finite-state version of classical Hausdorff (fractal)
dimension.
For a sequence S ∈ Σ∞ (where Σ = {0, 1, . . . , k − 1}),
dimFS(S) = “asymptotic density of finite-state information in
S” ∈ [0, 1].
First defined using finite-state gamblers.

Equivalent definitions:
Information-lossless finite-state compressors (DLMM 2004)
Block-entropy rates (Bourke, Hitchcock, Vinodchandran 2006)
Finite-state log-loss predictors (Hitchcock 2003)

Robust!
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Normal Sequences

Σ = {0, 1, . . . , k − 1}
For S ∈ Σ∞, w ∈ Σ+, n ∈ Z+,

freqn(w,S) =
∣∣{i < n

∣∣S [i..i + |w| − 1] = w
}∣∣

n
= nth frequency of w in S .

Definition (Borel 1909)
A sequence S ∈ Σ∞ is normal if

(∀w ∈ Σ+) lim
n→∞

freqn(w,S) = k−|w| .

Fact (Schnorr, Stimm 1972; BHV 2006)
S is normal ⇔ dimFS(S) = 1.
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Copeland-Erdős Sequences

For n ∈ Z+, σk(n) = k-ary expansion of n.

Definition
The k-ary Copeland-Erdős sequence of an infinite set

A = {a1 < a2 < . . .} ⊆ Z+

is the sequence CEk(A) = σk(a1)σk(a2)σk(a3) . . ..

Theorem (Champernowne 1933)
The decimal Champernowne sequence

CE10(Z+) = 12345678910111213 . . .

is normal.

Theorem (Champernowne 1933)
The sequcence CE10(PRIMES) = 23571113171923 . . . is also
normal.
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Copeland-Erdős Sequences

Theorem (Copeland & Erdős 1946)
For all k ≥ 2, CEk(PRIMES) is normal.

Outline of proof
1. For all sufficiently dense A ⊆ Z+, CEk(A) is normal.
2. PRIMES is sufficiently dense.

OBJECTIVE
Extend this to a quantitative lower-bound criterion for the
finite-state dimensions of Copeland-Erdős sequences.



Copeland-Erdős Sequences

Theorem (Copeland & Erdős 1946)
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For all k ≥ 2, CEk(PRIMES) is normal.

Outline of proof
1. For all sufficiently dense A ⊆ Z+, CEk(A) is normal.
2. PRIMES is sufficiently dense.

OBJECTIVE
Extend this to a quantitative lower-bound criterion for the
finite-state dimensions of Copeland-Erdős sequences.



The Four Dimensions

1. Finite-state dimension
2. Finite-state strong dimension
3. Zeta-dimension
4. Lower zeta-dimension
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Finite-State Dimension

Dai, Lathrop, J. Lutz, Mayordomo 2004

Example
A 2-state gambler on the alphablet Σ = {0, 1}:

A B
1

0

0 1

=⇒ β(A)(0) = 0.3 β(B)(0) = 0.7.
β(A)(1) = 0.7 β(B)(1) = 0.3.

dG(w) = capital G has after w if payoffs are fair.
dG(λ) = 1 always
dG(1) = 2(0.7)dG(λ) = 1.4
dG(11) = 2(0.3)dG(1) = 0.84
dG(110) = 2(0.7)dG(11) = 1.176

...
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Finite-State Dimension

Definition
Let G be a finite-state gambler (FSG) over Σ = {0, 1, . . . , k − 1},
and let s ∈ [0,∞) be a “fairness parameter.” The s-gale of G is
the function d(s)

G : Σ∗ → [0,∞) given by

d(s)
G (λ) = 1

d(s)
G (wa) = ksd(s)

G (w)β(δ(w))(a)

Definition

1. G s-succeeds on S ∈ Σ∞ if lim sup
n→∞

d(s)
G (S � n) =∞.

2. G strongly s-succeeds on S ∈ Σ∞ if lim inf
n→∞

d(s)
G (S � n) =∞.
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Finite-State Dimension

Definition
The finite-state dimension of a sequence S ∈ Σ∞ is

dimFS(S) = inf{s | ∃ an FSG that s-succeeds on S}.



Finite-State Strong Dimension

Athreya, Hitchcock, J. Lutz, Mayordomo 2007

Definition
The finite-state strong dimension of a sequence S ∈ Σ∞ is

DimFS(S) = inf{s | ∃ an FSG that strongly s-succeeds on S}.

In general, 0 ≤ dimFS(S) ≤ DimFS(S) ≤ 1.
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Zeta-Dimension

Invented many times! “Discrete fractal dimension”

Definition
Let A ⊆ Z+.

The A-zeta function ζA : [0,∞)→ [0,∞] is defined by

ζA(s) =
∑
n∈A

n−s .

The zeta-dimension of A is Dimζ(A) = inf{s | ζA(s) <∞}.

Entropy characterization (Cahen 1894)

Dimζ(A) = lim sup
n→∞

log |A ∩ {1, . . . ,n}|
log n .
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Zeta-Dimension

Entropy characterization (Cahen 1894)

Dimζ(A) = lim sup
n→∞

log |A ∩ {1, . . . ,n}|
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The lower zeta-dimension of A ⊆ Z+ is

dimζ(A) = lim inf
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log |A ∩ {1, . . . ,n}|
log n .

Clearly, 0 ≤ dimζ(A) ≤ Dimζ(A) ≤ 1.
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Extending Copeland & Erdős

Theorem (Gu, J. Lutz, and Moser 2007)
For every infinite A ⊆ Z+,
dimFS(CEk(A)) ≥ dimζ(A) and
DimFS(CEk(A)) ≥ Dimζ(A).

For any four real numbers

0 ≤ α ≤ β≤ ≤
γ ≤ δ ≤ 1 ,

there exists an infinite A ⊆ Z+ with

dimζ(A) = α Dimζ(A) = β
dimFS(CEk(A)) = γ DimFS(CEk(A)) = δ .

(∗) implies the Copeland-Erdős theorem.
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Finite-State Dimension and Real Arithmetic

QUESTION
Which operations on sequences preserve normality?



Preserving Normality I: Subsequence Selection

Theorem (Wall 1949)
If S is normal and S ′ is a subsequence chosen by taking symbols at
positions in an arithmetic progression, then S ′ is normal.

Theorem (Agafonov 1968)
If S is normal and S ′ is a subsequence chosen using a regular
language, then S ′ is normal.

Theorem (Merkle, Reimann 2003)
Subsequence selection using a context-free language — even a
one-counter language — does not preserve normality.
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A real number α is normal in base k if its base-k expansion is a
normal sequence.
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If q is a non-zero rational, then, for every real number α, α is
normal in base k ⇒ q + α and qα are normal base k.
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Preserving FSD I: Subsequence Selection

Observation: Let
S = b00b10b20b3 . . . ,

where b0b1b2b3 . . . ∈ {0, 1}∞ is normal, and consider

S ′ = b0b1b2b3 . . . ,

S ′′ = 0000 . . . .

Then

dimFS(S) = DimFS(S) = 1/2
dimFS(S ′) = DimFS(S ′) = 1
dimFS(S ′′) = DimFS(S ′′) = 0 .

Finite state dimension is not preserved by even the simplest
subsequence selections.
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Preserving FSD II: Real Arithmetic

Theorem (Doty, Lutz, and Nandakumar 2007)
For every base k ≥ 2, every nonzero rational q, and every real
number α, the base-k expansions of α, q + α, and qα all have the
same finite dimension and the same finite-state strong dimension.

Extends Wall’s 1949 theorem.
Gives a new proof of Wall’s 1949 theorem.
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Ingredients of Proof: Block-Entropy Rates

Notation:
For w, x ∈ Σ+,

#(w, x) = number of block occurrences of w in x.

For S ∈ Σ∞, n ∈ Z+, w ∈ Σ<n ,

πS ,n(w) = nth block frequency of w in S

= #(w,S � n · |w|)
n .

For S ∈ Σ∞, n ∈ Z+, 0 < ` < n,

π
(`)
S ,n = restriction of πS ,n to Σ` ∈ ∆(Σ`) .
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Ingredients of Proof: Block-Entropy Rates

For S ∈ Σ∞ and ` ∈ Z+, the `th normalized lower and upper
block entropy rates of S are

H−` (S) = 1
` log k lim inf

n→∞
H
(
π

(`)
S ,n

)
,

H +
` (S) = 1

` log k lim sup
n→∞

H
(
π

(`)
S ,n

)
,

where

H (π) = Shannon entropy of π

=
∑
w
π(w) log 1

π(w) .



Ingredients of Proof: Block-Entropy Rates

Theorem (Bourke, Hitchcock, Vinodchandran 2005)
For all S ∈ Σ∞,

dimFS(S) = inf
`∈Z+

H−` (S) ,

DimFS(S) = inf
`∈Z+

H +
` (S) ,



Ingredients of Proof: Logarithmic Dispersion

Notation:
∆n = ∆({1, 2, . . . ,n}) = {probability measures on {1, 2, . . . ,n}}.

The log-dispersion between µ, π ∈ ∆n is

δ(π, µ) = log m ,

where m is the least positive integer for which there is an n × n
non-negative real matrix A = (aij) satisfying:

A is stochastic, i.e., each column sums to 1.

Aπ = µ, i.e.,
n∑

j=1
aijπ(j) = µ(i) for all 1 ≤ i ≤ n.

No row or column of A contains more than m nonn-zero
entries. (“Dispersion is limited by m.”)
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Ingredients of Proof: Logarithmic Dispersion

Definition
The normalized upper log-dispersion between sequences
S ,T ∈ Σ∞ is

δ+(S ,T ) = lim sup
`→∞

1
` log k lim sup

n→∞
δ
(
π

(`)
S ,n , π

(`)
T ,n

)
.

Main Technical Theorem:
Theorem (Doty, Lutz, and Nandadumar 2007)
dimFS and DimFS are δ+-contractive:

|dimFS(S)− dimFS(T )| ≤ δ+(S ,T ) ,

|DimFS(S)−DimFS(T )| ≤ δ+(S ,T ) .

Used to prove that “q·” preserves dimension.
May be more generally useful.
Proof uses Schur concavity of Shannon entropy
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There is a rich literature of results on Borel normality.

Conjecture 1
Many of these are the dimension-1 special case of yet-to-be-proven
theorems about finite-state dimension.

Conjecture 2
Many of these more general theorems will drive the development of
useful new methods.
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Thank you!


